Validity of EBSD plastic strain estimation on a …/Shen...Validity of EBSD plastic strain...

Post on 10-Mar-2020

1 views 0 download

transcript

Validity of EBSD plastic strain estimation on a microstructural size scale Rickard Shen, Valter Ström and Pål Efsing

SKC Symposium

October 8-9, 2015, Sigtuna, Sweden

Deformation

Alloy 690 susceptible to SCC after cold work

2

Stress Corrosion Cracking

How it’s done: Misorientations Deformation

3

True Strain0 0.05 0.1 0.15M

isorie

ntat

ion

[°]

0

0.2

0.4

True Strain0 0.05 0.1 0.15Tr

ue S

tres

s [M

Pa]

0

200

400

600

How deformation causes misorientations

4

SSD SSD + GND

Misorientations ”Invisible”

Deformation

Dislocations

Misorientation Hardness

Misorientations – Hardness

5

High GND – Hard?

Low GND – Soft?

Approach

6

Deform Material SSD + GND

Misorientation map

Material Hardness Hardness map by Nanoindentation

Deformation map

Predicted Hardness map

Approach

7

Deform Material SSD + GND

Misorientation map

Material Hardness Hardness map by Nanoindentation

Deformation map

Predicted Hardness map

True Strain0 0.05 0.1 0.15M

isorie

ntat

ion

[°]

0

0.2

0.4

True Strain0 0.05 0.1 0.15Tr

ue S

tres

s [M

Pa]

0

200

400

600

How it’s done: Misorientations Deformation

8

Approach

9

Deform Material SSD + GND

Misorientation map

Material Hardness Hardness map by Nanoindentation

Deformation map

Predicted Hardness map

Deformation Strength

10

Necking

Deformation Strength

11

True strain0 0.1 0.2 0.3 0.4 0.5 0.6

True

stre

ss [M

Pa]

0

250

500

750

1000

1250

1500

Experiment

Ludwik model: 278 + 1550·p0.806

Berkovitch Indenter adds 0.08 strain

Deformation Hardness

12

True strain0 0.1 0.2 0.3 0.4 0.5 0.6

True

stre

ss [M

Pa]

0

250

500

750

1000

1250

1500

Experiment

Ludwik model: 278 + 1550·p0.806

+Berkovitch indentation strain of 0.08

Tabor: H ≈ 3σ

Deformation Hardness

13

True strain0 0.2 0.4 0.6

Hard

ness

[GPa

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

H = 3·[278 + 1550·( p +0.08)0.806

]

Vickers Hardness tests

0.77

0.00

True

Str

ain

20 µm

Deformation Hardness

14

True strain0 0.2 0.4 0.6

Hard

ness

[GPa

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

H = 3·[278 + 1550·( p +0.08)0.806

]

Vickers Hardness tests

4.35

1.44

Pred

icte

d Ha

rdne

ss [G

Pa]

20 µm

Approach

16

Deform Material SSD + GND

Misorientation map

Material Hardness Hardness map by Nanoindentation

Deformation map

Predicted Hardness map

Nanoindentation

Tip: Berkovich Depth: 100 nm C–C spacing: 2.6 µm Load: ~1.8–2.0 mN Dwell time: 20 s Load rate: 0.05 mN/s

17

20 µm

Comparison

18

Hardness profile well captured: 1. Band of high hardness 2. Low in upper corners 3. Medium in lower left

1 2 2

3

20 µm

Different scale bars

19

4.35 [GPa]

1.44 [GPa]

3.20 [GPa]

2.60 [GPa]

Factor ~1.2 of lowest values

Factor ~3 of lowest values

More comparison

20

20 µm

20 µm

More comparison

21

Our explanation

22

Disl

ocat

ion

Dens

ity

Position

Both show the same

profile

Hardness relies on SSD+GND Variations seem small

Misorientations relies on GND Variations seem large

High uniform SSD

Conclusions

• Typical misorientation strain method: • Can capture trends of strain/hardness • Cannot quantify strain/hardness

• High uniform SSD density • Low misorientation ≠ Low strain

23

Questions?