Stellar Atmospheres: Motivation 1 Stellar Atmospheres: Literature Dimitri Mihalas –Stellar...

Post on 26-Dec-2015

231 views 0 download

Tags:

transcript

Stellar Atmospheres: Motivation

1

Stellar Atmospheres: Literature

• Dimitri Mihalas– Stellar Atmospheres, W.H. Freeman, San Francisco

• Albrecht Unsöld– Physik der Sternatmosphären, Springer Verlag (in German)

• Rob Rutten– Lecture Notes Radiative Transfer in Stellar Atmospheres

http://www.fys.ruu.nl/~rutten/node20.html

Stellar Atmospheres: Motivation

2

Why physics of stellar atmospheres?

Physics

Stellar atmospheres as laboratories

Plasma-, atomic-, and molecular physics, hydrodynamics, thermodynamics

Basic research

Technical application

Astronomy

Spectral analysis of stars

Structure and evolution of stars

Galaxy evolution

Evolution of the Universe

Stellar Atmospheres: Motivation

3

Magnetic fields in white dwarfs and neutron stars

Shift of spectral lines with increasing field strength

Stellar Atmospheres: Motivation

4

Hertzsprung Russell Diagram

L~R2 T4eff

100 R

1 R

=700000Km

0.01 R

4 1026 W

5800K

Stellar Atmospheres: Motivation

5

Massive stars

Stellar Atmospheres: Motivation

6

Chemical evolution of the Galaxy

Carretta et al. 2002, AJ 124, 481

Stellar Atmospheres: Motivation

7

SN movie

Stellar Atmospheres: Motivation

8

SN Ia

Stellar Atmospheres: Motivation

9

SN Ia cosmology

M,

0 , 1

0.5, 0.5

1 , 0

1.5, -.5

0 , 0

1 , 0

2 , 0

Redshift z

Stellar Atmospheres: Motivation

10

SN Ia Kosmologie

Stellar Atmospheres: Motivation

11

Uranium-Thorium clock

Stellar Atmospheres: Motivation

12

Stellar atmosphere – definition

• From outside visible, observable layers of the star • Layers from which radiation can escape into space

– Dimension

• Not stellar interior (optically thick)• No nebula, ISM, IGM, etc. (optically thin)

• But: chromospheres, coronae, stellar winds, accretion disks and planetary atmospheres are closely related topics

Stellar Atmospheres: Motivation

13

Sonne

Stellar Atmospheres: Motivation

14

Fraunhofer lines

Stellar Atmospheres: Motivation

15

Spectrum - schematicallyIn

ten

sit

y

Wavelength / nm

Stellar Atmospheres: Motivation

16

Spectrum formation

Stellar Atmospheres: Motivation

17

Formation of absorption lines

Interior outerboundary

observer

continuum

line center

continuum

stellar atmosphere intensity

Stellar Atmospheres: Motivation

18

Line formation / stellar spectral types

spectral line temperature structure

interior

f

lux

wavelength

temp

erature

depth / km

Stellar Atmospheres: Motivation

19

The spectral types on the main sequence

O B A F G K M

O5

B4

O7

B6

A1

A5

A8

A9

F8

G2

G5

G8

A7

F3

Stellar Atmospheres: Motivation

20

Die Spektraltypen der Hauptreihe

O B A F G K M F6

F8

G2

G5

G8

A7

F3

G6

G9

K4

K5

F8

G1

Stellar Atmospheres: Motivation

21

Classification scheme

M9

L3

L5

L8

Stellar Atmospheres: Motivation

22

Classification scheme

T dwarfs

Stellar Atmospheres: Motivation

23

Stellar atmosphere – definition

• From outside visible, observable layers of the star • Layers from which radiation can escape into space

– Dimension

• Not stellar interior (optically thick)• No nebula, ISM, IGM, etc. (optically thin)

• But: chromospheres, coronae, stellar winds, accretion disks and planetary atmospheres are closely related topics

Stellar Atmospheres: Motivation

24

Optical telescopes

Calar Alto (Spain)3.5m telescope

Stellar Atmospheres: Motivation

25

Optical telescopes

ESO/VLT

Stellar Atmospheres: Motivation

26

Why is it important?

