Quantum 3-SAT is QMA 1 -complete

Post on 22-Mar-2016

46 views 0 download

description

Quantum 3-SAT is QMA 1 -complete. David Gosset (Institute for Quantum Computing, University of Waterloo) Daniel Nagaj ( University of Vienna) Long version: arXiv : 1302.0290 Short version : Proceedings of FOCS 2013. Quantum k-SAT ( Bravyi 2006). - PowerPoint PPT Presentation

transcript

Quantum 3-SAT is QMA1-complete

David Gosset (Institute for Quantum Computing, University of Waterloo)

Daniel Nagaj (University of Vienna)

Long version: arXiv: 1302.0290

Short version : Proceedings of FOCS 2013

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SATGiven k-local projectors {. We are promised that either

(YES) There is a state which satisfies for each

(NO) for all states

and asked to decide which is the case.

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SATGiven k-local projectors {. We are promised that either

(YES) There is a state which satisfies for each

(NO) for all states

and asked to decide which is the case.

Exactly satisfies eachclause

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SATGiven k-local projectors {. We are promised that either

(YES) There is a state which satisfies for each

(NO) for all states

and asked to decide which is the case.

Exactly satisfies eachclause

Total violation is at least 1. Can be obtained from by repeating each term

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SATGiven k-local projectors {. We are promised that either

(YES) There is a state which satisfies for each

(NO) for all states

and asked to decide which is the case.

Exactly satisfies eachclause

Total violation is at least 1. Can be obtained from by repeating each term

Classical k-SAT is the special case where all projectors are diagonal

Quantum k-SAT is a special case of k-local Hamiltonian where the Hamiltonian is frustration-free for yes instances

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Complexity of quantum k-SAT

k=2

๐‘˜โ‰ฅ4

Contained in P

QMA1-complete

๐’Œ=๐Ÿ๐’Œ=๐Ÿ‘

4

[Bravyi 2006]

also follows from [Kitaev 99])

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Complexity of quantum k-SAT

k=2

๐‘˜โ‰ฅ4

Contained in P

QMA1-complete

Contained in QMA1

NP-hard

๐’Œ=๐Ÿ๐’Œ=๐Ÿ‘

4

[Bravyi 2006]

also follows from [Kitaev 99])

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Complexity of quantum k-SAT

We prove quantum 3-SAT is QMA1-hard (and therefore QMA1-complete).

k=2

๐‘˜โ‰ฅ4

Contained in P

QMA1-complete

Contained in QMA1

NP-hard

๐’Œ=๐Ÿ๐’Œ=๐Ÿ‘

4

[Bravyi 2006]

also follows from [Kitaev 99])

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Complexity of quantum k-SAT

k=2

๐‘˜โ‰ฅ4

Contained in P

QMA1-complete

๐’Œ=๐Ÿ๐’Œโ‰ฅ๐Ÿ‘

[Ambainis Kempe Sattath 2010][Arad Sattath 2013][Schwarz Cubitt Verstraete 2013]

Many authors have studied quantum SAT since Bravyiโ€™s work

Quantum Lovรกsz Local Lemma

[Laumann Lรคuchli Moessner Scardicchio Sondhi 2010][Laumann Moessner Scardicchio Sondhi 2010][Bravyi Moore Russell 2010][Hsu Laumann Lรคuchli Moessner Sondhi 2013][Bardoscia Nagaj Scardicchio 2013]

Ensembles of randominstances of quantum k-SAT

[Eldar Regev 2008] Complexity of quantum 2-SAT with higher dimensional particles (qudits)

[Ji Wei Zeng 2011] Characterization of the groundspace of yes instances of quantum 2-SAT

[Sattath 2013] โ€œAn almost sudden jump in quantum complexityโ€

QMA1

If is a yes instance there exists (a witness) which is accepted with probability exactly 1.If is a no instance every state is accepted with probability at most

Wm-1Wm-2โ€ฆW0

ยฟ๐œ“ โŸฉยฟ0 โŸฉโŠ—๐‘›๐‘Ž

QMA1 verification circuit

Because of the perfect completeness, the definition of QMA1 is gate-set dependent.It is not known whether or not QMA=QMA1; see

[Aaronson 2009] [Jordan, Kobayashi, Nagaj, Nishimura 2012][Kobayashi, Le Gall, Nishimura 2013] [Pereszlenyi 2013]

QMA1 is a one-sided error version of QMA. This is the relevant class becausequantum k-SAT is defined with one-sided error.

