Surfaces and Interfaces

Post on 15-Jul-2015

488 views 3 download

Tags:

transcript

Surfaces  and  Interfaces  

Microscopic  mechanisms  and  macroscopic  consequences  

 Dr.  Keith  T.  Butler  Department  of  Chemistry  

k.t.butler@bath.ac.uk    

“God  made  the  bulk;  surfaces  were  invented  by  the  devil”  Wolfgang  Pauli  

Content  

•  Background  and  history  of  surfaces  –  History  –  Importance  

•  Important  concepts  for  surface  definiEons  

–  Energy-­‐band-­‐alignment  diagram  –  Miller  indices  –  Tasker  notaEon  –  Polar  surfaces  

•  Surface  energeEcs  and  electronic  structure  

–  Bond  breaking  approximaEon  –  Surface  Tamm  states  

•  Surfaces  in  PV    –  Trapping  –  PassivaEon  

•  Interface  classificaEons  and  formaEon  •  Strain  and  supercells  •  WeKng  angle  and  cohesion  •  Coherent/Semi-­‐coherent/Incoherent  

•  Interfaces  in  PV  •  SchoMky  barrier  /  Ohmic  contacts  •  Charge  neutrality  level  

•  Band  Alignment  in  PV  •  Work  funcEons  and  electron  energies  •  Measuring  work  funcEons  •  CalculaEng  work  funcEons  •  Bulk/surface  contribuEons  •  Work  funcEon  engineering    

•  PracEcal  examples  •  CalculaEon  of  surface/interface  energy  

in  DFT  •  Band  alignment  from  DFT  

 

SURFACES   INTERFACES  

At  a  loose  end?  

Early  surface  science  

Benjamin  Franklin  and  the  old  wives  tale  

“[T]he oil, though not more than a teaspoonful, produced an instant calm over a space several yards square which spread amazingly and extended itself gradually till it reached the lee side, making all that quarter of the pond, perhaps half an acre, as smooth as a looking glass.”

The  study  of  surfaces  •  Mostly  atoms  are  not  at  the  surface  

BULK  Surface  

The  study  of  surfaces  &  interfaces  “The interface is the device”

Herbert  Kroemer  Nobel  prize  in  Physics  2000  “For  developing  semiconductor  heterostructures  used  in  high-­‐speed-­‐  and  opto-­‐electronics"  

Surfaces  in  PV  

Charge  separa?on    Extrac?on  of  carriers  

Recombina?on    Contact  resistance  

hMp://www.pveducaEon.org  

Content  

•  Background  and  history  of  surfaces  –  History  –  Importance  

•  Important  concepts  for  surface  definiEons  

–  Energy-­‐band-­‐alignment  diagram  –  Miller  indices  –  Tasker  notaEon  –  Polar  surfaces  

•  Surface  energeEcs  and  electronic  structure  

–  Bond  breaking  approximaEon  –  Surface  Tamm  states  

•  Surfaces  in  PV    –  Trapping  –  PassivaEon  

•  Interface  classificaEons  and  formaEon  •  Strain  and  supercells  •  WeKng  angle  and  cohesion  •  Coherent/Semi-­‐coherent/Incoherent  

•  Interfaces  in  PV  •  SchoMky  barrier  /  Ohmic  contacts  •  Charge  neutrality  level  

•  Band  Alignment  in  PV  •  Work  funcEons  and  electron  energies  •  Measuring  work  funcEons  •  CalculaEng  work  funcEons  •  Bulk/surface  contribuEons  •  Work  funcEon  engineering    

•  PracEcal  examples  •  CalculaEon  of  surface/interface  energy  

in  DFT  •  Band  alignment  from  DFT  

 

SURFACES   INTERFACES  

Energy-­‐band-­‐diagrams  

Valence  Band  (Occupied  states)  

ConducEon  Band  (Unoccupied  states)  

Vacuum  level  

Band-­‐gap  

Electron  Affinity  

IonisaEon  potenEal  

Energy-­‐band-­‐diagrams  Type  I   Type  II   Type  II  

Metal/Semiconductor  

Energy-­‐band-­‐diagrams  

“If, in discussing a semiconductor problem, you cannot draw an Energy-Band-Diagram, this shows that you don’t know what you are talking about”

“If you can draw one, but don’t, then your audience won’t know what you are talking about.”

