Scanning Tunneling Microscopy - Tsinghua University

Post on 30-Nov-2021

10 views 1 download

transcript

Scanning Tunneling Microscopy

陈曦清华大学物理系

• Quantum Tunneling

• A Brief History of Microscopy

• Invention of STM

• STM Instrumentation

• Scanning Tunneling Spectroscopy

1Quantum Tunneling

Transmission rate:

Quantum Mechanical Tunneling

V(x)

E

x1 x2

T = exp

�2

Zx2

x1

p2m(V (x) � E)

~ dx

!

Three earliest examples (1928):

• α decay (Gamow)

• Field ionization of hydrogen (Oppenheimer)

• Field emission from metal surface (Fowler & Nordheim)

Quantum Mechanical Tunneling

α decay

Quantum Mechanical Tunneling

ln ⌧ = � lnA +12⇡B

pEk

U(r)

rU0

Ek

Field Ionization

Quantum Mechanical Tunneling

+

-eFx

Field Emission

Quantum Mechanical Tunneling

J =

pEF W

EF + W

e3F 2

2⇡hWexp

�8⇡

p2mW 3/2

3heF

!

Fowler-Nordheim formula

W

0

EF

W+EF-eFx

Quantum Mechanical Tunneling

1973 Nobel Prize in Physics

L Esaki

I Giaever

B D Josephson

p

n

N SΔ

V

Quantum Mechanical Tunneling

To be able to measure a tunneling current the two metals must be spaced no more than about 100Å apart, and we decided early in the game not to attempt to use air or vacuum between the two metals because of problems with vibration. ...... After a few months we hit on the correct idea: to use evaporated metal films and to separate them by a naturally grown oxide layer.

Nobel lecture, I Giaever, 1973

Quantum Mechanical Tunneling between Metals

Insulator

Empty Band

Filled Band

Partially

Filled Band

Metal

Energy GapFermi Level EF

Quantum Mechanical Tunneling between Metals

Density of States (DOS):

The number of states per

interval of energy at an

energy level

DOS of 3D free electrons

DOS

EEF

E =~2k2

2m

Quantum Mechanical Tunneling between Metals

Density of States (DOS):

The number of states per

interval of energy at an

energy level

DOS of 2D free electrons

DOS

EEF

E =~2k2

2m

Quantum Mechanical Tunneling between Metals

Density of States (DOS):

The number of states per

interval of energy at an

energy level

DOS of 2D Dirac electrons

DOS

EEF

E = ~vF k

ED

E

kx ky

Tunneling between two metals

Quantum Mechanical Tunneling between Metals

No tunneling current

Quantum Mechanical Tunneling between Metals

Tunneling between two metals

V

V

I ⇠ e�2d

d

=p

2m(W � E)~

�d ⇠ 1A ! I reduced by 10

Quantum Mechanical Tunneling between Metals

Tunneling spectroscopy

Tunneling probabilityV

Ew(E) / DOS(E)

Quantum Mechanical Tunneling between Metals

Tunneling spectroscopy

V I I+∆IV

∆V

Quantum Mechanical Tunneling between Metals

V

∆V

I∆I

⇓�I / DOS(V ) · �V

dI(V )dV

/ DOS(V )

w(E) / DOS(E)

Quantum Mechanical Tunneling between Metals

Tunneling: an approach to measure DOS

Example: Coulomb interaction + disorder ⇒ DOS ~ E1/2 at EFAl’tshuler & Aronov (1979)

Al

Al2O3

Ge1-xAux

McMillan & Mochel (1981)

Quantum Mechanical Tunneling between Metals

Pb

MgO

Mg

Giaever, Hart & Megerle (1962)

Inelastic Electron Tunneling Spectroscopy (IETS)

Inelastic excitations in barrier

Pb

Al2O3

Al

1 ML Molecules

Jaklevic & Lambe (1966)

4.2 K

B C

Inelastic Electron Tunneling Spectroscopy (IETS)

dI(V )dV

/ DOS(V )

Number of available tunneling channels at V

V

dI/dV: change of current after V is increased by dV

Inelastic Electron Tunneling Spectroscopy (IETS)

dI/d

VV

Elastic tunneling

Inelastic Electron Tunneling Spectroscopy (IETS)

