Systematic studies of doublet bands in doubly-odd nuclei using a simple model

Post on 01-Jan-2016

23 views 0 download

Tags:

description

Systematic studies of doublet bands in doubly-odd nuclei using a simple model. N. Yoshinaga and K. Higashiyama. Department of Physics, Saitama university Department of Physics, Chiba institute of technology. Outline of my talk - PowerPoint PPT Presentation

transcript

n-yoshinaga-2007INPC 1

Systematic studies of doublet bands in doubly-odd nuclei using a

simple model

N. N. Yoshinaga and K. HigashiyamaYoshinaga and K. HigashiyamaN. N. Yoshinaga and K. HigashiyamaYoshinaga and K. HigashiyamaDepartment of Physics, Saitama universityDepartment of Physics, Saitama university

Department of Physics, Chiba institute of technologyDepartment of Physics, Chiba institute of technology

Department of Physics, Saitama universityDepartment of Physics, Saitama university

Department of Physics, Chiba institute of technologyDepartment of Physics, Chiba institute of technology

Outline of my talkOutline of my talkExperiment studiesExperiment studies of doublet bands in A~130 of doublet bands in A~130 and our and our theoretical resultstheoretical results

A simple theoretical frameworkA simple theoretical framework and its application and its application to doubly-odd nucleito doubly-odd nuclei

Analysis of structure of doublet bandsAnalysis of structure of doublet bands

SummarySummary

Experimental studies of doubly-odd nuclei in A~130Experimental studies of doubly-odd nuclei in A~130

Yrast Yrast BandBand

Yrare BandYrare Band

T. Koike et al., Phys. Rev. C T. Koike et al., Phys. Rev. C 6363, 061304(R) , 061304(R) (2001). (2001).

11 2 11 2h h configuration

PraseodymiumPraseodymiumPraseodymiumPraseodymium

Truncated Shell model calculationsTruncated Shell model calculationsTruncated Shell model calculationsTruncated Shell model calculations

1010++1010++

1212++1212++

1414++1414++

1111++1111++

1313++1313++

1515++1515++

11/ 2 11/ 2h h

Neutron spinNeutron spin

Proton Proton spinspin

Core spinCore spin

0

1

2

3

10+

12+

14+

16+

11+

15+

9+

13+

15+

16+

12+

17+

11+

expt.

E(M

eV

)

17+

14+

10+

PTSM

13+

9+

8+

134La

Our results of the PTSM calculations Our results of the PTSM calculations (2005)(2005)The Pair-truncated shell model (PTSM) reproduces The Pair-truncated shell model (PTSM) reproduces

energy levels and electromagnetic properties of energy levels and electromagnetic properties of doublet bandsdoublet bands of doubly-odd nuclei with mass of doubly-odd nuclei with mass A~130.A~130.

The calculation becomes quite difficult because the The calculation becomes quite difficult because the configuration space grows up as the number of configuration space grows up as the number of valence nucleon increases.valence nucleon increases.

Band structure of doublet bands is well explained by Band structure of doublet bands is well explained by the movement of two spins ofthe movement of two spins of a neutron a neutron and and a protona proton, , weakly coupled with the weakly coupled with the even-even coreeven-even core. Thus the . Thus the PTSM provides us with an ideal tool for a study of PTSM provides us with an ideal tool for a study of doublet bandsdoublet bands..

We propose a very simple We propose a very simple model !model !

However…However…

Our Simple Model Our Simple Model Our Simple Model Our Simple Model

HamiltonianHamiltonian

Quadrupole coupling modelQuadrupole coupling modelBasis state of doubly-odd nucleusBasis state of doubly-odd nucleus

;; ,Ij jRL I R L

R

;j j L

,core c cH H H H H

,cor Re RRR R EH

RE

,cc c Q QH ,cc c Q QH H Q Q

: Collective core state (even-even : Collective core state (even-even nucleus)nucleus): Two-particle state (neutron and proton): Two-particle state (neutron and proton)

are fixed to describe even-even nucleus are fixed to describe even-even nucleus !!