Surface  ClassificaEon  

Surface  ClassificaEon    

Surface  ClassificaEon  

Define  laKce  vectors  (a  b  c)  

Surface  ClassificaEon  

Define  the  intersecEon  (0  b  0)  

Surface  ClassificaEon  

IdenEfy  the  fracEonal  coordinates  of  the  intercept  (∞/a  b/b  ∞/c)  

Surface  ClassificaEon  

IdenEfy  the  fracEonal  coordinates  of  the  intercept  (0  1  0)  

Surface  ClassificaEon  

(011)  

Surface  ClassificaEon  

(111)  

ClassificaEon  IdenEfy  intercepts  

FracEonal  coordinates    of  intercepts  

If  fracEons  result  in  step  (ii)  then  round  up  all  indices  by  mulEplicaEon;  e.g.  (1/3,0,1)  

-­‐>  (1,0,3)  

NegaEve  numbers  are  indicated  by  an  over-­‐bar    

Polar/Non-­‐polar  surfaces  

P  W  Tasker  1979  J.  Phys.  C:  Solid  State  Phys.  12  4977  

Type  I   Type  II   Type  III  

The  Polar  Catastrophe  Type  III  

PotenE

al  Ene

rgy  

P  W  Tasker  1979  J.  Phys.  C:  Solid  State  Phys.  12  4977  

Examples  of  Polar  Surfaces  •  A  polar  surface  can  exist  –  with  modificaEons.  

•  Zincblende  (100)  •  Mechanisms  for  stabilisaEon:    –  Change  in  stoiciometry  in  surface  layers  

– AdsorpEon  of  ions  on  the  surfaces  

–  Electron  redistribuEon          2D  electron  gas  

C.  Noguera  ,  J.  Phys.:  Condens.  MaMer  12  R367  

σ jj=1

m

∑ = −σ m+1

2(−1)m − R2 − R1

R2 + R1

#

$%

&

'(

Content  

•  Background  and  history  of  surfaces  –  History  –  Importance  

•  Important  concepts  for  surface  definiEons  

–  Energy-­‐band-­‐alignment  diagram  –  Miller  indices  –  Tasker  notaEon  –  Polar  surfaces  

•  Surface  energeEcs  and  electronic  structure  

–  Bond  breaking  approximaEon  –  Surface  Tamm  states  

•  Surfaces  in  PV    –  Trapping  –  PassivaEon  

•  Interface  classificaEons  and  formaEon  •  Strain  and  supercells  •  WeKng  angle  and  cohesion  •  Coherent/Semi-­‐coherent/Incoherent  

•  Interfaces  in  PV  •  SchoMky  barrier  /  Ohmic  contacts  •  Charge  neutrality  level  

•  Band  Alignment  in  PV  •  Work  funcEons  and  electron  energies  •  Measuring  work  funcEons  •  CalculaEng  work  funcEons  •  Bulk/surface  contribuEons  •  Work  funcEon  engineering    

•  PracEcal  examples  •  CalculaEon  of  surface/interface  energy  

in  DFT  •  Band  alignment  from  DFT  

 

SURFACES   INTERFACES  

Surface  energy  

Energy  is  proporEonal  to  the  number  of  bonds  broken.    

Surface  Electronic  States  Atom   Hybrid   Solid  

Eg  

Surface  Electronic  States  Hybrid   Surface  

Eg  

Atom  

Content  

•  Background  and  history  of  surfaces  –  History  –  Importance  

•  Important  concepts  for  surface  definiEons  

–  Energy-­‐band-­‐alignment  diagram  –  Miller  indices  –  Tasker  notaEon  –  Polar  surfaces  

•  Surface  energeEcs  and  electronic  structure  

–  Bond  breaking  approximaEon  –  Surface  Tamm  states  

•  Surfaces  in  PV    –  Trapping  –  PassivaEon  

•  Interface  classificaEons  and  formaEon  •  Strain  and  supercells  •  WeKng  angle  and  cohesion  •  Coherent/Semi-­‐coherent/Incoherent  

