Rui Ten Beek

Post on 03-Feb-2016

225 views 0 download

description

sdsd

transcript

1

Experimental characterization of simple single-molecule junctions

2

In collaboration with ...

Leiden: Marc van Hemert

IBM Yorktown Heights: Norton Lang

Technical University of Denmark: Kristian Thygesen, Karsten Jacobsen.

Kamerlingh Onnes Laboratory, Leiden University

Darko Djukic Yves Noat Roel Smit Carlos Untiedt & JvR

3

Mechanically Controllable Break Junction

4

Mechanically Controllable Break Junction

5

0 50 100 150 200 250 300012345678

Gold, 4.2 K

Con

duct

ance

(2e

2 /h)

Piezo-voltage (V)

6

Conductance histogram for Au

0 1 2 3 40

10

20

30

40

50

G [2e2/h]

# po

ints

(x

103 )

7

Conductance curve for Pt

0.0 2.0 4.0 6.00

1

2

3

4

5

Pt

C

ondu

ctan

ce (

2e2 /h

)

Piezovoltage (V)0.0 2.0 4.0 6.00

1

2

3

4

5

Pt

C

ondu

ctan

ce (

2e2 /h

)

Piezovoltage (V)

8

Conductance histogram for Pt

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

Pt

N

um

be

r o

f co

un

ts

Conductance (2e2/h)

9

Conductance curve for Pt/H2

0.0 2.0 4.0 6.00

1

2

3

4

5

Pt/H2

Pt

C

ondu

ctan

ce (

2e2 /h

)

Piezovoltage (V)

10

0 1 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8Pt/H

2

Pt

N

umb

er o

f cou

nts

Conductance (2e2/h)

Conductance histogram for Pt/H2

Bias voltage 140 mV

11

E

eV

k

G decreases for eV > ħω

Principle of point contact spectroscopy

12

Point contact spectrum for Pt/H2

Modulation: 1 mV, 7 kHzRecording time: 10 sTemperature: 4.2 K

0,92

0,93

0,94

0,95

-100 -50 0 50 100

-0,04

-0,02

0,00

0,02

0,04

Pt/H2

d

I/dV

(2e

2 /h)

63.5 mV

- 63.5 mV

dG

/dV

(a.

u.)

Bias voltage (mV)

13

Isotope shift

30 40 50 60 70 800

1

2

3

4

5

6

7

8

9

10Pt + HD

Pt + D2

Pt + H2

Cou

nts

Vibration mode energy [meV]

35 40 45 50

40 45 50 55 60

45 50 55 60 65 70 750

1

2

3

4

5

6

7

8

9

10

Cou

nts

Vibration mode energy [meV]

Pt-H2 not scaled Pt-D2 by Ö2 Pt-HD by Ö(3/2)

14

Conductance fluctuations: 3 examples

-50 0 501.58

1.60

1.62

1.64

1.66

1.68

1.70

G (

V)

= d

I/dV

(2e

2 /h)

-50 0 50

0.99

1.01

1.03

1.05

1.07

1.09

Bias voltage (mV)

-50 0 500.82

0.84

0.86

0.88

0.90

0.92

0.94

Au

15

Principle of conductance fluctuationsin ballistic contacts

16

RMS fluctuations measured for Au

Au

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

G [2e2/h]

s GV

[Go/

V]

Gold

17

Conductance fluctuations

0 10

1000

2000

3000

4000

5000

6000

0

1

2

3

Cou

nts

Conductance (2e2/h)

sG

V

(a.u

.)

T = 0.97 (1)

Smit et al., Nature 419, 906 (2002)

18

More frequencies and stretching dependence

-100 -80 -60 -40 -20 0 20 40 60 80 100

0,0

0,92

0,94

0,96 PtH2 (no. 13)

d2 I/d

V2 (

a.u

.)

dI/d

V (

G0)

Energy (meV)

-100-80 -60 -40 -20 0 20 40 60 80 100-0,2

0,0

1,00

1,01

1,02

1,03

d2 I/

dV

2 (a.u

.) d

I/d

V (

G 0)

Energy (meV)

-100 -80 -60 -40 -20 0 20 40 60 80 100

0,0

0,92

0,94

0,96 PtH2 (no. 14, stretched no.13)

d2 I/d

V2 (

a.u

.)

d

I/dV

(G

0)

Energy (meV)

-100-80 -60 -40 -20 0 20 40 60 80 100

-0,1

0,0

0,10,92

0,94

0,96

d2 I/

dV

2 (a.u

.) d

I/d

V (

G 0)

Energy (meV)

19K.S.Thygesen and K.W. Jacobsen (unpublished)

