+ All Categories
Home > Documents > ûýþ¿þ ûþ 1 þêþÔþ´þàþÓ H þ¦ûþ 1þ...

ûýþ¿þ ûþ 1 þêþÔþ´þàþÓ H þ¦ûþ 1þ...

Date post: 17-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
199
Transcript
  • π

  • 1 C. J. Keyser

  • mathemata

    ,

    2 mathematics 3 Alexander Pope

  • ,

    .

    ////

  • ,

    ,

    4. Ishango 5. Lake Edward

  • 6. Herodotus 7. Ionians 8. quipus 9. Incas10 Cuzco

  • ,

    • • • •• • •• ••

    • • • •• • •• ••

    • • • •• • •• ••

    • • • •• • •• ••

    • •• •• • •

  • ,

    11. From Stories from Herodotus by B. Wilson and D. Miller. Reproduced by permission of Oxford University Press.

  • ,, ,,

    Narmer King 13. Menes 14. Palette 15. Hierakonopolis 16. J. E. Quibell 17. Gize

  • , ,

    ,,, ,, ,

    ,,,,,,

  • |||

    |||

  • 18 Rhind Papyrus

  • .

  • ριασκβτλγυμδφνεχξ

    ψοζωπη

    θ

    19 Ionia

  • ψπδ = + + =

    βM

    MMyriadM

    ,

    ,=Mδ

    , ,=Mρν

    Mρν

    / , ,Mτμε βρμδ =

    ,

    MM( ),

    δσλδ

    ,απε,,απε

  • /

    /

    κ δν γ

    αξσ ιβασ οβ

    ×

    =

    κνκγδνδγ

    ,,,

    , ,

  • ,,

    , ,

  • /ασλδ

    βα/

    /Mε

    εφνε

    /MM Mθ τ βχδ

    νζφογσλβλωπα/

    χμθγφιβ/σπεδ

    Γpenta

    Δdeka

    Ηhekaton

    ×kiloΜmyriad

    ,,

    20. Atic 21. Herodianic

  • ,,

    ,,,

  • V L C DΙ Χ Μ

    MDCCCXXVIII

    CDXCV

    IVVI

    IVXXLCCDM

    , ,VΧ =,VΧ =

  • ,,

    , ,

    CXXIVMDLXI

    MDCCXLVIIIDCCLXXXVII

    ΧΙΧ

    C VΧ ΧΧ

    CM.XIXMMCLXI .MDCXX

    XXIV .XLVI XXIII.XXX CLXI.CCLII

    XXXIV.XVI

  • |

  • ,

  • ,

  • οoυδενο

    . omicron

  • + =

    ;,,,;,

    ,× + × + + =

    × + + + =

    23. Theon

  • = =

    = =

    = =

    Megal Syntaxis Almagest

  • ,,

    ,,

    ,,,,,,,,,,,,

  • 26. The Rhind Papyrus

  • 27 Proclus28 Golenischev 29. A. Henry Rhind

  • 30. Luxor 31. Thebes 32. Ramesseum 33. Ahmes

  • , , , , , ,...

    xx

  • + +

    + +

    nn

  • ||

    ||O

    O

    = + + +

    = + + + + +

    + + +

  • n/

    n

    n/

    k k k= +

    k =

    = +

    /( )k

    n/

    n =

    = + +

    = + +

  • = + = + +

    = + = +

    = + = + +

    = + + = + + +

    = + + = +

    = + + = + +

    = + = + +

    = + = + + +

    = + + + = +

    = + + + = + + +

    = + = + + +

    = + + = +

    = + + = + + +

    = + + + = +

    = + + = + +

    = + = + +

    = + = + + +

  • = + + +

    n n n n n= + + +

    n/

    = + + +

    = + + +

    = + + +

    = + + +

  • +

    N/ ,..., / kn n

    ...k

    N Nn n

    + + + + =

    N

    + = + =

    + = + =

    + + + =

  • + + + =

    .x x− =

    × − =

    =

    x = =

    .

    .

