Transport description of viscous effects

Post on 21-Jan-2016

40 views 0 download

Tags:

description

Transport description of viscous effects. Che-Ming Ko Texas A&M University. Introduction A multi-phase transport (AMPT) model Anisotropic flow - Elliptic flow - Higher-order anisotropic flow - Rapidity dependence - System size dependence - PowerPoint PPT Presentation

transcript

1

Transport description of viscous effects

Che-Ming KoTexas A&M University

Introduction A multi-phase transport (AMPT) model Anisotropic flow - Elliptic flow - Higher-order anisotropic flow - Rapidity dependence - System size dependence - Flavor dependence Summary

Collaborators: Lie-wen Chen (SJTU), Zie-wei Lin (Univ. Alabama), Bin Zhang (Arkansas State Univ.)

2

Zhang, Gyulassy & Ko, PLB 455, 45 (1999)

Elliptic flow from parton cascade

Based on Zhang’s parton cascade (ZPC) (CPC 109, 193 (1998))using minijet partons from HIJING for Au+Au @ 200 AGeV and b=7.5fm

v2 of partons is sensitive to their scattering cross section

3

1 2 1 2 1 2 1 2p f (x,p,t) dp d v v (d /d )(f 'f '-f f )

2 2

2 2 2 2

9 9d 1,

dt 2(t- ) 2 1 /s s

s

Using αs=0.5 and screening mass μ=gT≈0.6 GeV at T≈0.25 GeV, then <s>1/2≈4.2T≈1 GeV, and pQCD gives σ≈2.5 mb and a transport cross section

σ=6 mb → μ≈0.44 GeV, σt≈2.7 mb σ=10 mb → μ≈0.35 GeV, σt≈3.6 mb

t

dd (1 cos ) 1.5mb

d

Zhang’s parton cascade (ZPC)

Bin Zhang, Comp. Phys. Comm. 109, 193 (1998)

4

A multiphase transport (AMPT) model

Default: Lin, Pal, Zhang, Li &Ko, PRC 61, 067901 (00); 64, 041901 (01);

72, 064901 (05); http://www-cunuke.phys.columbia.edu/OSCAR

Initial conditions: HIJING (soft strings and hard minijets) Parton evolution: ZPC Hadronization: Lund string model for default AMPT Hadronic scattering: ART

Convert hadrons from string fragmentation into quarks and antiquarks Evolve quarks and antiquarks in ZPC When partons stop interacting, combine nearest quark and antiquark to meson, and nearest three quarks to baryon (coordinate-space coalescence) Hadron flavors are determined by quarks’ invariant mass

String melting: PRC 65, 034904 (02); PRL 89, 152301 (02)

5

Based on coordinate-space coalescence Need string melting and large parton scattering cross section Mass ordering of v2 at low pT as in ideal hydrodynamic model

Lin & Ko, PRC 65, 034904 (2002)Elliptic flow from AMPT

σp= 6 mb

6

Coalescence model

qq3

3

N)p,x(fE)2(

pddp

36/1gg K Mg

3ni

n i q,i i i n 1 n 1 n3i=1 i

d pN =g p d f (x ,p ) f (x ,...,x ;p ,...,p )

(2 ) E

Quark distribution function

Spin-color statistical factor

e.g. 12/1gg *K

Coalescence probabilityfunction

)p,x(fq

PRL 90, 202102 (2003); PRC 68, 034904 (2003)

Number of hadrons with n quarks and/or antiquarks

54/1gg,108/1gg pp

}]/2Δ)m-(m-)p-exp{[(p×

]/2Δ)x-exp[(x=

)p-p;x-x(f=)p,p;x,(xf

2p

221

221

2x

221

212122121M

px

For baryons, Jacobi coordinates for three-body system are used.

