Standox Coloristics

Post on 28-Mar-2016

300 views 10 download

Tags:

description

Standox Color College

transcript

1

Standox Coloristics Color theory

2

Chapter 1 • What is Color ?

• Deficiencies in Color Sensation

• Limitations

• Color Circles and Color Matching

• Colorimetric

3

The Sky Is ?

4

The leaves are getting ?

5 05.04.20

Color perception

The perceived color is a subjective impression which cannot be exactly attributed to a reflected light spectrum or its intensity.

6 05.04.02

The light spectrum.

white light

Newton’s prism

Sir Isaac Newton (1660)

7

Rainbow

Which is the first exterior colour of the rainbow?

A rainbow is created by sunlight passing through

drops of water, which act as a prism.

8

Visible Spectrum

Small section of

the immense

electromagnetic

spectrum

emitted by the

sun.

9 05.04.07

What happens to the light?

reflection transmission

emission

10 05.04.08

Color perception

Color perception involves:

a light source (illumination)

a receiver and processor ( eye / brain )

a sample or object to interact with the light energy.

11 05.04.09

Color perception

an interplay

12

Color Sensation

WHITE

13

Color Sensation

BLACK Black

14

Red paint absorbs every part

of white light, execpt the red

part ...

Color Sensation

15

Color Sensation

16 05.04.10

Cross section of the retina.

A: The rods (light / dark vision)

B: The cones (color vision)

C: Cell nucleii of cone cell

The light first crosses

the pigment epithel (E),

into which cell nucleii (D)

are embedded.

Küppers´Farbenlehre

17

Light enters the eye

Focused by cornea and

lens onto back of retina

Photoreceptors absorb light

light is transformed into

electrical signals

Signals sent to brain via

optic nerve

Color perception

18

Cones are responsible for color vision

There are three types of cones:

Color perception

19

The rods respond on lightness

05.04.11

How we perceive colors.

The rods respond on lightness The cones on colors

20

Wavelength

400 500 600 700

Usually expressed in nanometer: 1nm = 10 meter

• Wavelengths do not themselves possess colour

• Perception of colour is created by the eye and the

brain

• Wavelengths are the tool to construct a coloured

representation

-9

400 500 600 700

NANOMETRE

22

How we perceive colors.

Click on image or on button to view

23 05.04.15

Color perception

Different light sources can influence the

color!

... if not the same pigments were used

as in the Original (OEM) paint

This is particularly noticable for mixing

formulas...

... if too many mixing colors were used

for the formula or for tinting

24 05.04.19

Metamerism

25 05.04.18

Metamerism

Metamerism check in the coloristic lab

26

Light references

Illuminants A, D65 and F2 are referring to a

number of Kelvin (absolute temperature scale)

North Sky daylight : 6500 K

(D65)

Office lighting neon : 4150 K (F2)

Home lighting incandescent : 2856 K (A)

Colour Type D65

Daylight Bulb

400 500 600 700

Colour Type A

Bulb

400 500 600 700

Colour Type F2

Cool White Fluorescent 400 500 600 700

30

Chapter 1 • What is Color ?

• Deficiencies in Color Sensation

31

Born: September, 6th 1766

Eaglesfield, England

Died: July 27th 1844

Manchester, England

John Dalton

Daltonism

32

Color Deficiencies

normal red

green

red

green

blue

yellow

33 05.02.01

What we see – how we see.

What is wrong here?

34 05.01.02

Color Blindness

12

35 05.01.06

Color Blindness

74

36 05.01.09

Color Blindness

2

37 05.01.12

Color Blindness

38 05.01.15

Color Blindness

39

Chapter 1 • What is Color ?

• Deficiencies in Color Sensation

• Limitations

40

After-image

+

+

+

+

+

+

47

After-Image

48 05.02.02

Simultaneous contrast

49 05.02.03

Simultaneous contrast

50 05.02.04

Simultaneous contrast

51 05.02.05

Simultaneous contrast

52 05.02.11

Simultaneous contrast

53 05.02.12

Simultaneous contrast

The same grey!

54 05.02.13

Simultaneous contrast

55 05.02.13

Simultaneous contrast

56 05.02.16

Simultaneous contrast

57 05.02.17

Simultaneous contrast

The same blue!

58 05.02.18

What is white

59

What is white?

05.02.19

60

What is white?

Color College – Limitations

05.02.21 i

61

What is white?

05.02.22

62

What is white?

05.02.23

White – whiter – whitest … ... or what?

This half is lighter, isn’t it …?

... than this!

63 05.02.24

Hermann – Grid Illusion.

64

Hermann – Grid Illusion.

Color College – Limitations

05.02.25

65

Optical Illusion

66

Chapter 1 • What is Color ?