    34 Liber Abaci

  • ax b+ =ggxffag b+ag b+

    ag b f+ =

    ag b f+ =

    ( )a g g f f− = −

    gg

    ag g bg f g+ =

    ag g bg f g+ =

    ( )b g g f g f g− = −

    −− =−

    f g f gba f f

    /x b a= −xf g f gx

    f f−

    =−

    xax b+ =ax b+ =

    xx + =

  • xx + − =

    xg =g =

    f+ − = − =

    f+ − = − =

    x( ) ( )

    ( ) ( )f g f gx

    f f− − − −= = = = + +− − − −

    35. Ahmes

  • n n n nn n n n n+ − + − + − + =

    n =

    ,,

    ,,

    36. Hekat

  • ( ) ( )/= − −−× = = + + + +−

    nSn

    ...n

    nn

    rS a ar ar ar ar

    − −= + + + + =−

    a r= =n =

    )(

    .

  • .

    ."

    37 Anglo- Saxon 38 God Ra

  • ÷÷÷÷÷

    + +

    + + + +

    + + +

    + +

    ++ +

    +

    + = +

    +

    n n n= +

    nn

  • .

    .

    .

    39 geometry 40 Herodotus 41. Sesostris

  • ( )( )A a c b d= + +

    a

    b

    c

    d

    abcd

    42. Horus 43. Edfu 44. khet 45. setat

  • = − = =d dA d d

    d

    /dπ

    d dπ =

    . ...π = =

    dA =

  • A = − =

    d =d

    dA =

  • .

    ( )hV a ab b= + +

    hab

    ,

    Gizeh KhufuCheops

  • ,,

    ,,

    .

    , ,

    /

    .

    π

    / ...=π( . ) / .../

    =

    49. acre

  • / ...

    .

    bah:

    ( . )h b a ab= =

    abh

    h b a+ =h a b= −h

    a b ab− =

    ab ba a

    − =b ba a

    + =

    x x+ =

    ( )x = −( ) / ...= − =ba

  • ( / ) ( / ) /= + = + =a h b

    / ...=ba

    .

    50. John Taylor 51. The Great Pyramid, Why Was It Built and Who Built It?

  • ( )ab×( )b

    b abab ab b

    =+

    b aa a b

    =+

    a/ / .../

    = =+a

    a b

    ab

    baa+

    .

  • π

    π =

    ,;

    π

    π

    a b a bV h + −= +

    hab

    52. cubit 53. Aryabhata

  • ( )V h r R= +

    hrRh =r =R =

    ( )V h R rR rπ= + +

    ( )V h r Rπ= +

    hrRπ

    h =r =R =

    54. Heron 55. Akkadian 56. Otto Neugebaver

  • .

    .

  • .

    :;

    xy:

    x x+ =

    :]x [; .

    ;;; ,;

  • ; ,;;

    ;;.

    ; ;( ) ;

    ; , ; ;

    ; , ;; ; ;

    x = + −

    = + −

    = −= − =

    a ax b= + −

    x ax b+ =

    .

    .

    x y a+ = =

  • ax z= +ay z= −

    z.

    a b−xyb =ay z= −ax z= +

    zzzzzzzzzz

    ==========

    za b−z

    a b z− =

    z

    az b= −

  • a ax b= + −

    a ay b= − −

    ayx =+xza

    yx +xy.

    ax z= +ay z= −

    abxy =

    a az z b+ − =

    a z b− =

    az b= −

    az b= −

  • zxy

    a ax b= + −

    a ay b= − −

    xy =x y+ =

    x z= +y z= −

    x y z z+ = + + − = =

    xy =

    z z+ − =

    z− =

    z = − =

    57. Yale

  • z =

    x = + =y = − =

    yx −yx +

    xy b=x y a− =

    ax z= +ay z= −

    a ax b= + +a ay b= + −

    bxy =ayx =±

    x y xy+ + =x y+ =

    xy

    ( )xy x y xy x y= + + − − = − =

    xy =x y+ =

  • x = + =y = − =

    xx xx x+ + + =

    x y=x y+ =

    58. mina 59. sheqel 60. se

  • xy

    xy b=x y a+ =xy =

    x y+ =( ) ( )x y x y xy− = + −

    yx −

    xy =x y− =

    xy =x y− =

    xy =x y+ =

    ( )xy x y+ − =x y+ =

    z y= +

    xz =

    x z+ =

    61. Susa 62. Elam 63. William Kennett Loftus

  • I

    .

    .

    64. Acropolis 65. King Hammurabi I

  • ADBAD =r AE=ED r= −

    EDB

    ( )r r= + −

    r =;r =

    ;;

    π =

  • , =

    Ay A x+ = =

    ( )x y+ =

    , =yzx

    ( ) ,z x xy y z+ = + − =

  • xyzy x

    y z=

    +

    b b− =

    ( )s s b b= = + +

    b b s sA + +=

  • .