Inelastic tunneling: additional tunneling channels

E0

d2 I/d

V2

V

dI/d

V

V

E0

2A Brief History of Microscopy

Development of Microscopy

ItalySpectacles

JanssenFirst Microscope

Roman Glass, Lenses

1st Century 14th Century 1590 1665 1676

Leeuwenhoek Bacteria

Hooke: English father of microscopy

Leeuwenhoek: father of microscopy

Development of Microscopy

Lister Spherical

Aberration

1830 1878 1932

ZernikePhase contrastMicroscopeNobel 1953

1933

RuskaNobel 1986

Development of Microscopy

Atomic Era of Microscopy

1951 Oct. 11, 1955 1970

Erwin W. Müller

STEM image of Th atoms

Albert Crewe

1981 STM

3Invention of STM

Gerd Binnig Heinrich RohrerIBM Research Laboratory, Zurich, Switzerland

Nobel Prize in Physics, 1986

Gerd Binnig: superconductivityHeinrich Rohrer: superconductivity, Kondo, phase transitionChristoph Gerber: joined IBM in 1966, worked with HR, craftsmanly, inventor of AFM

“...... gave us the courage and lightheartedness to start something which should not have worked in principle”

None in microscopy or surface science

Motivation: Local study of growth and electrical properties of thin insulating layers as tunneling junctions

Goal: not to build a microscope, but to perform spectroscopy locally on an area less than 100 Å in diameter

Contact over insulating film

Instead of scanning tip in contact over a surface, a small gap of a few angstroms was maintained and controlled by the

tunneling current

Not only a local spectroscopic probeBut spectroscopic and topographic imaging

Profilometer

1978

March 16, 1981 First demonstration of vacuum tunneling

Si(111) 7x7 (1982) 1998

Main instrumental problems:

How to avoid mechanical vibrations that move tip and sample

against each other?

How strong are the forces between tip and sample?

How to move a tip on such a fine scale?

How to move the sample on a fine scale over long distances?

How to avoid strong thermally excited length fluctuations of

sample and tip?

Vibration isolation

1st generationsuperconducting levitation

2st generationspring

2st generationspring

Tip movementThe continuous deformation of piezomaterial in the angstrom and sub-angstrom range was established only later by the tunneling experiments themselves.

Piezoelectric Materials

Scanning and rough positioning

AFM, atomic force microscopy

BEEM, ballistic electron emission microscopy

EFM, electrostatic force microscope

FMM, force modulation microscopy

KPFM, kelvin probe force microscopyMFM, magnetic force microscopy

MRFM, magnetic resonance force microscopy

NSOM, near-field scanning optical microscopy

PFM, piezo force microscopy

PTMS, photothermal microspectroscopy/microscopySAP, scanning atom probe

SCM, scanning capacitance microscopy

SECM, scanning electrochemical microscopy

SGM, scanning gate microscopy

SICM, scanning ion-conductance microscopySThM, scanning thermal microscopy

SVM, scanning voltage microscopy

SHPM, scanning Hall probe microscopy

SSM, scanning SQUID microscope

Scanning

Probe

Family

Who is who: Don Eigler

Who is who: Wilson Ho

Who is who: Roland Wiesendanger

Who is who: Seamus Davis

4STM Instrumentation

V

IV: 10 μV ~ 1 V I : pA ~ nA

Pre-amplifier

+

109 Ω

IV

GainNoise levelBand width

dI/dV: Lock-in amplifier

excitation

experimental system

response

+noise

singnal

+noisetransducer

dc+acexcitation

experimental system

response

+noise singnal+noise

transducer

reference

output

~

x

low-pass filterV+v

I

~

I = I(V + v cos !t) = I(V ) +

dI(V )

dVv cos !t

⇥ cos (!t + �)