Bravyi proved quantum k-SAT is contained in QMA1 (verification circuit: choose one projector at random and measure it).

Bravyi proved quantum k-SAT is contained in QMA1 (verification circuit: choose one projector at random and measure it).

To prove QMA1-hardness of quantum 3-SAT we use a circuit-to-Hamiltonian mapping, i.e., we reduce from quantum circuit satisfiability.

If x is a yes instance there is an input state (witness) which makes the circuit output 1 with certainty. Ground energy of is zero.

If x is a no instance no input state makes the circuit output 1 with probability greater than Ground energy of is at least .

QMA1-hardness via circuit-to-Hamiltonian mapping

Wm-1Wm-2โ€ฆW0ยฟ๐œ“ โŸฉ

ยฟ0 โŸฉโŠ—๐‘›๐‘Ž ๐ป ๐‘ฅ=โˆ‘๐‘–ฮ  ๐‘–

QMA1 Verification circuit for Quantum 3-SAT Hamiltonian

Wm-1Wm-2โ€ฆW0ยฟ๐œ“ โŸฉยฟ0 โŸฉโŠ—๐‘›๐‘Ž

Hilbert space

QMA1 verification circuit (n qubits, m gates)

|๐‘ง โŸฉ|๐‘ก โŸฉ ๐‘งโˆˆ {0,1 }๐‘› , ๐‘กโˆˆ{0,1,2 ,โ€ฆ,๐‘š }

Example part 1 [Kitaev 99]

Wm-1Wm-2โ€ฆW0ยฟ๐œ“ โŸฉยฟ0 โŸฉโŠ—๐‘›๐‘Ž

Hilbert space

QMA1 verification circuit (n qubits, m gates)

|๐‘ง โŸฉ|๐‘ก โŸฉ ๐‘งโˆˆ {0,1 }๐‘› , ๐‘กโˆˆ{0,1,2 ,โ€ฆ,๐‘š }

๐ป๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก )=12 ยฟTransitionoperators

Example part 1 [Kitaev 99]

Wm-1Wm-2โ€ฆW0ยฟ๐œ“ โŸฉยฟ0 โŸฉโŠ—๐‘›๐‘Ž

Hilbert space

Transitionoperators

QMA1 verification circuit (n qubits, m gates)

|๐‘ง โŸฉ|๐‘ก โŸฉ ๐‘งโˆˆ {0,1 }๐‘› , ๐‘กโˆˆ{0,1,2 ,โ€ฆ,๐‘š }

๐ป๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก )=12 ยฟ

๐ป ๐น๐‘’๐‘ฆ๐‘›๐‘š๐‘Ž๐‘›=โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ1|๐‘–โŠ—โˆจ0โŸฉโŸจ 0โˆจยฟ+โˆ‘

๐‘ก=0

๐‘šโˆ’1

๐ป๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)+|0 โŸฉ โŸจ0|๐‘œ๐‘ข๐‘กโŠ—โˆจ๐‘šโŸฉโŸจ๐‘šโˆจยฟยฟHamiltonian

Example part 1 [Kitaev 99]

Wm-1Wm-2โ€ฆW0ยฟ๐œ“ โŸฉยฟ0 โŸฉโŠ—๐‘›๐‘Ž

Hilbert space

Transitionoperators

QMA1 verification circuit (n qubits, m gates)

|๐‘ง โŸฉ|๐‘ก โŸฉ ๐‘งโˆˆ {0,1 }๐‘› , ๐‘กโˆˆ{0,1,2 ,โ€ฆ,๐‘š }

๐ป๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก )=12 ยฟ

Hamiltonian

1โˆš๐‘š+1

(|๐œ™ โŸฉ|0 โŸฉ+๐‘Š 0|๐œ™ โŸฉ|1 โŸฉ+๐‘Š 1๐‘Š 0|๐œ™ โŸฉ|2 โŸฉ+โ€ฆ+๐‘Š๐‘šโˆ’1๐‘Š๐‘šโˆ’2โ€ฆ๐‘Š 0โˆจ๐œ™ โŸฉโˆจ๐‘šโŸฉ)Nullspace consists of โ€œhistory statesโ€