New local density calculations

20

Vibration modes of a Pt – H2 – Pt bridge

0 20 40 60 80 100 1200

10

20

30

40

50 PtH2

C

ou

nt

Energy (meV)

21

PtD2

-100-80 -60 -40 -20 0 20 40 60 80 100-0,2

0,0

0,96

0,98 PtD2

d

2 I/dV

2 (a.

u.)

dI/d

V (

G0)

Energy (meV)

Vibration modes for Deuterium, Pt–D2–Pt

22

-100 -80 -60 -40 -20 0 20 40 60 80 100

-0,1

0,0

0,1

0,98

1,00

1,02

1,04

same as stretched by 0.05 nm

d

2 I/dV

2 (a.

u)

d

I/dV

(G

0)

Energy (meV)

PtD2Vibration modes for Deuterium, Pt–D2–Pt

23

PtD2

K.S.Thygesen and K.W. Jacobsen (unpublished)

-0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0

45

50

85

90PtD

2 stretching

En

erg

y (m

eV)

X (A)

24

Comparison H2 and D2

0 20 40 60 80 100 1200

10

20

30

40

50 PtH2

Co

un

t

Energy (meV)

0 20 40 60 80 100 1200

10

20

30

40

50

60

70

PtD2

Co

un

t

Energy (meV)

25

Scaling of the modes by √m

20 40 60 80 100 120 1400

10

20

30

40

50

60

70 PtD

2

PtD2

PtD2

PtH2

PtH2

C

ou

nt

Energy (meV)

Ö2

26

Scaling of the modes by √m

0 20 40 60 80 100 120 1400

10

20

30

40

50

60

70 PtD2

PtD2

PtD2

PtHD PtHD PtH

2

PtH2

C

ou

nt

Energy (meV)

Ö2

Ö3/2

27

A test case for model calculations

J. Kuipers and M.C. van Hemert, unpublished

Conduction by antibonding orbitals. G = 0.9 G0.

N. Lang (Nature 419 (2002) 906) .

M.C. van Hemert, (Nature 419 (2002) 906)

28

A test case for model calculations

Y. Garcia, J.J. Palacios, et al., cond-mat/0310098

Conduction by bonding orbitals. ΔE=23eV.G = 0.2 G0.

29

A test case for model calculations

J. Heurich, F. Pauli, J.C. Cuevas, W. Wenzel and G. Schön, Nanotechnology 14

(2003) R29.

Conduction by bonding orbitals. ΔE = 24eV.

G = 0.86 G0

30

A test case for model calculations

K. Thygesen and K.W. Jacobsen, unpublished.

Conduction by antibonding orbitals. ΔE = 10-13 eV.

G = 1.0 G0

31

CO and Pt (preliminary)

0 1 2 3 4 5

10000

20000Pt-CO

Pt

Co

un

ts

Conductance (2e2/h)-50-40-30-20-10 0 10 20 30 40 50

-0,1

0,0

0,1

0,94

0,96

0,98

d2 I/d

V2 (

a.u

.)

d

I/dV

(2e

2 /h)

Energy (meV)

Pt-CO

-80 -60 -40 -20 0 20 40 60 80

-0,2

0,0

0,2

0,900,920,940,960,98

d2 I/d

V2 (

a.u

.)

d

I/dV

(2e

2 /h)

Energy (meV)

Pt-CO

-100 -50 0 50 100

-0,2

0,0

0,2

0,900,920,940,960,98

d2 I/d

V2 (

a.u

.)

d

I/dV

(2e

2 /h)

Energy (meV)

Pt-CO

32

Conclusions

• Molecular hydrogen forms a nearly ideal conductor when placed between Pt electrodes, despite the closed-shell character of the free molecule.

• Single-molecule junctions can be characterized by the vibration modes, their stretching dependence, by the conductance and by the number of conduction channels.

• Hydrogen forms a good test-case for model calculations.

• More work on larger organic molecules …

Universiteit Leiden

33

-100-80 -60 -40 -20 0 20 40 60 80 100

0,92

0,94

0,96

0,98

1,00

1,02

1,04Pt-D

2

Pt-HD (low)

G (

G0)

Energy (meV)

-100-80 -60 -40 -20 0 20 40 60 80 100

-0,2-0,10,00,10,2

0,94

0,96

0,98Pt-HD switching

d2 I/d

V2 (

a.u

.)

d

I/dV

(G

0)

Energy (meV)

Switching behavior for HD

34

PtHD puzzle

-1,5 -1,0 -0,5 0,0

40

50

60

70

80

E

ner

gy

(meV

)

x (Å)

Switching during stretching