I(V ) cos (!t + �) +

dI

dVv(cos (2!t + �) + cos �)/2

= I(V ) cos (!t + �) +

1

2

dI

dVv cos (2!t + �) +

1

2

dI

dVv cos �

1

2

dI

dVv cos �

low pass filter

X-Y scanning

Z motion

Feedback

Z

I

Piezoelectricity

V

x

x+δx

z+δzz

�z = d33V

�x = (x/z)d31V

d ~ 1 Å/V

Lead Zirconate Titanate:PbTiO3+PbZrO3

EBL#2:

d33=3.80 Å/V

d31=-1.73 Å/V

P

Vz

Tube scanner

δL=d31VzL / t ~ 10 Å/V

t

Lz

Vy

Tube scanner

δx=2√2 d31VxL2 / πDt ~10 Å/V

t

L

y

-Vy

Vx -Vx

D

x

X-Y

ZLow sensitivity

Higher spatial resolutionMore invulnerable to noise

Smaller scanning range

Scanning range ~ micron

Sensitivity: displacement per volt

Resonance frequenciesScanning speed

Z

X-Yx-y control

z control

Electronics

feedbackPre-amp

image

Tip approach

Earlier time:mechanical mechanism vibration, thermal leak

shear piezo

V

δx=d15V1 mm: 103~104 steps

HexagonalPrism

Force

ExteriorShell

PositionDetector

Shear PiezoStack

Pan Type

Besocke Type

Vibration noise

General rules:

Low noise environment

Vibration isolation

Rigid design

Vibration noise

Low noise environment:

Basement with solid foundation

Turn off mechanical pumps, turbo pumps, etc

Acoustic-isolation room

Without solid foundation

With solid foundation

Vibration noise

Vibration isolation and rigid design

1

1

2

Vibration noise

Vibration isolation and rigid design

Vibration noise

Vibration isolation and rigid design

UHV STM-Clean Surcace

High vacuum: 10-7 to 10-9 torrUltra high vacuum: < 10-9 torr

Mean free path• 10-9 torr: 105 m• 10-10 torr: 106 m• 10-11 torr: 107 m

Monolayer formation time• 10-9 torr: 103 s• 10-10 torr: 104 s• 10-11 torr: 105 s ~ days

Cryogenic STM

• Investigate phenomena only at low temperature

• Higher energy resolution

• Low thermal drift

• Slow down dynamics

Cryogenic STM

Higher energy resolution

Tip

kBTA level on

Sample

peak width @10K

dI/dV 3.5kBT 3 meV

d2I/dV2 5.4kBT 5 meV

Cryogenic STM

Low thermal drift

ΔL=α(T)·L·ΔT 0.01Å stability

10-5K fluctuation @ 300K

10-2K fluctuation @ 4K

0

10

20

50 100 150 200 250

Al

Cu

SS

Ti

Temperature (K)

Line

ar e

xpan

sion

coe

ffici

ent (

10-6

K-1

)

Cryogenic STM

Cryostats:

LN2: 77 K

LHe: 4.2 K

He-3: ~0.3 K

Dilution: ~10 mK

He-3 Dilution

Cryogenic STM

He-3 Cryostats

He3 pot

1K pot

Sorptionpump

He3 vessel

Cryogenic STM-Continuous Flow

• Variable T• Rapid cooling down• Compact• High LHe consumption• No magnet

Cryogenic STM-Bath Cryostat

Top loading• Conventional• Magnet• Ultra low temperature• Bulky

Cryogenic STM-Bath Cryostat

Bottom loading• Low LHe

consumption• Compact

Ultra low temperature STM

Y. J. Song, et al, RSI 81, 121102 (2010)

1.0 m 10 mK 15 T @NIST

Tsinghua

Ultra low temperature STM

1.0 m 10 mK 15 T @NIST 1.52 m 1.52 m

1.41 m

1.17 m dia.