๐ป ๐น๐‘’๐‘ฆ๐‘›๐‘š๐‘Ž๐‘›=โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ1|๐‘–โŠ—โˆจ0โŸฉโŸจ 0โˆจยฟ+โˆ‘

๐‘ก=0

๐‘šโˆ’1

๐ป๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)+|0 โŸฉ โŸจ0|๐‘œ๐‘ข๐‘กโŠ—โˆจ๐‘šโŸฉโŸจ๐‘šโˆจยฟยฟ

Example part 1 [Kitaev 99]

Wm-1Wm-2โ€ฆW0ยฟ๐œ“ โŸฉยฟ0 โŸฉโŠ—๐‘›๐‘Ž

Hilbert space

Transitionoperators

QMA1 verification circuit (n qubits, m gates)

|๐‘ง โŸฉ|๐‘ก โŸฉ ๐‘งโˆˆ {0,1 }๐‘› , ๐‘กโˆˆ{0,1,2 ,โ€ฆ,๐‘š }

๐ป๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก )=12 ยฟ

Hamiltonian

1โˆš๐‘š+1

(|๐œ™ โŸฉ|0 โŸฉ+๐‘Š 0|๐œ™ โŸฉ|1 โŸฉ+๐‘Š 1๐‘Š 0|๐œ™ โŸฉ|2 โŸฉ+โ€ฆ+๐‘Š๐‘šโˆ’1๐‘Š๐‘šโˆ’2โ€ฆ๐‘Š 0โˆจ๐œ™ โŸฉโˆจ๐‘šโŸฉ)Nullspace consists of โ€œhistory statesโ€

To have zero energy for the other two terms, we must have|๐œ™ โŸฉ=|0 โŸฉ๐‘›๐‘Žโˆจ๐œ“ โŸฉA witness accepted with probability 1

๐ป ๐น๐‘’๐‘ฆ๐‘›๐‘š๐‘Ž๐‘›=โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ1|๐‘–โŠ—โˆจ0โŸฉโŸจ 0โˆจยฟ+โˆ‘

๐‘ก=0

๐‘šโˆ’1

๐ป๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)+|0 โŸฉ โŸจ0|๐‘œ๐‘ข๐‘กโŠ—โˆจ๐‘šโŸฉโŸจ๐‘šโˆจยฟยฟ

Example part 1 [Kitaev 99]

Wm-1Wm-2โ€ฆW0ยฟ๐œ“ โŸฉยฟ0 โŸฉโŠ—๐‘›๐‘Ž

Hilbert space

QMA1 verification circuit (n qubits, m gates)

|๐‘ง โŸฉ|๐‘ก โŸฉ ๐‘งโˆˆ {0,1 }๐‘› , ๐‘กโˆˆ{0,1,2 ,โ€ฆ,๐‘š }

๐ป๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก )=12 ยฟ

has a zero energy ground state if and only if the QMA1 verification circuit accepts a witness with probability 1. However, itโ€™s not local.

Example part 1 [Kitaev 99]

Kitaev used a clock construction to convert it to a local Hamiltonianโ€ฆ

Transitionoperators

Hamiltonian ๐ป ๐น๐‘’๐‘ฆ๐‘›๐‘š๐‘Ž๐‘›=โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ1|๐‘–โŠ—โˆจ0โŸฉโŸจ 0โˆจยฟ+โˆ‘

๐‘ก=0

๐‘šโˆ’1

๐ป๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)+|0 โŸฉ โŸจ0|๐‘œ๐‘ข๐‘กโŠ—โˆจ๐‘šโŸฉโŸจ๐‘šโˆจยฟยฟ

Hilbert space HcompโŠ—Hclock

m qubitsn qubits

Example part 2: Clock construction [Kitaev 99]