•  Interfaces  in  PV  •  SchoMky  barrier  /  Ohmic  contacts  •  Charge  neutrality  level  

•  Band  Alignment  in  PV  •  Work  funcEons  and  electron  energies  •  Measuring  work  funcEons  •  CalculaEng  work  funcEons  •  Bulk/surface  contribuEons  •  Work  funcEon  engineering    

•  PracEcal  examples  •  CalculaEon  of  surface/interface  energy  

in  DFT  •  Band  alignment  from  DFT  

 

SURFACES   INTERFACES  

Surface  recombinaEon  

•  Characterised  by  capture  and  release  rates  of  carriers  and  energy  of  state  

RSE  

RSH  

RSE  

RSH  

Surface  passivaEon  

•  Chemical  passivaEon  

Surface  PassivaEon    

•  Blocking  layer  

Surface  PassivaEon    

•  Fixed  Charge  

Content  

•  Background  and  history  of  surfaces  –  History  –  Importance  

•  Important  concepts  for  surface  definiEons  

–  Energy-­‐band-­‐alignment  diagram  –  Miller  indices  –  Tasker  notaEon  –  Polar  surfaces  

•  Surface  energeEcs  and  electronic  structure  

–  Bond  breaking  approximaEon  –  Surface  Tamm  states  

•  Surfaces  in  PV    –  Trapping  –  PassivaEon  

•  Interface  classificaEons  and  formaEon  •  Strain  and  supercells  •  WeKng  angle  and  cohesion  •  Coherent/Semi-­‐coherent/Incoherent  

•  Interfaces  in  PV  •  SchoMky  barrier  /  Ohmic  contacts  •  Charge  neutrality  level  

•  Band  Alignment  in  PV  •  Work  funcEons  and  electron  energies  •  Measuring  work  funcEons  •  CalculaEng  work  funcEons  •  Bulk/surface  contribuEons  •  Work  funcEon  engineering    

•  PracEcal  examples  •  CalculaEon  of  surface/interface  energy  

in  DFT  •  Band  alignment  from  DFT  

 

SURFACES   INTERFACES  

Interface  thermodynamics  

σ12  σ1v  +  σ2v    

Wsep  Fad  

Diffusion  and  surface  segrega?on  

MW  Finnis  1996  J.  Phys:  Condens.  Ma4er.  8  5811  

Interface  thermodynamics  

•  Interface  energy  related  to  weKng  angle.  

σ1v    

σ2v    

σ12    

MW  Finnis  1996  J.  Phys:  Condens.  Ma4er.  8  5811  

LaKce  matching  

•  Depends  on  laKce  parameters  of  the  two  phases  

•  Determines  interface  strain;  large  contribuEon  to  interface  energy  

a  

b  

Coherent  Interface  

Interface  laKce  planes  must  match.    The  same  atomic  configuraEon  across  the  interface.    Examples:  

 CuSi  alloys    GaAs/AlAs    InAs/GaAs    Ge/Si    PbTe/CdTe  

 The  energy  of  coherent  interfaces:  

 Mismatching  bond  energy    Strain  energy  is  negligible    Energy  0  –  200  mJ/m^2        

Semi-­‐coherent  Interface  

When  strains  are  sufficiently  large.    EnergeEcally  favorable  to  to  form  misfit  dislocaEons  at  interfaces.      Examples:  

 InAs/GaAs    The  energy  of  semi-­‐coherent  interfaces:  

 Strain  plus  chemical  bonding    Energy  200  –  500  mJ/m^2  

   

Incoherent  interface  

Very  different  configuraEons  on  either  side  of  the  interface.    OR  laKce  constants  >  25%  difference.    Examples:  

 High  angle  grain  boundaries    Inclusions  in  alloys      

 The  energy  of  incoherent  interfaces:  

 Very  large  structural  contribuEon.    Energy  500  -­‐1000  mJ/m^2  

Content  

•  Background  and  history  of  surfaces  –  History  –  Importance  

•  Important  concepts  for  surface  definiEons  

–  Energy-­‐band-­‐alignment  diagram  –  Miller  indices  –  Tasker  notaEon  –  Polar  surfaces  