4.30 m 5.60 m

3.12 m

110t

1.91 m3.05 m

0.56 m

6t

Ultra low temperature STM

Mixing Chamber

SSMC connectors

Heat exchanger

ICP

Heat exchanger

Still

1K pot condenser

IVC

Volume for 250 L

Magnetic bore

Baffles

JT condenser

Shields (Still & ICP)

Ag clamping ring

plastic guide

SPM receptacle

Mixing Chamber(MC)

Ag extension rods

1K pot

Still

ICP

SSMCconnectors

JT loop

precoolingheat exchanger

thermal anchor

strain relief grooves

STM Tip

Chemistry of tungsten• WO2 and WO3

• WO3 soluble in strong base• Oxide reduced to metal

Etching tungsten tip• AC etching: blunt but less oxide• DC etching: sharp but more oxide• Optimal procedure: AC+DC+Strong acid

Tip etcher

DC etching

STM Tip

1.5kV

1.5mA e-

Ar+

Ar+ Ar+

Ar+

Ar+

~ 1kV

12uA

Repeated cycles of heating and self-sputtering in vacuum to remove oxide and sharpen tip

STM Tip

400Vkeep I < 20uA 5 min

e-A

HV field emission in vacuum to remove oxide

STM Tip

LV field emission in vacuum to fix blunt, multiple tip

5 ~ 10V 1 sec

e-

STM Tip

Controlled crash to sharpen tip

Sample

Single crystal metal: sputter+anneal

180V

9V

0-2kV 0-2kV

A

Ar

Sample

Single crystal metal: sputter+anneal

Sample

Sample holder

e-

HV

Pyrometer

Sample

Single crystal metal

Au(110) Cu(100) Pt(111) 250 nm x 250 nm

Sample

Silicon

I

Flash to 1200ºC

Sample

Cleaving BiO

SrO

CuO2

Ca

CuO2

SrO

BiO

BiO

SrO

CuO2

Ca

CuO2

SrO

BiO

Sample

Thin film growthHeater

Knudsen Cells

RHEED Gun

RHEED Screen

LN2Shroud

Sample

Thin film growth10 nm

I

II

Bi2Te3

KFe2Se2

5Scanning Tunneling Spectroscopy

dI(V )dV

/ DOS(V )

Looking for structures (peak, dip, step) in dI/dVSpectroscopic imaging

-13.6 eV

-3.4 eV

-1.5 eVd

p

s

Electron orbitals of H atom

50 meV

100 meV

150 meV

300 meV

200 meV

xy

EnergySpectroscopic imaging

Electronic States-Landau Quantization

Conventional 2DES

En = ~!c

✓n +

12

H =1

2m(p + eA)2 H = vF [(p + eA) ⇥ �] · z

En = ED + sgn(n)vF

p2eB~|n|

n=0 1 2 3

Massless Dirac fermion

n=0 1 2 E E

Graphene

Electronic States-Landau Quantization

Miller, et al, Science 324, 924 (2009)

Electronic States-Landau Quantization

TI: Bi2Se3

-300 -250 -200 -150 -100 -50 0 50Sample Bias (mV)

0 T

dI/d

V (

a.u

.)

0

1

2

3

4

Dirac Point

Fermi level

1 T2 T

3 T

4 T

5 T

6 T

7 T

8 T

9 T

10 T

11 T

En ⇠p

nB

LL0 independent of B

��

��

��

�

�

�

�

��

���7���7

��7��7

� � � � � �� ��√nB

(QHUJ\��P

H9�

Electronic States-Landau Quantization

Electronic States-Quantum Confinement

Sub-band of Pb /Si(111)

EF

0.5

1.0

1.5Bind

ing

ener

gy (

eV)

Γ K

24 ML

Bind

ing

ener

gy

Wave vector

Wave vector

Van Hove Singularity

-1.0 -0.5 0.0 0.5 1.0 1.5

20ML

dI/d

V (a

rb. u

nits

)

Sample Bias(V)

21ML

19ML18ML17ML16ML15ML14ML13ML12ML11ML

22ML

STSQuantum confinement in thin film

Electronic States-Quantum Confinement

Building confined systems by manipulation

Electronic States-Quantum Confinement

Quantum corral

Eigler, et al, Science 262, 218 (1993)

9Å offcenter

Circle’scenter

Openterrace

-0.6 -0.4 -0.2 0.0 0.2 0.4Voltage (V)

dI/d

V (

10-1

0 oh

m-1

)

9

8

7

6

5

4

3

2

1

0

l=0 (hard wall model)l=1l=2

Peaks at circle’s centerExtra peaks 9Å off center

0.6

0.4

0.2

0.0

-0.2

-0.4

Ener

gy r

elat

ive

to E

F(eV

)

nl / Jl(knl⇢)eil�

Enl = ~2k2nl/2m⇤

Electronic States-Quantum Confinement

Atomic chainHo et al, Science 297, 1853 (2002)