๐ป ๐พ๐‘–๐‘ก๐‘Ž๐‘’๐‘ฃ=1โŠ—โˆ‘๐‘–=1

๐‘šโˆ’1

|01 โŸฉ โŸจ 01ยฟ๐‘– ,๐‘–+1+๐ป๐‘ ๐‘–๐‘š

Hilbert space HcompโŠ—Hclock

m qubitsn qubits

Hamiltonian

Example part 2: Clock construction [Kitaev 99]

A sum of 5-local projectors

๐ป ๐พ๐‘–๐‘ก๐‘Ž๐‘’๐‘ฃ=1โŠ—โˆ‘๐‘–=1

๐‘šโˆ’1

|01 โŸฉ โŸจ 01ยฟ๐‘– ,๐‘–+1+๐ป๐‘ ๐‘–๐‘š

Nullspace spanned by

Hilbert space HcompโŠ—Hclock

m qubitsn qubits

|t โŸฉ๐‘ข=|111โ€ฆ1000โ€ฆ0 โŸฉ ,t=0 ,โ€ฆ,m

๐‘ก ๐‘šโˆ’๐‘ก

Hamiltonian

Example part 2: Clock construction [Kitaev 99]

A sum of 5-local projectors

๐ป ๐พ๐‘–๐‘ก๐‘Ž๐‘’๐‘ฃ=1โŠ—โˆ‘๐‘–=1

๐‘šโˆ’1

|01 โŸฉ โŸจ 01ยฟ๐‘– ,๐‘–+1+๐ป๐‘ ๐‘–๐‘š

๐ป ๐‘ ๐‘–๐‘š|HcompโŠ—Sclock=๐ป ๐น๐‘’๐‘ฆ๐‘›๐‘š๐‘Ž๐‘›

Nullspace spanned by

is designed so that

This implies has the same nullspace as

Hilbert space HcompโŠ—Hclock

m qubitsn qubits

|t โŸฉ๐‘ข=|111โ€ฆ1000โ€ฆ0 โŸฉ ,t=0 ,โ€ฆ,m

๐‘ก ๐‘šโˆ’๐‘ก

Hamiltonian

Example part 2: Clock construction [Kitaev 99]

A sum of 5-local projectors

h๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก ) |HcompโŠ—S clock=๐ป๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)

๐‘ƒ0|Sclock=|0 โŸฉ โŸจ 0โˆจยฟ

๐‘ƒ๐‘š|Sclock=|๐‘š โŸฉ โŸจ๐‘šโˆจยฟ

This is achieved โ€œterm by termโ€, by exhibiting projectors (acting on ) and projectors acting on such that

Example part 2: Clock construction [Kitaev 99]

h๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก ) |HcompโŠ—S clock=๐ป๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)

๐‘ƒ0|Sclock=|0 โŸฉ โŸจ 0โˆจยฟ

๐‘ƒ๐‘š|Sclock=|๐‘š โŸฉ โŸจ๐‘šโˆจยฟ

This is achieved โ€œterm by termโ€, by exhibiting projectors (acting on ) and projectors acting on such that

Example part 2: Clock construction [Kitaev 99]

๐ป ๐พ๐‘–๐‘ก๐‘Ž๐‘’๐‘ฃ=1โŠ—โˆ‘๐‘–=1

๐‘šโˆ’1

|01 โŸฉ โŸจ 01ยฟ๐‘– ,๐‘–+1+โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ1|๐‘–โŠ—๐‘ƒ0+โˆ‘

๐‘ก=0

๐‘šโˆ’1

h๐‘ก , ๐‘ก+1(๐‘Š ๐‘ก)+|0 โŸฉ โŸจ0|๐‘œ๐‘ข๐‘กโŠ—๐‘ƒ๐‘š

h๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก ) |HcompโŠ—S clock=๐ป๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)

๐‘ƒ0|Sclock=|0 โŸฉ โŸจ 0โˆจยฟ

๐‘ƒ๐‘š|Sclock=|๐‘š โŸฉ โŸจ๐‘šโˆจยฟ

This is achieved โ€œterm by termโ€, by exhibiting projectors (acting on ) and projectors acting on such that