• Deficiencies in Color Sensation

• Limitations

• Color Circles and Color Matching

67

Color Attributes

Click on image or on button to view

68 05.06.01

Color basics.

TV

additive color mixing subtractive color mixing

69 05.06.02

Mixed colors.

Additive mixing:

interference pigments

Substractive mixing:

absorption-pigments, dyes

70 05.06.03

Goethe‘s color circle.

Johann Wolfgang von Goethe (1749 - 1832)

Goethe‘s color circle

71 05.06.04

Color circle according to Munsell.

Albert Henry Munsell (1858 -1918) Color circle according to Munsell

72 05.06.12

Color position

The name of a color (or color family)

“red“ „blue“ „green“ „violet“ „yellow“

1. Dimension = the color group

defines the position in the color circle

73 05.06.13

defines the distance of the color to grey

The strength of a color

The quality by which we distinguish one group of similar colors from

another

„bright red“ „pale yellow“ „signal orange“

2. Dimension = the saturation

Color position

74 05.06.14

defines the distance of this color between black and white

The lightness of a color

“dark red“ „light blue“ „medium green“ „dark violet“ „light yellow“

3. Dimension = the lightness

Color position

75 05.06.15

h° Color group

the name of a color

(or color family)

C* the strength of a color

(distance to grey)

Saturation

L* the lightness of a color

Lightness

Color position

76 05.06.16

A three-dimensional model like:

longitude, latitude, altitude

(geographic)

length, width, depth (in

general)

Color group

Saturation

Lightness

C*

L*

three independent variables!

Color position

77 05.06.17

h = color group

...i.e. the position

in the color circle

L = lightness

...i.e. the position between

black and white

C

h

L

Description according to CIELCH

C = saturation

...i.e. the distance

to grey!

Color position

78 05.06.18

Sättigung

Helli

gke

itFarbgruppe

Grey

Color position

79 05.06.19

The three

dimensional

color space

Color position

80 05.07.03

Systems to measure color differences

The color group

(hue) and saturation

(chroma) give a two

dimensional picture.

The CIE L*a*b* - System

81 05.07.05

+ a

L (=100)

L (=0)

+ b

- a

- b

The CIE L*a*b* - System

Systems to measure color differences

82 05.07.06

L (=100)

L (=0)

+ a

+ b

- a

- b

increasing L-value

The CIE L*a*b* - System

Systems to measure color differences

83 05.07.07

L (=100)

L (=0)

+ a

+ b

- a

- b

decreasing L-value

The CIE L*a*b* - System

Systems to measure color differences

84 05.07.09

The ΔE value.

The ΔE-value discribes a color difference numerically.

Example:

Standard ( L=80 + A=45 + B=58 )

Formula ( L=74 + A=48 + B=56 )

Difference ( L=6² + A=3² + B=2² )

( L=36 + A=9 + B=4 )

( root of 49 )

ΔE = 7

Color differences up to ΔE = 1.0 are normally within tolerance

range.

85 05.07.10

b

a

b

a

1

2

L = difference on the lightness axis. (black-white)

a = difference on color axis (red-green)

b = difference on color axis (yellow-blue)

DIFFERENCE BETWEEN COLOR 1 AND COLOR 2:

E = ( L)² + ( a)² + ( b)²

The CIE L*a*b* - System

Systems to measure color differences

86 05.07.11

= measured color difference between color 1 and color 2

L (=100)

L (=0)

+ a

+ b

- a

- b

1

2

The CIE L*a*b* - System

Systems to measure color differences

87 05.07.12

measuring record (example) :

The CIE L*a*b* - System

Color scale ORIGINAL OBJECT DIFFERENCES

(AXES)

L* 36,84 37,77 0,93

a* - 24,10 - 24,59 - 0,49

b* 12,00 11,88 - 0,12

E* 1,05

Systems to measure color differences

88 05.07.13

Color blue.

100

90

80

70

60

50

40

30

20

10

0

400 450 500 550 600 650 700 750

Wavelength (nm)

Remission value

89 05.07.14

Color yellow.

100

90

80

70

60

50

40

30

20

10

0

400 450 500 550 600 650 700 750

Wavelength (nm)

Remission value

90 05.07.15

Dull color shade and bright color shade.

Small gradient between peak and valley

= dull color

Large gradient between peak and valley

= bright color

91

Chapter 2 • Formula Development

• OEM Deviations

• Different kinds of Pigments

• The Color Flop

92

Color development specialists at work

Development of Colour Formulas

93

Development of Colour Formulas

Formula Request:

The Standard is

investigated with an

electronic microscope.

94

The computer generated

formulation is being mixed.