  • .

  • .

    .

  • .

    .

    ••

  • •••

    .

    :

    .

  • hh′

    s′:

    ss

    hh

    ′=

    .

    ( )shhs

    ′ += = = =′

    s

  • .

    .

    .

    .

  • II

    ba +ababc

    ba +.

    ab

    c

    b

    b

    b

    a

    a

    a

    a b

    cb

    b

    b

    a

    aa

    ( )+ = + +a b a b ab

  • ( ) aba b c+ = +

    c a b= +cab

    x y z+ =

    ),,( zyx

    , ,x n y n n z n n= + = + = + +

    n ≥

    ( ) ( )k k k− + − =

    k −

    k =k − =k m− =k

    mk +=mk −− =

  • m mm − ++ =

    , ,m mx m y z− += = =

    m >m

    m k= −m n= +n ≥

    , ,x n y n n z n n= + = + = + +

    zyxn

  • , ,x n y n z n= = − = +

    zyxn

    ( ) ( )

    [( ) ( )] ( )

    k k k

    k k k k k

    + = + +

    = − + − + + = − +

    nkk

    ( ) ( ) ( )n n n+ − = +

    ( , , )

    X

    , ,x mn y m n z m n= = − = +

    mnnm >

  • a b a bab − ++ =

    a n=b =

    ( )a n= +b =

    n ≥nn

    ( , ( ), ( ))n n n− +

    n( , ( / ) , ( / ) )n n n− +( , , )

    ( , , )x x x+ +

    x =

    ),,( zyxxy( , , )x x z+

    ( , , )x z x z x z+ + + + + +

    ( , , )x x z+

    ABCCCDCAB

  • A

    c

    D

    C Bb

    a

    ACDCBDABCabc

    a b c+ =

    ABCCabc

    BCDBAD

    ab

    acb

    D

    A

    BC

    ca

    b

    ABCDBAbacAD /=

    /DB a b=

    ABDABC

    ACDa b c+ =

  • p qq ≠

  • abab

    ba

    ab

    ,,,,,,,,,,

  • ,,,,

  • ( )− −n n

    ( )− −n n−n

    BESKn

    ( )−

    ABCDAB/

    CD/

    .

    ,AB CD= =

    ,AB CD= =

    n −

  • A B C D

    ABCD

    AB m=CD n=

    AB mnCD

    =

    a

    A B

    CD a

    a

    BD a a a

    BD a

    = + =

    =

  • BD aBC a

    = =

    pq

    =pq

    p q=p q=

    ppp

    p c=

    c q=

    q c=

    qq

    pq

  • Q N≅

    pp

  • .

  • π

    πππ

    π

    ABC.

    = ABACAC

    AB

  • ABCAB AC CB AC= + =ABAC

    IIIIVIII

    ABCABC

    ( . )AC BC AC=

    ACIII

    IABC

    ACAC =I

  • .

  • .

    aaxyaxya

    a x yx y a

    = =

    x ay=

    y ax=

    x a y a x= =

    x a=

    xa

  • B

    COB∠ =

    .O

    ABO

    CPOQ

    BO

    ( )COA∠ = − = =

    O

    POQ

    OC

    C

  • .

    C

    ABC

    ABCD

    DADAC

  • BCD

    BPx =CPy =

    ACPBDPC

    ABCDE

    ABCBCDACBD

    aAP =DP a=aa

    a x yx y a

    = =

    APB

    aaAD a=E

    ABADPQPCQ

    PAQPBCCDQ

    aAB =

  • a

    a y a yx a a x

    += =+

    E

    D Q

    B C

    A

    y

    G

    x

    Fa

    P

    EFQEGP

    ( ) a aa x a y+ + = + +

    ( ) ( )a x x a y y+ = +

    xDQ =yBP =aa

    AOB∠BOAAOB∠COA

    a OB=OaBCBD

    PQaPQ =OPQ

  • M

    Q

    aP

    DB

    O A

    /a

    MPQBMOMOB ∠=∠

    BMQBMP MBQ MQB∠ = ∠ + ∠

    BQOAOQ ∠=∠AOB AOQ QOB BQO∠ = ∠ + ∠ = ∠

    ABCDaAB =AD a=MADNABCM

    BAGFFNaFB =BHGFFP

    ABPaHP =

    PCADQ

    C

  • D Q

    B C

    A

    y

    G

    x

    F

    P

    a

    aH

    z

    M

    a

    N

    a

    PAQPBCCDQa y a yx a a x

    += =+

    PBHPGFa z ay y a

    +=+

    / /a z y a=xz =FNBFNPFN

    ( )a aa x a y− = + − +

    x y ay x a

    +=+

    DQ x=yBP =aaa x yx y a

    = =

  • ••••••••

  • .