Example part 2: Clock construction [Kitaev 99]

๐ป ๐พ๐‘–๐‘ก๐‘Ž๐‘’๐‘ฃ=1โŠ—โˆ‘๐‘–=1

๐‘šโˆ’1

|01 โŸฉ โŸจ 01ยฟ๐‘– ,๐‘–+1+โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ1|๐‘–โŠ—๐‘ƒ0+โˆ‘

๐‘ก=0

๐‘šโˆ’1

h๐‘ก , ๐‘ก+1(๐‘Š ๐‘ก)+|0 โŸฉ โŸจ0|๐‘œ๐‘ข๐‘กโŠ—๐‘ƒ๐‘š

A -local projector if is j-local

1-local projectors

h๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก ) |HcompโŠ—S clock=๐ป๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)

๐‘ƒ0|Sclock=|0 โŸฉ โŸจ 0โˆจยฟ

๐‘ƒ๐‘š|Sclock=|๐‘š โŸฉ โŸจ๐‘šโˆจยฟ

This is achieved โ€œterm by termโ€, by exhibiting projectors (acting on ) and projectors acting on such that

Kitaevโ€™s Hamiltonian is a sum of k-local projectors with for circuits made from 1- and 2-qubit gates.

Kitaevโ€™s construction can be used to prove that quantum 5-SAT is QMA1-hard.

Example part 2: Clock construction [Kitaev 99]

๐ป ๐พ๐‘–๐‘ก๐‘Ž๐‘’๐‘ฃ=1โŠ—โˆ‘๐‘–=1

๐‘šโˆ’1

|01 โŸฉ โŸจ 01ยฟ๐‘– ,๐‘–+1+โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ1|๐‘–โŠ—๐‘ƒ1+โˆ‘

๐‘ก=0

๐‘š โˆ’1

h๐‘ก ,๐‘ก+1(๐‘Š ๐‘ก)+|0 โŸฉ โŸจ0|๐‘œ๐‘ข๐‘กโŠ—๐‘ƒ๐‘š

A -local projector if is j-local

1-local projectors

The first ingredient in our QMA1-hardness proof is a new clock construction (with different locality from Kitaevโ€™s)โ€ฆ

Properties of the new clock construction

๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘

.

Hc lockSum of 3-local projectors Hamiltonian acting on

7N-3 qubits

Nullspace

ClockHamiltonian

Properties of the new clock construction

๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘

.

Hc lockSum of 3-local projectors Hamiltonian acting on

HcompโŠ—Hclock

7N-3 qubits

Nullspace

ClockHamiltonian

Transitionoperators

act on

A -local projector if U is j-local

Properties of the new clock construction

๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘

.

Hc lockSum of 3-local projectors Hamiltonian acting on

HcompโŠ—Hclock

7N-3 qubits

Nullspace

ClockHamiltonian

Transitionoperators

act on

Greater than/Less than operators ๐ถโ‰ค ๐‘–

๐ถโ‰ค ๐‘–|Sclock  = โˆ‘1โ‰ค ๐‘—<๐‘–

|๐ถ ๐‘— โŸฉโŸจ ๐ถ ๐‘—โˆจ+ยฟ12|๐ถ๐‘– โŸฉโŸจ ๐ถ๐‘–โˆจยฟยฟ ๐ถโ‰ฅ ๐‘–|Sclock  =

12|๐ถ๐‘– โŸฉโŸจ ๐ถ๐‘–โˆจ+ โˆ‘

๐‘–< ๐‘— โ‰ค๐‘|๐ถ ๐‘— โŸฉโŸจ ๐ถ ๐‘—โˆจยฟยฟ

act on Hclock

A -local projector if U is j-local

1-local projectors

3-local 2-local 4-local 2-local

Like Kitaevโ€™s clock construction, ours could be used to emulate Feynmanโ€™s Hamiltonian

This isnโ€™t good enough for our purposesโ€”it only shows that quantum 4-SAT is QMA1-hard (already known).