Development of Colour Formulas

Formula Request:

95

Automatic test panel sprayer

Development of Colour Formulas

96

All colors are sprayed with an

automatic testpanel sprayer

in a controlled environment

Development of Colour Formulas

Formula Request:

97

All sprayouts are dried in

special ovens.

Development of Colour Formulas

Formula Request:

98

The OEM standard is

compared to the spray

out in a light box

Development of Colour Formulas

Formula Request:

99

Checked with-

Sodium Light

(especially Red Colors)

Development of Colour Formulas

Formula Request:

100

The computer prediction

is not always perfect a

further adjustment will

be required in this case

Development of Colour Formulas

Formula Request:

101

The final approval

is only given after

inspection by the human

eye.

Development of Colour Formulas

Formula Request:

102

Chapter 2 • Formula Development

• OEM Deviations

• Different kinds of Pigments

• The Color Flop

103 05.05.01

Orientation of metallic in OEM.

Bell and pneumatic

Bell

Pneumatic

104 05.05.02

Color deviations in OEM production.

Masterpanel

Approval Coloristics

105 05.05.03

Color deviations in OEM production.

Masterpanel

Approval Coloristics

Color reproduced in coloristics is almost identical

106 05.05.04

Color deviations in OEM production.

Master

panel

Approval

Coloristics

Approval

Production

Plant 1

Approval

Production

Plant 2

Approval

Production

Plant 4

Approval

Production

Plant 3

107 05.05.05

How do Variants come into existence?

tolerance range

Master

Approval

Service formula (if requested) Version D

lighter darker

108

Geometrical Color Variation

109

Geometrical Color Variation

110

Geometrical Color Variation

111

Geometrical Color Variation

112

Color and the Car industry

Click on image or on button to view

113

Chapter 2 • Formula Development

• OEM Deviations

• Different kinds of Pigments

• The Color Flop

114 05.09.01

Interaction of pigments with light.

Interference pigments

Specific color, gloss and color flop by interference effects

Metal effect pigments Metal gloss by light reflection

Absorbtion pigments

Specific color by light absorbtion

115 05.09.02

Absorption of solid colors.

The more finely the pigment

particles are dispersed, the

higher the absorption and

therefore also the hiding power.

116 05.09.03

Saturation and hiding power.

high brilliance

low hiding power

low dispersion Coarse aluminium bronze

matt

good hiding power

high dispersion Fine aluminium bronze

117

One of the first silver Metallic Colours

118 05.09.04

Brilliance of aluminium bronze.

Coarse

aluminium

high gloss

low hiding power

low brightening

power

119 05.09.05

Brilliance of aluminium bronze.

Fine

aluminium bronze

low gloss

good hiding power

good brightening

power

120 05.09.06

Brilliance of aluminium bronze.

Silverdollar

top gloss

medium hiding

power

medium brightening

power

121 05.09.07

Aluminium effect pigments.

Corn Flake Al (400x, BF) Dollar Flake Al (400x, BF)

122 05.09.08

Flop behaviour of metallic colors.

Reflection on ideally oriented aluminium platelets

Reflection on unevenly oriented aluminium platelets

Viewing angle

Aluminium platelets

123 05.09.09

Absorption and scattering of metallic colors.

transparent red pigment

aluminium platelet

metallic basecoat

substrate

124 05.09.10

Raw material for pearl pigments.

Natural

Mica

125 05.09.12

Particle size and morphology.

<15 µm 5 - 25 µm 10 - 40 µm 20 - 100 µm 10 - 200 µm

Thickness: 0.1 - 0.5 µm

Unprocessed Mica particles

126 05.09.13

Electron Microscopic view of a Mica pigment.

127

TiO 2 -

TiO 2 -

TiO 2 - Layer

Mica

TiO 2 - Layer

Pearl Pigment (Silver-White)

128 05.09.16

Interference pigments (pearls).

depending on the thickness you get different reflection and

transmission colors

Coating: Titanium Dioxide (TiO2)

40-60 nm 60-80 nm 80-100 nm 100-140 nm 120-

160 nm

129

One of the first Pearl White Colours

130 05.09.14

The substrate and coating principles.

Metal oxide (TiO2 for transp.)

Mica

Natural raw material: Mica

limited control over

substrate finish

Synthetically produced

substrate

exact control over

substrate finish

Metal oxide

Al2O3

Synthetically produced

substrate

exact control over

substrate finish

Metal oxide

SiO2

131 05.09.18

The influence of the substrate on interference pigments.

white substrate

higher dispersion

result:

blue content is weakened

black substrate

yellow content is absorbed

result:

strong blue in reflection

Iriodin 9225 (Mix 803 / Mix 303)

132 05.09.19

Frost / satin glow effect.

light

microtitanium particle

aluminium platelet

blue

green yellow

red

Mix 810 / Mix 310

133 05.09.27

Paliocrom.