•  Surface  energeEcs  and  electronic  structure  

–  Bond  breaking  approximaEon  –  Surface  Tamm  states  

•  Surfaces  in  PV    –  Trapping  –  PassivaEon  

•  Interface  classificaEons  and  formaEon  •  Strain  and  supercells  •  WeKng  angle  and  cohesion  •  Coherent/Semi-­‐coherent/Incoherent  

•  Interfaces  in  PV  •  SchoMky  barrier  /  Ohmic  contacts  •  Charge  neutrality  level  

•  Band  Alignment  in  PV  •  Work  funcEons  and  electron  energies  •  Measuring  work  funcEons  •  CalculaEng  work  funcEons  •  Bulk/surface  contribuEons  •  Work  funcEon  engineering    

•  PracEcal  examples  •  CalculaEon  of  surface/interface  energy  

in  DFT  •  Band  alignment  from  DFT  

 

SURFACES   INTERFACES  

Ohmic  Contacts  in  PV  

•  Minimising  losses  in  PV  

•  V  ∝  I    

•  Ideal  Ohmic  contacts  will  not  produce  potenEal  barriers  

•  Ideal  contact  all  Fermi  levels  align  

Metal  Semiconductor  Contacts  

Band  Bending  

The  SchoMky  limit.                SchoMky  barrier  –  limits  charge  transport  across  the  interface.    Contact  resistance  depends  exponenEally  on  the  SchoMky  barrier.    

Achieving  Ohmic  Contacts  

Ohmic  n-­‐type  contact   Ohmic  p-­‐type  contact  

ConsideraEons  for  devices  

n-­‐type   p-­‐type  

Space  charge   PosiEve   NegaEve  

Metal  work  funcEon   Small  /  shallow   Large  /  deep  

Examples   Li,  Na,  Ca,  K,     Au,  Ag,  Fe  

Charge  Neutrality  Level/Surface  States  

States  in  the  gap  of  the  semiconductor.    Can  result  in  addiEonal  charge  transfer.    New  local  charge  region.    Region  ~  0.2  –  0.3  nm      

Local  dipoles  

Content  

•  Background  and  history  of  surfaces  –  History  –  Importance  

•  Important  concepts  for  surface  definiEons  

–  Energy-­‐band-­‐alignment  diagram  –  Miller  indices  –  Tasker  notaEon  –  Polar  surfaces  

•  Surface  energeEcs  and  electronic  structure  

–  Bond  breaking  approximaEon  –  Surface  Tamm  states  

•  Surfaces  in  PV    –  Trapping  –  PassivaEon  

•  Interface  classificaEons  and  formaEon  •  Strain  and  supercells  •  WeKng  angle  and  cohesion  •  Coherent/Semi-­‐coherent/Incoherent  

•  Interfaces  in  PV  •  SchoMky  barrier  /  Ohmic  contacts  •  Charge  neutrality  level  

•  Band  Alignment  in  PV  •  Work  funcEons  and  electron  energies  •  Measuring  work  funcEons  •  CalculaEng  work  funcEons  •  Bulk/surface  contribuEons  •  Work  funcEon  engineering    

•  PracEcal  examples  •  CalculaEon  of  surface/interface  energy  

in  DFT  •  Band  alignment  from  DFT  

 

SURFACES   INTERFACES  

Work  funcEons  

“The  minimum  energy  required  to  remove  an  electron  from  deep  within  the  bulk,  to  a  point  a  macroscopic  distance  outside  the  surface.  ”    

Measuring  work  funcEons  (I)  

Ultraviolet  Photoemission  Spectroscopy  (UPS/PES)    

hMps://www.tu-­‐chemnitz.de/physik/HLPH/elec_spec.htmlhMps://www.tu-­‐chemnitz.de/physik/HLPH/elec_spec.html  

Measuring  work  funcEons  (II)  

Kelvin  Probe  

E  

Measuring  Work  funcEons  

Just  look  it  up…right?  

§  “A single group often obtains different values on

different crystals, different cleaves, or different days”Surface Science of Metal Oxides: Henrich & Cox

ContribuEons  to  work  funcEons  (Ia)  

•  Bulk  binding  energy  

Bulk  Polymorph  WorkfuncEons  

The  relaEonship  between  crystal  environment  and  ionisaEon  potenEal.    Engineer  levels  for  improved  water  spliKng.  