Instead, we use our clock construction in a different wayโ€ฆ

1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘š+ 1 +โˆ‘

๐‘–=1

๐‘›๐‘Ž|1 โŸฉโŸจ 1โˆจ๐‘–โŠ—๐ถโ‰ค 1+โˆ‘

๐‘กh๐‘ก ,๐‘ก+1 (๐‘Š ๐‘ก )+|0 โŸฉ โŸจ 0โˆจ๐‘œ๐‘ข๐‘กโŠ—๐ถโ‰ฅ๐‘š+1

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

2D grid of zero energy clock states

1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘ โŠ—1+1โŠ—1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

๐‘

โ€œInitialโ€ โ€œFinalโ€

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘ โŠ—1+1โŠ—1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

๐‘ +๐ป ๐‘๐‘Ÿ๐‘œ๐‘

Every zero energy groundstate encodes the history ofa computation

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

for 1-local U

1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘ โŠ—1+1โŠ—1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

๐‘ +๐ป ๐‘๐‘Ÿ๐‘œ๐‘

is built out of 3-local projectors such as

h ๐‘– ,๐‘–+1 (๐‘ˆ )โŠ—1

1โŠ—๐ถโ‰ฅ๐‘˜โŠ—๐ถโ‰ค ๐‘—

|0 โŸฉ โŸจ 0โˆจ๐‘ŽโŠ—h ๐‘– ,๐‘–+1โŠ—11โŠ—h๐‘– , ๐‘–+1โŠ—๐ถโ‰ค ๐‘˜

Every zero energy groundstate encodes the history ofa computation

(writing )

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘ โŠ—1+1โŠ—1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

๐‘ +๐ป ๐‘๐‘Ÿ๐‘œ๐‘+โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ 1โˆจ๐‘–โŠ—๐ถโ‰ค 1โŠ—๐ถโ‰ค 1+|0 โŸฉ โŸจ 0โˆจ๐‘œ๐‘ข๐‘กโŠ—๐ถโ‰ฅ๐‘โŠ—๐ถโ‰ฅ๐‘

Enforce initialization of ancillasand correct output of circuit

for 1-local U

is built out of 3-local projectors such as

h ๐‘– ,๐‘–+1 (๐‘ˆ )

1โŠ—๐ถโ‰ฅ๐‘˜โŠ—๐ถโ‰ค ๐‘—

|0 โŸฉ โŸจ 0โˆจ๐‘ŽโŠ—h ๐‘– ,๐‘–+1โŠ—11โŠ—h๐‘– , ๐‘–+1โŠ—๐ถโ‰ค ๐‘˜ (writing )

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜๐‘ โŠ—1+1โŠ—1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

๐‘ +๐ป ๐‘๐‘Ÿ๐‘œ๐‘+โˆ‘๐‘–=1

๐‘›๐‘Ž|1 โŸฉ โŸจ 1โˆจ๐‘–โŠ—๐ถโ‰ค 1โŠ—๐ถโ‰ค 1+|0 โŸฉ โŸจ 0โˆจ๐‘œ๐‘ข๐‘กโŠ—๐ถโ‰ฅ๐‘โŠ—๐ถโ‰ฅ๐‘

Enforce initialization of ancillasand correct output of circuit

I will now show you how to construct for the case where the verification circuit is a specific two-qubit gate (warning: gadgetry ahead)โ€ฆ

for 1-local U

is built out of 3-local projectors such as

h ๐‘– ,๐‘–+1 (๐‘ˆ )

1โŠ—๐ถโ‰ฅ๐‘˜โŠ—๐ถโ‰ค ๐‘—

|0 โŸฉ โŸจ 0โˆจ๐‘ŽโŠ—h ๐‘– ,๐‘–+1โŠ—11โŠ—h๐‘– , ๐‘–+1โŠ—๐ถโ‰ค ๐‘˜ (writing )

Zero energy ground states

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

1โŠ—1โŠ—๐ป ๐‘๐‘™๐‘œ๐‘๐‘˜9 +1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

9 โŠ—1

Two clock registers: Example

Zero energy ground states is a vertex in the above graph

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

Two clock registers: Example

1โŠ—1โŠ—๐ป ๐‘๐‘™๐‘œ๐‘๐‘˜9 +1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