1 3 5 7 9 11 13 15 17 19 21

0

1

2

3

4

E(M

eV

)

I ( )

Theory

expt.

h

134La

11 2 11 2h h configuration

Theoretical energies and experimental energiesTheoretical energies and experimental energies

0

1

2

3

4

E(M

eV

)

130La

expt.

10+

12+

14+

16+

18+

20+

9+

11+

13+

15+

17+

19+

12+

14+

16+

11+

13+

15+

Theory 8+

10+

12+

14+

16+

18+

9+

11+

13+

15+

17+

19+

8+

10+

12+

14+

16+

18+

9+

11+

13+

15+

17+

19+

128La

expt. Theory

YrastYrareYrast

Yrare

YrastYrareYrast20+

(6+)

(8+)

(10+)

(12+)

(14+)

(16+)

(18+)

(20+)

(5+)(7+)

(9+)

(11+)

(13+)

(15+)

(17+)

(19+)

8+

10+

12+

14+

16+

18+

9+

11+

13+

15+

17+

19+

8+

10+

12+

14+

16+

18+

9+

11+

13+

15+

17+

19+20+

Yrast and Yrare energies for 130La and 128LaYrast and Yrare energies for 130La and 128La

0

10

20

30

40

11 13 15 17 190

10

20

30

40

11 13 15 17 19I h( )

B M

1(

;

I

I

1)

B E

2(

;

I

I

2)

[(

N

)2

]

eb

Theory

expt.

134La 132La

130La

128La

Staggering behavior of B(M1)/B(E2) ratiosStaggering behavior of B(M1)/B(E2) ratios

5N 7N

9N 11N

Analysis of QCM wave functionsAnalysis of QCM wave functions

RR

2 2cos

I j j I

I j I I j I

I

22 I IR R

Effective angle of neutron spin and proton Effective angle of neutron spin and proton spinspin

Square of core angular momentumSquare of core angular momentum

: Eigenstate obtained by the : Eigenstate obtained by the diagonalizationdiagonalization

Neutron spinNeutron spin

Proton Proton spinspin

Core spinCore spin

40

60

80

100

7 9 11 13 15 17 190

40

80

120

8 10 12 14 16 18 20

134La 128La

I h( )

Yrast

Yrare

(de

gre

e)

R2

h( 2

)

Angles between neutron and proton, and squares of core spinAngles between neutron and proton, and squares of core spin

5N 11N

Angles

Core spin

Structure of yrast statesStructure of yrast states

+

+

+

+

+

+

131

161

121

171

111+

141

101+

151

+191

+181

1111++1111++

1313++1313++

1515++1515++

1010++1010++

1212++1212++

1414++1414++

M1 transition

134La

Neutron spinNeutron spin

Proton Proton spinspin

Core spinCore spin

Structure of yrast statesStructure of yrast states

+

+

+

+

+

+

131

161

121

171

111+

141

101+

151

+191

+181

1111++1111++

1313++1313++

1515++1515++

1010++1010++

1212++1212++

1414++1414++

134La

Neutron spinNeutron spin

Proton Proton spinspin

Core spinCore spin Strong M1 transition

Structure of yrast statesStructure of yrast states

+

+

+

+

+

+

131

161

121

171

111+

141

101+

151

+191

+181

1111++1111++

1313++1313++

1515++1515++

1010++1010++

1212++1212++

1414++1414++

134La

Neutron spinNeutron spin

Proton Proton spinspin

Core spinCore spinWeak M1 transition

SummarySummarySummarySummaryWe propose a simple model (QCM) for We propose a simple model (QCM) for doublet bands in doubly-odd nuclei, doublet bands in doubly-odd nuclei, where where the neutron and the proton are the neutron and the proton are coupled with the core through coupled with the core through quadrupole interactions.quadrupole interactions.

The mechanism of the The mechanism of the strong staggering of strong staggering of B(M1)/B(E2) B(M1)/B(E2) ratiosratios is now well understood. It is now well understood. It explains why the strong staggering occurs explains why the strong staggering occurs only in the vibrational or transitional region, only in the vibrational or transitional region, and not in the deformed region.and not in the deformed region.

The model well reproduces energy spectra The model well reproduces energy spectra and electromagnetic properties of and electromagnetic properties of doublet doublet bandsbands..