ContribuEons  to  work  funcEons  (Ib)  Atom   Hybrid   Bond  

Eg  

Solid  

ContribuEons  to  work  funcEons  (II)  

The  surface  double-­‐layer  D

ensi

ty

Pot

entia

l

Mott-Littleton (1938) Harwell Labs, UKA. B. Lidiard, JCSFT 85, 341 (1989)

Daresbury Labs, UKA. A. Sokol et al, IJCQ 99, 695 (2004)

Limitation: Convergence in region sizes and accurate analytical MM potentials

Current Implementation: ChemShell (QM/MM driver)

Bulk Values: An Embedded Crystal

Classical region

Quantum region

Continuum region

Vacuum region

Slab region

Cappinglayer

Quantum Region

ActivePotentials

Region

FrozenPotentials

Region Vacuum Region

Slab Region

Vale

nce

Band

Maxim

um

Band Bending

CappingLayer

Vacuum Level

IP IP

IP

surf

slab

Ele

ctro

stati

cPo

tenti

al

Phys. Rev. B 89, 115320 (2014)

“Absolute”  electron  energies  

Classical region

Quantum region

Continuum region

Vacuum region

Slab region

Cappinglayer

Quantum Region

ActivePotentials

Region

FrozenPotentials

Region Vacuum Region

Slab Region

Vale

nce

Band

Maxim

um

Band Bending

CappingLayer

Vacuum Level

IP IP

IP

surf

slab

Ele

ctro

stati

cPo

tenti

al

Phys. Rev. B 89, 115320 (2014)

Engineering  electron  energies  

Real  capping  layers  

PbO2 SiO2 TiO2

Capping  layer   IP     Φ   ΔΦ  (wrt  ITO)  

SiO2   11.07   6.87   +0.77  

TiO2   10.19   5.99   -­‐0.11  

PbO2   10.25   6.05   -­‐0.05  

Phys. Rev. B 89, 115320 (2014)

ITO  replacement  CIGS,  Si  

High  Φ  OPV!  

Content  

•  Background  and  history  of  surfaces  –  History  –  Importance  

•  Important  concepts  for  surface  definiEons  

–  Energy-­‐band-­‐alignment  diagram  –  Miller  indices  –  Tasker  notaEon  –  Polar  surfaces  

•  Surface  energeEcs  and  electronic  structure  

–  Bond  breaking  approximaEon  –  Surface  Tamm  states  

•  Surfaces  in  PV    –  Trapping  –  PassivaEon  

•  Interface  classificaEons  and  formaEon  •  Strain  and  supercells  •  WeKng  angle  and  cohesion  •  Coherent/Semi-­‐coherent/Incoherent  

•  Interfaces  in  PV  •  SchoMky  barrier  /  Ohmic  contacts  •  Charge  neutrality  level  

•  Band  Alignment  in  PV  •  Work  funcEons  and  electron  energies  •  Measuring  work  funcEons  •  CalculaEng  work  funcEons  •  Bulk/surface  contribuEons  •  Work  funcEon  engineering    

•  PracEcal  examples  •  CalculaEon  of  surface/interface  energy  

in  DFT  •  Band  alignment  from  DFT  

 

SURFACES   INTERFACES  

PracEcal  Session  

•  Building  a  good  surface/interface  

•  CalculaEng  a  surface  energy  

•  CalculaEng  a  workfuncEon  from  DFT  

Cut  the  surface  :  METADISE  

•  Input  unit  cell  and  miller  index  

•  SystemaEcally  generates  all  cuts  

•  Checks  for  dipolar  surfaces  

CalculaEng  a  surface  energy  

Calculate  the  energy  of  the  pure  system.  

Calculate  the  energy  of  a  2D  slab.  

SMACT-­‐Interface  

•  Evaluate  laKces  with  mismatch  below  a  certain  threshold.    

•  CuI//CdO    •  110//110  •  4x4//5x5  

CalculaEng  Interface  Energy  

Calculate  the  separate  bulk  energies.  