    .

    .

    109 Chaeronea 110 Hellenistic Age 111 Ptolemy

  • .

    .

    .

  • .

    ..

    .

  • .

    .

    ..

  • . .

    .

    .

    .

    . .

    .

    ll′ta

    bll′t

  • l

    l ′

    t

    a

    b

    .

    AB

    AB

    AABB

    BABA

    CCACB

    ABC

    ABAC =ABBC =

    ACBCAB ==ABC

    A B

    C

    C

  • ABCDBC

    CACEBEFEFBE =ECAE =EFBE =

    FECAED ∠=∠AEDFEC

    FCEBAE ∠=∠FCEDCA ∠>∠DCA∠

    BAE∠

    A

    B c

    E

    D

    F

  • ACG

    ABCGCB ∠>∠GCB∠DCA∠

    DCA∠ABC∠

  • .

    ba ≠ba |

    cacb =baba |/

    ba |ab

    ababbaba |a

    bacacb =

    .

  • a >|a| a

    aa |a±a±aa

    p >

    p

    abd

    abad |bd |

    ab

    ab),gcd( ba

  • gcd( , ) =

    .

    a

    bb

    .abb >q

    r

    ,a qb r r b= + ≤

  • .

    .

    n >

    .

  • pp

    ( ... )N p= × × × × × × +

    N >NqpN

    q| ...q p× × × ×Nq |( )| ( ... )− × × × ×q N p

    |qq >

    qp

    ABCCBACAB ∠=∠BCAC ≠BCAC >D

    ACBCAD =

    C

    D

    A B

  • P

    A

    B C

    D

    αβ

    γ

    ABCΔDBC

    A

    B

    CD

    ABCΔABAC >DACABAD =

    ADB∠BCDΔ

    D

    A

    CB

    ABCΔDEFΔEB ∠=∠FC ∠=∠EFBC =

    DEAB ≠DEAB >GAB

    EDBG =

  • B

    A

    C

    G

    α β

    Bα β

    D

    F

    α β+ =

    αP

    t

    DCAB =AB

    DCABCΔADCΔ

    A

    CD

    B

  • ( )−a

    an

    gcdgcd( , ) =a

    ABCDBCFE

    ADEFBC

    ΔABΔDCF

    abc|a b|a bc

    ba |ca ||a bc|ac bc≠c

    | ( +a a b|a b

    a|c d|ac bd

    |a b( ) |−a b| ( )−a b| ( )−b

    n

    na

    ad( , ) =a a

    gcd(

    BE

    b|a b

    )b

    |b

    ( , ) =a a a

  • a

    gcd( , )+ =a a

    = +

    = −

  • .

    .

  • Bettmann

    π

  • ."

    ."

    .

    S rπ=

    .

  • ABCDEFCDGDGCDGH

    CDACGACDACDAGH

    ACHACDCDEFACDACHCDEF

    ACHACCH

    CDEF

  • π

    π.

    .

    ππ

    π

    πn

    π

    n

  • π

    ABCDEFABCDEF

    .