NiAl

AuA B

FED

C

Au3

AuAu7

Au13 Au15 Au20

Electronic States-Quantum Confinement

Atomic chain

-8 -4 0 4 8Wave Vector (10 m )9 -1

m = 0.5 meff e0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ene

rgy

(eV

)

1.0eV

1.2eV

1.3eV

1.4eV

1.6eV

1.8eV

1.9eV

2.0eV

2.2eV

2.4eV

n=1

n=2

n=3

n=4

Electronic States-Molecules

1 2 3

4 6

8 9 7

1 2

dI/d

V (a

.u.)

3

4 5

Sample Bias (V) -2.0 -1.0 0.0 1.0 2.0

9

8 7 6

Bare Ag(100)

C60/Ag(001)-1.7 V 0.02 & 0.41 V 1.62 V

HOMO split LUMO LUMO+1

Theory

Exp

-1.7 V 0 V 0.4 V 1.6 V

Crommie et al, PRL 2003

Electronic States-Kondo

U

ε0

1nmEF

density of states

ener

gy

TK

Γ

1nm

MnNCH

Electronic States-Kondo

Quantum mirage

Eigler, et al, Nature 2000

F1 F2

Electronic States-Standing Wave

Eigler, et al, Nature 363, 524 (1993)

Cu(111)

0 20 40 60 80 100 120

1

3

5

7

9

11

13

Distance (Å)

dI/d

V (

10-9

Ω-1

)

ki kf

q

k=q/2

Electronic States-Standing Wave

400 mV300 mV200 mV100 mV50 mV

K

M

Fourier transform gives the momentum transfer q

q only in Γ-M directions

Backscattering is forbidden in topological insulator

Electronic States-Standing Wave

Backscattering is forbidden in topological insulator

Γ-K

Γ-M

K

M

Electronic States-Standing Wave

Backscattering is forbidden in topological insulator

Γ-K

Γ-M

K

M

E0

d2 I/d

V2

V

dI/d

V

V

E0

Inelastic Electron Tunneling Spectroscopy (IETS)

Inelastic Electron Tunneling Spectroscopy (IETS)

Ho, et al, Science 280, 1732 (1998)

Cu(100)

C2H2 on tip

1 on C2H2 2 on bare surface

358 meV: stretching mode of C2H2

Inelastic Electron Tunneling Spectroscopy (IETS)

358 mV

266 mV 311 mV

Inelastic Electron Tunneling Spectroscopy (IETS)

Cu(111)

CO

dimer

trimer

dI/d

V (

a.u

.)d

2 I/d

V2

(a.u

.)

-40 -20 0 20 40

-40

-20

0

20

40

12C16O13C16O

Sample voltage (mV)

30 35 40

1.5

1.6

1.7

12C16O13C16O

VAC= 2 mVRMS

Sample voltage (mV)

Eigler, et al, Science 298, 1381 (1998)

STM Topography of array of CO dI/dV image at 35.5 mV

Inelastic Electron Tunneling Spectroscopy (IETS)

[001]

[110]

AgFe

e

CO

Tip

e

Single bond formation

Inelastic Electron Tunneling Spectroscopy (IETS)

Ho, et al, Science 286, 1719 (1999)

20

0

-20

d2 I / d

V2 (

nA /

V2 )

280260240220200180

Sample Bias (mV)

Ag

Fe(12C16O)

Fe(12C16O)2

234

236

Identification of bond formation

Inelastic Electron Tunneling Spectroscopy (IETS)

Δ=gµBS·B

Spin flip spectroscopy

dI/d

V

0 Δ-ΔV

Δ~1 mV at 10 T, need He3 fridge

Inelastic Electron Tunneling Spectroscopy (IETS)

H=JS1·S2

Spin flip spectroscopy

dI/d

V

0 J-JV

Inelastic Electron Tunneling Spectroscopy (IETS)

Spin flip spectroscopy

Eigler, et al, Science 308, 466 (2004)

