Senior Capstone Project: Fast Tuning Synthesizer Member: Nathan Roth Advisors: Dr. Huggins Dr....

Post on 21-Dec-2015

214 views 1 download

Tags:

transcript

Senior Capstone Project:Fast Tuning Synthesizer

Member: Nathan RothAdvisors: Dr. Huggins

Dr. ShastryMr. James Jensen

Date: May 4, 2004

Presentation Outline

• Background Information

• Project Summary

• Functional Description

• Detailed Description

• Major Tasks

• Problems Encountered

• Improvements

Background Information

• Definition of a frequency synthesizer

• Uses– Communication– Electronic Warfare

Project Summary

• Creation of a frequency synthesizer– Use of direct synthesis approach

Project Summary

• System Characteristics– Output Frequencies of 3650, 3700, 3850,

3900, 4450, 4500, 4650, and 4700 MHz– Output Power of 0 dBm, ± 3 dB– Output Spurs < -45 dBc– Tuning Time < 500 ns, 200 ns if possible– Use of an External 100 MHz Reference Signal

Functional Description

FastTuning

FrequencySynthesizer

3.6 – 4.6 GHz

100 MHz Reference

D2

D1

D0

Digital Input Command

Desired Output

Frequency

Detailed Description

Detailed Description

Detailed Description

Detailed Description

Detailed Description

Detailed Description

Detailed Description

Detailed Description

• Amplifier

• Multiplier– Increases Frequency (Multiplication)

• Mixer– Sum of Input Frequencies– Difference of Input Frequencies

Detailed Description

• Switch

• Filter

• Prescaler– Decreases Frequency (Division)

• Digital Logic (GAL)

Detailed Description

100 MHz

Detailed Description

200 MHz

Detailed Description

Detailed Description

1400 + 200 = 1600 MHz1400 – 200 = 1200 MHz

200 MHz

1400 MHz

Detailed Description

1200 MHz

1600 MHz1200 MHz

Detailed Description

1200 MHz 300 MHz

Detailed Description

1700 MHz1100 MHz300 MHz

1400 MHz

Detailed Description

1700 MHz1100 MHz

1100 MHz

Detailed Description

1100 MHz 275 MHz

Detailed Description

275 MHz

1125 MHz

Detailed Description

1125 MHz 4500 MHz

Major Tasks

• Filter Design and Fabrication

• Component Selection and Ordering

• Printed Circuit Board Design and Fabrication

• PCB Stuffing

• Modular Testing

Filter Design and Fabrication

• Designed and Simulated Ideal Chebyshev Filters– Used Insertion Loss Method– Developed Low-Pass Filter Prototype – Transformed to Band-Pass Filter

• Added Parasitic Effects– Real Component Values– Real Inductor Responses– Microstrip Transmission Effects– Via Connections

Filter Design and Fabrication

Filter Design and Fabrication

Filter Design and Fabrication

Filter Design and Fabrication

•Dark Blue = Ideal

•Purple = S21 Simulated

•Red = S11 Simulated

•Aqua Blue = S21 Actual

•Blue/Purple = S11 Actual

Filter Design and Fabrication

•Dark Blue = Ideal

•Purple = S21 Simulated

•Red = S11 Simulated

•Aqua Blue = S21 Actual

•Blue/Purple = S11 Actual

PCB Design and Fabrication

• Created PCB Layouts for Filter Boards

• Fabricated, Populated, and Tested Filter Boards

• Developed Modular Layout Plan

PCB Design and Fabrication

PCB Design and Fabrication

PCB Design and Fabrication

PCB Design and Fabrication

PCB Design and Fabrication

PCB Design and Fabrication

Modular Testing

Filter

Simulated Center

Frequency

Measured Center

FrequencySimulated Bandwidth

Measured Bandwidth

Filter 1 1200 MHz 1205.5 MHz 120 MHz 125 MHz

Filter 2 1000 MHz 977.5 MHz 120 MHz 115 MHz

Filter 3 1183 MHz 1148.5 MHz 195 MHz 167 MHz

Filter 4 962 MHz 932 MHz 195 MHz 220 MHz

Filter 5 1183 MHz 1181 MHz 108 MHz 112 MHz

Filter 6 982 MHz 990.2 MHz 202 MHz 201 MHz

Modular Testing

-10 dBm

-50 dBm

Modular Testing

LO Input = 1400 MHz

IF Input = 200 MHz

Modular Testing

Input = 1200 MHz

Modular Testing

Resolution Module 3 – 1200 MHz

Modular Testing

Resolution Module 3 – 1200 MHz

Modular Testing

Resolution Module 3 – 1200 MHz

Modular Testing

Resolution Module 3 – 1200 MHz

Modular Testing

Modular Testing

• 312 ns ‘off’• 148 ns ‘on’

Problems Encountered

• Non-Ideal Components

• Fabrication

• Grounding Issues

• ‘Potato Chipping’

Possible Improvements

• Implement a Phase-Lock Loop

• Use Distributed Elements

• MMIC Design

Appreciation

Matt Kaiser

Kiran Reddy

Dave Miller

Bala Sundaram

Neeta Mehta

Zaheer Shaik

Krishna Katragadda

Fast Tuning Synthesizer

• Any questions?