    π

    π<

  • ABBC

    ABC

    BC

    B

    >BC ABM

    F

    + =AB BF FCD

    =FD FCΔMBAΔMBD

    MF

    C

  • ••

  • ••

    ••

  • xy

    xyxy

    xy

    xx

    y

    xy

    xy

  • 146 Keyser. axioms

    Theory

  • iP

    iT

    iT

    iT

    iP

    xy

    iP

    iTiP

    Axiom

  • iPiT

    iT

    iP

    iPiT

    iPiT

  • p q→q r→p r→

    151. Henry Poincare

  • / ,,

    x y xx y y

    + = == =

    //y y= = =

    ( )+ = ≠ax b a

    bxa

    = −

    ( )ax by c a+ + = ≠

    b b acxa

    − ± −=

    ( )ax bx cx d a+ + + = ≠

  • ax bx d+ + =

    ( )( )A B A B A AB B− = − + +

    n

    KabcRKab

    RaRbaRb

  • aRbaRbaRbaba=b

    a b≠

    KR

    Pa b≠aRbbRaPaRba b≠PaRbbRcaRcPK

    aRbbRaaRbbRaPaRaP

    c a≠c b≠aRbaRccRbc a≠PaRccRacRaaRbPcRb

    KkRaK

    bKaRcPabKcK

    bRcPb c≠PcRdbRdPb d≠a d≠abcdK

  • KdRPd e≠PcRebReaRePc e≠b e≠a e≠abcde

    KP

    KKRa

    b a≠KPaRbbRaaRbbRa

    bRaa D b

    aDbbDcaDc

    bRacRaPcRaaDc

    aRbcKaRccRb

    aFb

    aFcbFca b=

    b a≠PaRbbRa.

    aRbbFcbRc

    aFc

    bRaaFcaRc

    bFc

    aRbbRcaFc

    aRbbRcaFcaFbbFcaGc

  • KR

    KR

    abbacababac

    cbKK

    KK

    baababbcac

  • abcaccbab

    abbcacabbcac

    KR

    DFKG

    K

    KR

    DFG

  • 1. D. Hillbert

  • pp

    xxg

    xg(x)

  • xxgxxgxxgxxg

    PPPPPP

    PPPTPP

    PaRba b≠aRbbabRa

    P

  • KR

  • ABA

    BA

    ABAB

    PP ′K

    KR

    156 Poincare

  • n

  • n

    PKR

    PPP

    P

    PKR

    P

    PKRP

    PKR

    P

  • 160 R. L. Wilder 161 R. L. Moore

  • SSST

  • 163 category 164 isomorphic

  • aGcbGcca

    aGbbGcaGc

    abcBbRcaRbbRa

    cRb

  • abcBacbB

    abcB

    ⊕⊗

    baabPabca b b a⊕ = ⊕Pabca b b a⊗ = ⊗PabcS( ) ( )a b c a b c⊕ ⊕ = ⊕ ⊕PabcS( ) ( )a b c a b c⊗ ⊗ = ⊗ ⊗PabcS( ) ( ) ( )a b c a b a c⊗ ⊕ = ⊗ ⊕ ⊗

    ( ) ( ) ( )b c a b a c a⊕ ⊗ = ⊗ ⊕ ⊗PSzaS

    a z a⊕ =PSuzaS

    a u a⊗ =

    PaSSa z⊕ =PabcSc z≠c a c b⊗ = ⊗c a b c⊗ = ⊗ba

  • PzaSa−S

    a a u−⊕ =

    PP

    P′abcS( ) ( ) ( )a b c a b a c⊗ ⊕ = ⊗ ⊕ ⊗P′abcSc z≠c a c b⊗ = ⊗ba

    aSa a z⊕ =aS( )a a a z⊕ ⊕ =a,a a a S⊗ =

    SabS

    a z≠b z≠a b z⊗ =

    PPa

    Sa−Sa a a−⊗ =pqr

    qrqP

    rP

    SFS

    PabSbFaaFbPaSbSbFa

  • PaSbSaFb

    PabcSbFacFbcFaPabSbFaS

    cFabFaaSb

    aSbFaaFb

    S ′F

    P

    P

    P

    P

    PPP

    165. A. A. Robb, A Theory of time and space, New York, Cambridje University Press, 1914.

  • Bergriffsschrift

    Grundgesetze der Arithmetik

  • π

    mnpqr

  • p q∧pqpq

    p q∨pq

    pq

    p q→pqp

    q

    p q↔pqp

    q

    ppp

    p

    → ∨ ∧↔

    p p q∧ p q∨ p q⊃p q≡ p p q∧ p q∨ p q→

    p q∧ p q∨ p q⊃ p q⊂ p

  • pqpq

    pq

  • p p∨

    ( )p p∧( ) ( ) ( )p q q r p r→ ∧ → → →

    ( )p p↔( ) ( )p q q p→ ↔ →

    →p q→ →q p

    mnm n↔

    ( )( )→ ↔ →p q q p

    ( )→q pp q→

    ( )p q∧( )p q∧

    ( ) ( )p q q p∧ ∧ ∧

    p q∨

    p q→

    p q↔

    ( )∨p qp q∨

    ( ) ( )p q q p∧ ∨ ∨

    p q∧

    p q→

    p q↔

    ( )p q→p q→

    ( ) ( )→ ∧ →p q q p

    p q∧

    p q∨

    p q↔

  • [ ]

    ( ) ,p q q p q→ → ∨

  • p

    qr

    x x− + = ( )( )x x− − =( )( )− + = − −x x x x

    A B C∠ + ∠ + ∠ = p a→

    , , , ... , np p p p p p p q−→ → → →

  • Ppqr

    P∨

    P

    , ,↔ → ∧

    P

    pq

    pp q∨pp.