Calculate  the  energy  of  a  mixed  system.  

Pro-­‐Eps  for  surfaces  in  VASP  

•  k-­‐point  sampling  in  the  surface  normal  direcEon  can  be  drasEcally  reduced.  

•  Vacuums  of  ~  15  Angstrom  are  usually  large  enough…check  this  for  convergence  though.  

•  Slab  thickness  required  varies  –  depends  on  the  system  type.  Generally  –  more  broken  bonds  @  surface  means  more  surface  states  requires  a  thicker  slab  …  eg  layered  systems  are  easy!!  

Interface  energy  caveat  

•  SomeEmes  interface  energies  calculated  as  above  converge  very  slowly.  

•  Calculate  energies  for  several  layer  thicknesses.  

Pro-­‐Eps:  CalculaEng  a  band  alignment  diagram  from  DFT  

ICORELEVEL = 1 NEDOS = 1000 NBANDS = 468

1:  Get  the  energy  levels  of  the  bulk  structure  DFT  band  structure  (usually  with  a  hybrid  funcEonal)  Get  energy  difference  between  core  state  and  VBM  

hMps://github.com/keeeto/VASPBands  

Core  level,  serves  as  a  reference  state  

Increase  NEDOS  –  nicer  DOS  plots  

Increase  #  bands  quicker  convergence      -­‐  NBANDS  =  #  electrons  (spin  unpolarised)    -­‐  NBAMDS  =  2x  #electrons  (spin  polarised)  

Pro-­‐Eps:  CalculaEng  a  band  alignment  diagram  from  DFT  

ICORELEVEL = 1 LVHAR = .TRUE.

2:  Calculate  the  electrostaEc  potenEal  of  the  slab  structure  

Core  level,  serves  as  a  reference  state  

Hartree  potenEal  –  converges  more  quickly  than  total  potenEal.  

Get  the  VBM  from  core  level  plus  energy  difference  from  the  bulk  calculaEon.  Avoids  surface  state  influence.  

Pro-­‐Eps:  CalculaEng  a  band  alignment  diagram  from  DFT  

2:  Calculate  the  electrostaEc  potenEal  of  the  slab  structure  

ExtracEng  the  electrostaEc  potenEal  from  LOCPOT  file.  

Our  code  MacroDensity  does  this  for  a  range  of  systems  and  electronic  structure  codes.  

hMps://github.com/WMD-­‐Bath/MacroDensity  

input_file = 'LOCPOT.slab' lattice_vector = 4.75 output_file = 'planar.dat' # No need to alter anything after here #------------------------------------------------------

PlanarAvergae.py  

> python PlanarAverage.py

Pro-­‐Eps:  CalculaEng  a  band  alignment  diagram  from  DFT  

2:  Calculate  the  electrostaEc  potenEal  of  the  slab  structure  

ExtracEng  the  electrostaEc  potenEal  from  LOCPOT  file.  

Our  code  MacroDensity  does  this  for  a  range  of  systems  and  electronic  structure  codes.  

hMps://github.com/WMD-­‐Bath/MacroDensity  

input_file = 'LOCPOT.slab' lattice_vector = 4.75 output_file = 'planar.dat' # No need to alter anything after here #------------------------------------------------------

PlanarAvergae.py  

> python PlanarAverage.py

Elec

trost

atic

Pot

entia

lPro-­‐Eps:  CalculaEng  a  band  alignment  

diagram  from  DFT  

Bulk  calculaEon  

the core state eigenenergies are 1- 1s -87.8177 2s -87.9364 2p -87.9364 2- 1s -87.9771 2s -88.1009 2p -88.1009

Important  Points  •  Surfaces  consEtute  a  small  part  of  a  system,  but  have  a  huge  influence  on  properEes.  

•  Energy-­‐band-­‐diagrams  are  criEcal  for  designing  devices.  

•  Single  material  calculaEons  can  be  used  to  predict  offsets  in  hetero-­‐juncEon  systems…but  cauEon  is  always  advised.  

•  Both  experimental  and  theoreEcal  characterisaEon  of  surfaces  are  difficult  and  should  be  used  to  compliment  one  another  wherever  possible.