Power Analysis

Specifications• Amplifier (3)

– 5 Volt– 46 mA

• Mixer (3)– 3 Volt– 11 mA

Prescaler (2)– 3 Volt– 8 mA

• Specified Power– 837 mW

• Recorded Power– 930 mW

Bill of MaterialsPart Number Maker Description Quantity Price Total

PriceHMC435MS8G Hittite SPDT, Hi Isolation, DC- 4

GHz15 $1.10 $16.50

PE3512 Peregrine Divide By 4, DC - 1.5 2 $2.75 $5.50

MAX2671 Maxim IC 400 MHz To 2.5 GHz Upconverter Mixers

3 $0.76 $2.28

SYK-2R Mini-Circuits Frequency Doublers, 10-1000 MHz

1 $29.95 $29.95

AG604-89 WJ Ingap HBT Gain Block 2 $1.48 $2.96

$0.97 $2.91HMC315 Hittite GaAs InGaP HBT MMIC Darlington Amplifier, DC -

7.0 GHz

3

$0.40 $1.20

MSA-2743 Agilent

ABA-53563 Agilent 3.5 GHz Broadband Silicon RFIC Amplifier

3

Cascadable Silicon Bipolar Gain Block MMIC

Amplifier

1

$2.35 $2.35

$2.94 $2.94

$0.94 $0.94

HMC188MS8 Hittite Passive Frequency Doubler, 1.25 - 3.0 GHz Input

1

HMC187MS8 Hittite Passive Frequency Doubler, 0.85 - 2.0 GHz

1

Bill of Materials

Kit 124A-2 Coilcraft 0603CS Chip Inductors: 25 values from 1.6 nH - 30

nH, 2% Tolerance

1 $80.00 $80.00

Substrate Rogers Corporation

RO4003C, 20 mil thick, 1.4 mil copper

2 $32.25 $64.50

142-0901-811 Johnson Components

Male to Male SMA 50 Ohm Connects

25 $11.41 $285.25

142-0701-631 Johnson Components

4 Hole Flange Mount Jack Receptacle

20 $5.17 $103.40

142-0711-841 Johnson Components

End Launch Jack Receptacle

20 $5.81 $116.20

Various - RF Chip Capacitors and Resistors

- $10.00 $10.00

GAL26CV12 Lattice Semiconductor

High Performance General Array Logic

1 $7.80 $7.80

SN74F04 Texas Instruments

Hex Inverter 1 $1.00 $1.00

Total $735.68

Input Module

Resolution Modules

Basis Frequency Modules

Switch Selection Module

Output Module

Laboratory Work - Review

Laboratory Work

•Dark Blue = Ideal

•Purple = S21 Simulated

•Red = S11 Simulated

•Aqua Blue = S21 Actual

•Blue/Purple = S11 Actual

Laboratory Work

•Aqua Blue = Ideal

•Dark Blue = S21 Simulated

•Red = S11 Simulated

•Purple = S21 Actual

•Blue/Purple = S11 Actual

Laboratory Work

•Aqua Blue = Ideal

•Red = S21 Simulated

•Dark Blue = S11 Simulated

•Purple = S21 Actual

•Blue/Purple = S11 Actual

Laboratory Work

•Light Blue = Ideal

•Red = S21 Simulated

•Aqua Blue = S11 Simulated

•Dark Blue = S21 Actual

•Purple = S11 Actual

Laboratory Work

•Aqua Blue = Ideal

•Purple = S21 Simulated

•Red = S11 Simulated

•Dark Blue = S21 Actual

•Light Blue = S11 Actual

Modular Testing

Resolution Module 1 – 1200 MHz

Modular Testing

Resolution Module 1 – 1400 MHz

Modular Testing

Resolution Module 2 – 1200 MHz

Modular Testing

Resolution Module 2 – 1400 MHz

Modular Testing

Resolution Module 3 – 1400 MHz

Modular Testing