4 5 6 70.4

0.6

0.8

B (T)

6�(m

eV)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.8

0.9

1.0

Voltage (mV)

B=0B=2.8TB=4.2TB=5.6TB=7T

Sca

led

dl/d

V

0.7

0.8

0.9

1.0

Voltage (mV)

Mn on metal

bare metal

B=0B=7T

Sca

led

dl/d

V0.8

0.9

1.0Mn on oxide

bare oxide

B=0B=7T

Sca

led

dl/d

V

Voltage (mV)

NiAl(110)

Al2O3Mn

4th layer

3rd layer

2nd layer

1st layer

Inelastic Electron Tunneling Spectroscopy (IETS)

Pb

1st layer

2nd layer

3rd layer

4th layer

5th layer

~60O

Chain

CoPc

Inelastic Electron Tunneling Spectroscopy (IETS)

-40 -20 0 20 40

dI/d

V

Sample Bias (mV)-40 -20 0 20 40-40 -20 0 20 40

Spin flip IETS of spin chains

2 spins 3 spins 4 spins

0.66J

1.37JS = 1/2

J

1.5J

S = 1/2

S = 3/2

S = 1

S = 0

S = 1

S = 0

S = 1

JS = 1/2J = 18 meV

H = J S1 . S2+J S2 . S3H = J S1 . S2 H = J S1 . S2+J S2 . S3+J S3 . S4

11T

5T

1.5T

Sample Bias (mV)17 18 19 20 21 22 23

dI/d

V (a

.u.)

1234567

Inelastic Electron Tunneling Spectroscopy (IETS)

S = 1

S = 0

Sz=-1Sz=0Sz=1

B=0 B=0

Singlet to triplet transition

Inelastic Electron Tunneling Spectroscopy (IETS)

Anisotropy CuN

Fe

BBBBBBBB

BBBBBBBB

BBBBBBBB

????

????

????

???? ????????

????????

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.05

0.10

0.15

0.20

dI/d

V (n

A /

mV

)

Voltage (mV)

7T

5T

3T

1T

0T

BBBBBBBB

BBBBBBBB

BBBBBBBB

????????

????????

????????

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.05

0.10

0.15

0.20

0T

1T

3T

5T

dI/d

V (n

A /

mV

)

Voltage (mV)

7T

1086420-2-4-6-8-10

dI/d

V (

nA

/mV

)

0.05

0.10

0.15

0.20

Voltage (mV)

B ∥ N directionBBBB

BBBB

BBBBBBBB

BBBBBBBB

????

????

????

???? ????????

????????

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.05

0.10

0.15

0.20

dI/d

V (n

A /

mV

)

Voltage (mV)

7T

5T

3T

1T

0T

BBBBBBBB

BBBBBBBB

BBBBBBBB

????????

????????

????????

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.05

0.10

0.15

0.20

0T

1T

3T

5T

dI/d

V (n

A /

mV

)

Voltage (mV)

7T

B ⊥ N direction

1086420-2-4-6-8-10

dI/d

V (

nA

/mV

)0.05

0.10

0.15

0.20

Voltage (mV)

H = gµB

B · S + DS2z

+ E(S2x

� S2y

)

Heinrich, et al, Science 317, 1199 (2007)

D =-1.55 meVE = 0.31 meV

Spin Polarized STM

Tip SampleE E

DOS DOS

emptystates

filledstates

Spin Polarized STM

dI/dV = (dI/dV )0 + (dI/dV )SP MT · MA

Tip SampleE E

DOS DOS

emptystates

filledstates

Spin Polarized STM

1 ML of antiferromagnetic Mn on W

[001]

[011]-

Wiesendanger, et al, Science 288, 1805 (2000)

Spin Polarized STM

Wiesendanger, et al, Science 288, 1805 (2000)

W tip

W tip coated with Fe

[001]

[011]-

Spin Polarized STM

All-spin-based logic operations atom by atom

Readout Output

Bbias Bpulse

Spin Lead Spin Lead

Gate

Input _Input `

JlJisl

J_

J`

Readout Output

B

Wiesendanger, et al, Science 332, 1062 (2011)