9 โŠ—1+1โŠ—๐ถโ‰ฅ 3โŠ—๐ถโ‰ค1

Zero energy ground states

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

is a vertex in the above graph

Two clock registers: Example

+1โŠ—๐ถโ‰ค 1โŠ—๐ถโ‰ฅ 3+1โŠ—๐ถโ‰ฅ 3โŠ—๐ถโ‰ค11โŠ—1โŠ—๐ป ๐‘๐‘™๐‘œ๐‘๐‘˜9 +1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

9 โŠ—1

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

|๐œ™ โŸฉ๐‘Ž๐‘|ฮ“ โŸฉ=|๐œ™ โŸฉ๐‘Ž๐‘ โˆ‘๐‘– , ๐‘—โˆˆ ฮ“

|๐ถ๐‘– โŸฉโˆจ๐ถ ๐‘—โŸฉ where is a connected component of the graph

Zero energy ground states

Two clock registers: Example

+1โŠ—h12โŠ—๐ถโ‰ค2+1โŠ—๐ถโ‰ค 1โŠ—๐ถโ‰ฅ 3+1โŠ—๐ถโ‰ฅ 3โŠ—๐ถโ‰ค11โŠ—1โŠ—๐ป ๐‘๐‘™๐‘œ๐‘๐‘˜9 +1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

9 โŠ—1

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

|๐œ™ โŸฉ๐‘Ž๐‘|ฮ“ โŸฉ=|๐œ™ โŸฉ๐‘Ž๐‘ โˆ‘๐‘– , ๐‘—โˆˆ ฮ“

|๐ถ๐‘– โŸฉโˆจ๐ถ ๐‘—โŸฉ where is a connected component of the graph

Zero energy ground states

Two clock registers: Example

+1โŠ—h12โŠ—๐ถโ‰ค2+1โŠ—๐ถโ‰ค 1โŠ—๐ถโ‰ฅ 3+1โŠ—๐ถโ‰ฅ 3โŠ—๐ถโ‰ค11โŠ—1โŠ—๐ป ๐‘๐‘™๐‘œ๐‘๐‘˜9 +1โŠ—๐ป๐‘๐‘™๐‘œ๐‘๐‘˜

9 โŠ—1

Continuing in this way,we can design a Hamiltonian with ground states described by a more complicated graphโ€ฆ

Built out of terms likeh ๐‘– ,๐‘–+1โŠ—๐ถโ‰ค๐‘˜

๐ถโ‰ค๐‘˜โŠ— h๐‘– ,๐‘–+1๐ถโ‰ฅ ๐‘˜โŠ—๐ถโ‰ค ๐‘—

|๐œ™ โŸฉ๐‘Ž๐‘|ฮ“ โŸฉ=|๐œ™ โŸฉ๐‘Ž๐‘ โˆ‘๐‘– , ๐‘—โˆˆ ฮ“

|๐ถ๐‘– โŸฉโˆจ๐ถ ๐‘—โŸฉ where is a connected component of the graph

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

Zero energy ground states

Two clock registers: Example

Commutes with

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

Zero energy ground states

+ยฟ 0โŸฉโŸจ 0โˆจ๐‘ŽโŠ— (h34+h67 )โŠ—1+ยฟ1โŸฉโŸจ 1โˆจ๐‘ŽโŠ—1โŠ— (h34+h67 )

Two clock registers: Example

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

|0โŸฉ๐‘Žโˆจ๐œ“ โŸฉ๐‘|ฮ“ โŸฉ is a connected component

|1โŸฉ๐‘Žโˆจ๐œ“ โŸฉ๐‘|ฮ“ โŸฉ is a connected component

Zero energy ground states Zero energy ground states

+ยฟ 0โŸฉโŸจ 0โˆจ๐‘ŽโŠ— (h34+h67 )โŠ—1+ยฟ1โŸฉโŸจ 1โˆจ๐‘ŽโŠ—1โŠ— (h34+h67 )