7

Momentum-space coalescence model

Including 4th order quark flow

q T 2,q T 4,q Tf (p ) 1 2v (p )cos(2 ) 2v (p )cos(4 )

Meson flow

Baryon flow

v

v

3

1+

3

1=

v

v ,

v

v

2

1+

4

1=

v

v ⇒ 2

2,q

4,q2

B2,

B4,22,q

4,q2

M2,

M4,

)v+v(2+1

v+v2= v,

)v+2(v+1

vv2+v2=v 2

4,q22,q

22,q4,q

M4,24,q

22,q

4,q2,q2,q

M2,

)vv+v+6(v+1

v3+vv6+v3+v3= v,

)vv+v+v(6+1

vv6+v3+vv6+v3=v

4,q22,q

24,q

22,q

34,q4,q

22,q

22,q4,q

B4,4,q

22,q

24,q

22,q

24,q2,q

32,q4,q2,q2,q

B2,

Kolb, Chen, Greco, & Ko, PRC 69 (2004) 051901

8

22,q4,q2

2

4 2v v 1.2 v

v

Data can be described by a multiphase transport (AMPT) model

22,q4,q v v

Data

Parton cascade

Higher-order anisotropic flow

Momentum-space coalescence

Chen, Ko, & Lin, PRC 69, 031901 (04)

9

Strange quarks from AMPT Chen & Ko, PRC 73, 044903 (2006)

10

Phi & Omega flows

)2/p(v2)2/p(v21

)2/p(2v)p(v T2,q

T22,q

T2,qTM2,

)3/p(v3)3/p(v61

)3/p(3v)p(v T2,q

T22,q

T2,qTB2,

n)/p(vn

1T2

same for phi & Omegabut different from quark

4,4,s 4,2 2 22,s 2, 2,

vv v 0.85 0.67, 0.61

v v v

instead of 1.1 and 0.7 from dynamicalcoalescence model

4, 4,s 4, 4,s2 2 2 22, 2,s 2, 2,s

v v v v1 1 1 1 ,

v 4 2 v v 3 3 v

Chen & Ko, PRC 73, 044903 (2006)

11

2, T 2, T

2,s T

1 1 v (p / 2) v (p / 3) 2 3

v (p )

4, 4,s 4, 4,s2 2 2 22, 2,s 2, 2,s

v v v v1 1 1 1 ,

v 4 2 v v 3 3 v

4,4,s 4,2 2 22,s 2, 2,

vv v 0.85 0.67, 0.61

v v v

satisfied for large phi and Omegasizes of 4.5 fm

Flows of phi & Omega with large sizes

12

Pseudorapidity dependence of v1 and v2

String melting describes data near mid-rapidity (||<1.5) At large rapidity (||>3), hadronic picture works better

Chen, Greco, Ko & Koch, PLB 605, 95 (2005)

13

System size dependence of elliptic flow

Chen & Ko, nucl-th/0505044

v2 is proportional to size of colliding system

14

Elliptic flow in collisions of asymmetric systems

Compared to symmetric collisions Directed flow v1 is stronger Elliptic flow v2 is more sensitive to parton cross section Both directed and elliptic flows are asymmetric in forward and backward rapidities

15

Quark elliptic flow from AMPT

PT dependence of charm quark v2 is different from that of light quarks. At high pT, charm quark has similar v2 as light quarks. Charm elliptic flow is also sensitive to parton cross sections

16

Charm elliptic flow from AMPTZhang, Chen & Ko, PRC 72, 024906 (05)

Current light quark masses are used in AMPT. Charmed meson elliptic flow will be larger if constituent quark masses are used. To increase v2 at low pt requires going beyond parton cascade.

15

10

5

0

-5

17

Summary

Elliptic flow is sensitive to parton scattering cross section The AMPT model with string melting can reproduce observed large elliptic flow and mass ordering at low pT with large parton cross section (quasi bound states in QGP and/or multiparton dynamics gg↔ggg?)

Observed hadron v4≈1.2v22 is reproduced with parton v4≈v2

2

v1 and v2 at midrapidity requires formation of partonic matter, while those at large rapidity is consistent with a hadronic matter AMPT predicts: - v2 scales with the size of colliding system - Stronger v1 and more sensitivity of v2 to parton cross section in asymmetric

than symmetric collisions, and both show forward-backward asymmetry in rapidity Observed large charmed meson flow requires large charm quark scattering cross section (resonance effect?)