CoCoFe

Spin Polarized STM

All-spin-based logic operations atom by atom

1 nm

_

`

0.4 T0

1

10

0

1

0

0

weak coupling between output atom and input α

Spin Polarized STM

Strong coupling between output atom and both inputs: OR

`_

1 10 1 01

0 110 00

-0.39 T

-0.385 T

-2 T

0.75 T

Superconductivity

Perfect diamagnetism

Oct. 26, 1911

No DC resistivity Energy gap

T(K)0 0.5 1.0 1.5 2.0TC

c (m

illijo

ules

/mol

e-K

)

0

1

2

3

4

Al

Phillips, PR 114, 676 (1959)

Superconductivity

Pb

Hg

Nb

NbN

Nb3Sn

V3Si

Nb3Ge

CeCu2Si2 UBe13 UPt3UPd2Al3 CeCoIn5

CNT diamondYbC6

CaC6

CNTCNTPuRhGa5

PuCoGa5

Li@33GPa

YbPd2B2C

K3C60

RbCsC60

Cs3C60@1.4GPa MgB2

FeAsYBaCuO

BiSrCaCuO

TlBaCaCuOHgBaCaCuO

HgTlBaCaCuO

HgBaCaCuO @30GPa

≈ ≈

≈≈

Liquidhelium

Liquidhydrogen

Liquidneon

Liquidnitrogen

Year

Tem

per

atu

re (

K)

2010200520001995199019851980194019000

10

20

30

40

50

100

150

200

Superconductivity

-6 -4 -2 0 2 4 6

0

10

20

30

40

50 4.2 K

2 K

1.2 K

600 mK

240 mKDiff

eren

tial C

ondu

ctan

ce (

nS)

Sample Bias (mV)

NbSe2 TC = 7.2 K Vortex, 0.25 T, 300 mK

dI/dV map at -0.21 mV

Superconducting gap

Hudson, PhD thesis

Superconductivity

1

l(E)

6 E

gap

Quasi-particles S anti-parallel to m

Sm

U

U = JS · � J > 0

Superconductivity

Impurity induced sub-gap states

5A 5A

0

2

4

6

8

Cr

0 2 4 6-2-4-6Bias (mV)

0

2

4

6

0 2 4 6-2-4-6Bias (mV)

Mn

Si(111)

Pb

Nb tip

0

2

4

6

8

Pb

0 2 4 6-2-4-6Bias (mV)

Mn Cr

dI/d

V

dI/d

V

dI/d

V

Superconductivity

-200 -100 0 100 2000.0

0.5

1.0

1.5

2.0

2.5

Diffe

rent

ial c

ondu

ctan

ce (n

S)

Sample bias (mV)

Zn (nomagnetic) induced bound state in BSCCO

Davis, et al, Nature 403, 746 (2000)

-1.5 mV

Signature of d-wave

Superconductivity

Quasiparticle scattering in BSCCO

Davis, et al, Nature 422, 592 (2003)

kx (2π/a)

k y (2π/

a)

X=(1/2,1/2)M=(0,1/2)

q1

q2q3

q4 q5q6

q7

-1 -1/2 0 1/2 10

1/2

1

q1

q2

q3

q4q5q6q7

qx (2π/a)

q y (2π/

a)∆

3-3 -1 1

2

1

0

d-wave superconductor

nodal point

Superconductivity

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40

θk∆(θ)

(m

eV)

FT-STS (-)FT-STS(+)ARPES

dI/dV image

Superconductivity

Phase separation in KxFe2-ySe2

10 nm

I

II

0 2 4 6 8 10-2-4-6-8-10

1

2

3

4

5

0

Bias (mV)

dI/d

V (

a.u

.)

2Δ1

2Δ2

0.43 V

0 0.2 0.4 0.6-0.2-0.4-0.6Bias (V)

1

2

3

4

5

0

dI/d

V (

a.u

.)

6

KFe2Se2

K2Fe4Se5

Reference books:

• C. J. Chen, Introduction to scanning tunneling microscopy

• J. A. Stroscio & W. J. Kaiser, Scanning tunneling microscopy

• R. Wiesendanger, Scanning probe microscopy and spectroscopy