UV / EUV observations

flux

flux

wavelength / Å

wavelength / Å

Stellar Atmospheres: Motivation

27

UV/optical telescopes

HST

Stellar Atmospheres: Motivation

28

X-ray telescopes

XMM

Stellar Atmospheres: Motivation

29

Gamma-ray telescopes

INTEGRAL

Stellar Atmospheres: Motivation

30

Infrared observatories

ISO

JWST

Stellar Atmospheres: Motivation

31

Sub-mm telescopes

Stellar Atmospheres: Motivation

33

Stellar atmosphere – definition

• From outside visible, observable layers of the star • Layers from which radiation can escape into space

– Dimension

• Not stellar interior (optically thick)• No nebula, ISM, IGM, etc. (optically thin)

• But: chromospheres, coronae, stellar winds, accretion disks and planetary atmospheres are closely related topics

Stellar Atmospheres: Motivation

34

PN – NGC6751 - HST

Stellar Atmospheres: Motivation

35

Planetary nebula spectrum

Stellar Atmospheres: Motivation

36

ISM spectrum

Stellar Atmospheres: Motivation

37

Quasar + IGM spectrum

Stellar Atmospheres: Motivation

38

Stellar atmosphere – definition

• From outside visible, observable layers of the star • Layers from which radiation can escape into space

– Dimension

• Not stellar interior (optically thick)• No nebula, ISM, IGM, etc. (optically thin)

• But: chromospheres, coronae, stellar winds, accretion disks and planetary atmospheres are closely related topics

Stellar Atmospheres: Motivation

39

Eta Carinae - HST

Stellar Atmospheres: Motivation

40

Stellar wind spectrum

Stellar Atmospheres: Motivation

41

Formation of wind spectrum (P Cygni line profiles)

Stellar Atmospheres: Motivation

42

Stellar winds – P Cyg profiles

Stellar Atmospheres: Motivation

43

Accretion disks

Stellar Atmospheres: Motivation

44

AM CVn disk spectrum

models

Stellar Atmospheres: Motivation

45

Temperature structure of an accretion disk

Distance from star [km]

He

igh

t [k

m]

Stellar Atmospheres: Motivation

46

Planetary atmospheres

Stellar Atmospheres: Motivation

47

Quantitative spectral analyses – what can we learn?

Shape of line profile:Temperature Film

Density Film

Abundance Film

Rotation

Turbulence

Magnetic field

Line position:Chemical composition

Velocities

Redshift

Temporal variation:Companion

Surface structure

Spots

Pulsation

Stellar Atmospheres: Motivation

48

Zeeman effect

Stellar Atmospheres: Motivation

49

Magnetic fieldsL

l

optical spectrum

circular polarization

position of line components

spectrum of a white dwarf (PG 1658+440) with fieldstrength of about 5 MG

Stellar Atmospheres: Motivation

50

Magnetic fieldsL

White dwarf Grw+70 8247B=300MG

optical spectrum

Circular polarization

positionof line components

Stellar Atmospheres: Motivation

52

Velocity fields

Wavelength / Å

Dis

tan

ce /

10

00 k

m

~ 0.01Å

Solar disk

time / min

dist

ance

/ 1

000k

m

Stellar Atmospheres: Motivation

55

Time dependent line profilesT

ime

Flu

x

Stellar Atmospheres: Motivation

56

Doppler tomography

Stellar Atmospheres: Motivation

57

Summary – stellar atmospheres theory

The atmosphere of a star contains less than one billionth of its total mass, so, why do we care at all?

• The atmosphere of a star is that what we can see, measure, and analyze.• The stellar atmosphere is therefore the source of information in order to put a

star from the color-magnitude diagram (e.g. B-V,mv) of the observer into the HRD (L,Teff) of the theoretician and, hence, to drive the theory of stellar evolution.

• Atmosphere analyses reveal element abundances and show us results of cosmo-chemistry, starting from the earliest moments of the formation of the Universe.

• Hence, working with stellar atmospheres enables a test for big-bang theory.• Stars are the building blocks of galaxies. Our understanding of the most

distant (hence most early emerged) galaxies, which cannot be resolved in single stars, is not possible without knowledge of processes in atmospheres of single stars.

• Work on stellar atmospheres is a big challenge. The atmosphere is that region, where the transition between the thermodynamic equilibrium of the stellar interior into the empty blackness of space occurs. It is a region of extreme non-equilibrium states.

Stellar Atmospheres: Motivation

58

Summary – stellar atmospheres theory

Important source of information for many disciplines in astrophysics– research for pure knowledge, contribution to our culture– ambivalent applications (e.g. nuclear weapons)

Application of diverse disciplines– physics– numerical methods

Still a very active field of research, many unsolved problems– e.g. dynamical processes