Paliocrom L 2000 30,0% Corn Flake Al 1,5%

Phthalocyanine Green P.G. 36

Phthalocyanine Blue P.B. 15:2

Bright Field, 400x

Mix 806 / Mix 306

134 05.09.20

Comparison of pearl pigments (white).

400x, Bright Field 400x, Bright Field

Ir 9103 (Mix 801 / Mix 301) Ir 9121 (Mix 829 / Mix 329)

135 05.09.21

Iriodin 9205 Rutile Platinum Gold.

200x, Bright Field 200x, Dark Field

Mix 802 / Mix 302

136 05.09.22

Iriodin 9215 Rutile Red Pearl.

Mix 831 / Mix 331

200x, Bright Field 200x, Dark Field

137 05.09.23

Iriodin 9219 Rutile Lilac Pearl.

Mix 821 / Mix 321

200x, Bright Field 200x, Dark Field

138 05.09. 24

Iriodin 9225 Rutile Blue Pearl.

Mix 803 / Mix 303

200x, Bright Field 200x, Dark Field

139 05.09.25

Iriodin 9235 Rutile Green Pearl.

Mix 824 / Mix 324

200x, Bright Field 200x, Dark Field

140 05.09.26

Iriodin 9505 Red-Violet.

Mix 841 / Mix 341

200x, Bright Field 200x, Dark Field

141 05.09.28

New effect pigment generations.

142 05.09.29

Xirallic T60-10 SW Crystal Silver.

200x, Bright Field 200x, Dark Field

143 05.09.30

Xirallic T60-20 SW Sunbeam Gold.

200x, Bright Field 200x, Dark Field

144 05.09.31

New effect pigment generations.

145

Colorstream Pigment

146

Colorstream Pigment

147

Colorstream Pigment Arctic Fire

L*,a*,b*-values at different illumination/detection angles

148 05.09.32

Microscopic view of effect pigments on silica basis.

Colorstream

200x, Bright Field 400x, Bright Field

149 05.09.33

Colorstream F20-00 WNT.

Autumn Mystery

200x, Bright Field

150 05.09.34

Colorstream F20-00 WNT.

Autumn Mystery

400x, Bright Field

151 05.09.36

Colorstream T20-01 WNT.

Viola Fantasy

400x, Bright Field

152

Arctic Fire

Colorstream T20-02 WNT.

153

SiO2/MgF2

SiO2/MgF2

Cr/Ni/Al

Cr/Ni/Al

Al High reflectiv

Metal layer

Dielectric layer

Semi-transparent

metal layer

Dielectric layer

Semi-transparent

metal layer

Layers on a ChromaFlair Pigment

(Exclusive Line)

154 05.09.37

Chromaflair under the microscope.

Chromaflair Green - Purple

155

Chapter 2 • Formula Development

• OEM Deviations

• Different kinds of Pigments

• The Color Flop

156 05.12.15

Particle orientation with effect additive.

Ideal pigment orientation

Base coat without

effect additive

Slowed pigment orientation

…under the influence of effect

additive Mix 009

Standohyd Basecoat

157

Standohyd MIX characteristics

05.12.05

Mix 388 Mix 359 Mix 358 Mix 357

Mix 388

Flop

Mix 358

Flop

Mix 357

Flop

Transparent Mixing Colors

Flop

Mix 359

158

Standohyd MIX characteristics

Mix 388

Mix 388 Flop

Mix 359

Mix 359

Flop

Mix 358

Mix 358 Flop

Mix 357

Mix 357 Flop

Mix 358

Flop

Mix 357

Flop

05.12.06

Transparent Mixing Colors

Mix 388 Flop

Mix 359

Flop

159 05.12.22

Alu bronze

Standohyd Aluminium MIX’s

Why are there so many types of silver?

coarse silverdollar bronze

(Mix 311)

fine conventional bronze

(Mix 394)

160 05.12.23

Alu bronze

Standohyd Aluminium MIX’s

Mix 394 Mix 390 Mix 393 Mix 395/313

conventional, coarse types

brillant “silverdollar“ types

Mix 311/312 Mix 398

161 05.12.24

Alu bronze in comparison

Standohyd Aluminium MIX’s

Mix 394 Mix 390 Mix 393

Mix 398

finer greyer

coarser more brilliant

conventional alu bronzes seen from above

Mix 395 Mix 313*

*brill.version of 395

silverdollar bronzes seen from above

Mix 312 Mix 311*

*brill.version of 312

162 05.12.25

Alu bronze in comparison

more color intensive less color

intensive

greyer

more brilliant

Mix 398 Mix 311

Mix 394

Mix 390

Mix 393

Mix 395

Mix 313

Mix 312

Standohyd Aluminium MIX’s

163