Two clock registers: Example

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

|0โŸฉ๐‘Žโˆจ๐œ“ โŸฉ๐‘|ฮ“ โŸฉ is a connected component

|1โŸฉ๐‘Žโˆจ๐œ“ โŸฉ๐‘|ฮ“ โŸฉ is a connected component

Zero energy ground states Zero energy ground states

+ยฟ 0โŸฉโŸจ 0โˆจ๐‘ŽโŠ— (h34+h67 )โŠ—1+ยฟ1โŸฉโŸจ 1โˆจ๐‘ŽโŠ—1โŠ— (h34+h67 )

Two clock registers: Example

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

|0 โŸฉ๐‘Ž|๐œ“ โŸฉ๐‘|โŸฉ

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

|0 โŸฉ๐‘Ž|๐œ“ โŸฉ๐‘|โŸฉ |1 โŸฉ๐‘Ž|๐œ“ โŸฉ๐‘|โŸฉ |1 โŸฉ๐‘Ž|๐œ“ โŸฉ๐‘|โŸฉ+ others + others

Zero energy ground states Zero energy ground states

+ยฟ 0โŸฉโŸจ 0โˆจ๐‘ŽโŠ— (h34+h67 )โŠ—1+ยฟ1โŸฉโŸจ 1โˆจ๐‘ŽโŠ—1โŠ— (h34+h67 )

Two clock registers: Example

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

๐‘‰ ๐‘

๐‘ˆ๐‘ ๐‘ˆ๐‘

๐‘‰ ๐‘

Zero energy ground states Zero energy ground states

+h45 (๐‘ˆ๐‘)โŠ—1+h45ยฟ

Acts on first clock register and qubit b

Acts on second clock register and qubit b

[๐‘ˆ ,๐‘‰ ]โ‰ 0

+ยฟ 0โŸฉโŸจ 0โˆจ๐‘ŽโŠ— (h34+h67 )โŠ—1+ยฟ1โŸฉโŸจ 1โˆจ๐‘ŽโŠ—1โŠ— (h34+h67 )

Two clock registers: Example

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

+h45 (๐‘ˆ๐‘)โŠ—1+h45ยฟ

๐‘‰ ๐‘

๐‘ˆ๐‘ ๐‘ˆ๐‘

๐‘‰ ๐‘

Acts on first clock register and qubit b

Acts on second clock register and qubit b

[๐‘ˆ ,๐‘‰ ]โ‰ 0

Zero energy ground states Zero energy ground states

+ยฟ 0โŸฉโŸจ 0โˆจ๐‘ŽโŠ— (h34+h67 )โŠ—1+ยฟ1โŸฉโŸจ 1โˆจ๐‘ŽโŠ—1โŠ— (h34+h67 )

Two clock registers: Example

The point is that every zero energy ground state encodes the history of a two-qubit computation

|๐œ™ โŸฉ๐‘Ž๐‘|๐ถ1 โŸฉ|๐ถ1 โŸฉ+โ€ฆ+๐‘Š|๐œ™ โŸฉ๐‘Ž๐‘โˆจ๐ถ9 โŸฉโˆจ๐ถ9โŸฉ

where ๐‘Š=|0 โŸฉ โŸจ 0โˆจโŠ—๐‘‰๐‘ˆ+ยฟ1โŸฉโŸจ 1โˆจโŠ—๐‘ˆ๐‘‰

(An entangling two-qubit unitary for suitably chosen )

+h45 (๐‘ˆ๐‘)โŠ—1+h45ยฟ

Acts on first clock register and qubit b

Acts on second clock register and qubit b

[๐‘ˆ ,๐‘‰ ]โ‰ 0

+ยฟ 0โŸฉโŸจ 0โˆจ๐‘ŽโŠ— (h34+h67 )โŠ—1+ยฟ1โŸฉโŸจ 1โˆจ๐‘ŽโŠ—1โŠ— (h34+h67 )

Two clock registers: Example

This was achieved without using the transition operator

Remarks and open questions

โ€ข Are there simpler โ€œclause-by-clauseโ€ reductions for quantum k-SAT? In the classical case there is a clause-by-clause way to map a (k+1)-SAT instance to a k-SAT instance, for .

โ€ข Other applications for our new clock construction?

โ€ข โ€œFrustration-freeโ€ gadgetry has the advantage over perturbation theory methods that one can avoid large (system size dependent) terms in the Hamiltonian.