Backups

Interaction strengthInteraction strength

More about our modelMore about our model

0.30 50 0.25 82 2.55 c Z N

0.10 50 0.05 82 1.35 c Z N

0.50 50 2.50 Z

Our model is different from the Our model is different from the particle-rotor particle-rotor modelmodel in in two respectstwo respects..

1.1. Information of rotor state is extracted Information of rotor state is extracted from experimental data of even-even from experimental data of even-even nucleus.nucleus.

2.2. All interactions are assumed to be of All interactions are assumed to be of quadrupole quadrupole types.types.

E2 operatorE2 operator

M1 operatorM1 operator

Electromagnetic transitionsElectromagnetic transitions

( 2) c cT E e Q e Q e Q

( 1) c s sT M g R g g s g g s

ce

e e

cg

g sg g sg : same values adopted in PTSM : same values adopted in PTSM calculationscalculations

: same values adopted in PTSM : same values adopted in PTSM calculationscalculations

: dipole moment of : dipole moment of even-even nucleuseven-even nucleus

: E2 transition of : E2 transition of even-even nucleuseven-even nucleus

+

+

+

+

+

+

+

+

+

+142

162

131

112

132

161

121

152

171

111+

141

101

+

+

122

91

1029282

81

+

+

+

+

+

+

11+10+9+8+

j j j j j j j j

151

123+

143+

71+

1.4

2.4

1.3

3.0

2.2

1.0

3.0

1.9

1.5

3.0

2.8

3.6

4.0

3.4

5.0

21

2215

17

20

168.6

19

7.012

7.2

12

5.95.7

11+

j j

+191

+181

172+

163+

182+

23

2423

22

19

1.4

2.53.0

2.4

6.7

0.50

E2 E2 transitiontransition

E2 E2 transitiontransition

M1 M1 transitiontransition

M1 M1 transitiontransition

Partial level scheme of Partial level scheme of 134134LaLaPartial level scheme of Partial level scheme of 134134LaLa

0

1

2

3

4

E(M

eV)

132Cs 130Cs 128Cs 126CsYrast

YrareYrast

YrareYrast

YrareYrast

Yrare

8+9+10+

11+

12+

13+

14+

15+

16+

17+

18+

19+

8+9+

10+

11+

12+

13+

14+

15+

16+

17+

18+

19+

20+

8+9+10+

11+

12+

13+

14+

15+

16+

17+

18+

19+

8+9+

10+11+

12+

13+

14+

15+

16+

17+

18+

19+

20+

8+9

+10+

11+

12+

13+

14+

15+

16+

17+

18+

19+

8+9+

10+ 11+

12+

13+

14+

15+

16+

17+

18+

19+

8+9

+10+

11+

12+

13+

14+

15+

16+

17+

18+

19+

8+9+

10+ 11+

12+

13+

14+

15+

16+

17+

18+

19+

0

1

2

3

4

E(M

eV)

136Pr 134Pr 132Pr 130PrYrast

YrareYrast

Yrare

Yrast

Yrare

8+9+10+

11+

12+

13+

14+

15+

16+

17+

8+9+

10+

11+

12+

13+

14+

15+

16+

17+

18+

8+9+10+

11+

12+

13+

14+

15+

16+

17+

18+

8+9+

10+

11+

12+

13+

14+

15+

16+

17+

18+

8+9+10+

11+

12+

13+

14+

15+

16+

17+

18+

8+9+

10+

11+

12+

13+

14+

15+

16+

17+

18+

19+

8+9+10+

11+

12+

13+

14+

15+

16+

17+

18+

8+9+

10+11+

12+

13+

14+

15+

16+

17+

18+

19+

20+

0

10

20

30

40

11 13 15 17 190

10

20

30

40

11 13 15 17 19

0

10

20

30

40

11 13 15 17 190

10

20

30

40

11 13 15 17 19

132Cs

I h( )

I h( )

expt.

QCM

B

M1

(

;

130Cs

I

I

1)

128Cs 126Cs

136Pr 134Pr

132Pr 130Pr

B

E2

(

; I

I

2)

[(

N

)2 ]e

b