  • LLLL

    p q→p q∨

    L( )p p p∨ →L( )q p q→ ∨L( ) ( )p q q p∨ → ∨L( ) ( ) ( )q r p q p r→ → ∨ → ∨

    L

    L

    L

    a b

  • ( ) ( )∨ → ∨ ∨p q p p q

    R

    q r→q r∨L

    ( ) ( ) ( )∨ → ∨ → ∨q r p q p rRmm n→n

    p q∧( )p q∨

    Rmnm n∧

    ( ) ( ) ( )q r p q p r→ → → → →( ) ( ) ( )p r p q p r→ → ∨ → →

    ( ) ( ) ( )q r p q p r→ → ∨ → ∨pp( ) ( ) ( )p r p q p r→ → → → →

    ( )p p p→ ∨( )q p q→ ∨L( )p p p→ ∨qp

    p p→

  • ( ) ( ) ( )q r p q p r→ → → → →( ) ( ){ } ( )p p p p p p p p∨ → → → ∨ → →

    q( )p p∨rpp p p∨ →L

    ( ){ } ( )p p p p p→ ∨ → →R( )p p p→ ∨

    p p→R

    p p∨

    p p→

    p p∨

    p p∨

    ( ) ( )p q q p∨ → →L( ) ( )p p p p∨ → ∨ppqp

    p p∨

    p p∨

    p

    ppp

    ( )→ →p p p( )p p p∨ →L

    ( )p p p∨ →pp

  • ( )p p p→ →

    ( )p p→p p∨

    ( )p p∨pp( )p p→

    ( ){ }p p∨( ) ( ) ( )q r p q q r→ → ∨ → ∨L

    ( ){ } ( ) ( ){ }( )p p p p q p→ → ∨ → ∨qpr( ){ }p

    ( )p p→( )( ){ }→p ppp

    ( ) ( ){ }( )p p p p∨ → ∨Rp p∨

    ( ){ }p p∨R

    ( )p p→( ) ( )p q q p∨ → ∨L

    ( ){ }( ) ( ){ }( ){ }p p p p∨ → ∨q( ){ }p( ){ }p p∨

    ( ){ }p p∨R( )p p→

    ( ) ( )p p p p→ ∧ →( )p p→

    ( )p p→

  • ( ) ( )p p p p→ ∧ →R

    p q↔( ) ( )p q q p→ ∧ →

    ( )p p↔( ) ( )p p p p→ ∧ →

    ( )p p↔

    ( ) ( ) ( )p q p q p q∨ ↔ ∧ ∧ →

    ( ) ( ) ( )p q p q p q→ ↔ ∨ ↔ ∧

    ( ) ( ) ( )p q p q p q∧ ↔ ∨ ↔ →

    ( )p p p→ →p

    pp

    ( ) ( )p q q p→ ↔ →

    p q→q p→

  • ( )→ ∧ →p q q ppqqp

    ( )∨ ∧ →p q q ppqqp

    ( ) ( ) ( )p q q r p r→ ∧ → → →

    ( )q p q→ →

    ( )→ →p p qp

    pq

    ( )∧p ppp

  • abc

    ... , ,∩ ∪,∧ ∨

    uz

    ( ) ( ) ( ) ( )( ) ( )

    ( ) ( ) ( )( ) ( ) ( )

    ( ) ( )

    :

    : ,

    :

    : ,

    ∨ ↔ ∨ ∧ ↔ ∧

    ∨ ↔ ∧ ↔

    ∨ ∧ ↔ ∨ ∧ ∨

    ∧ ∨ ↔ ∧ ∨ ∧

    ∨ ↔ ∧ ↔

    B a b b a a b b a

    B a z a a u a

    B a b c a b a c

    a b c a b a c

    B a a u a a z

    ( )∩ = ∪a b a b( )∪ = ∩a b a b

  • ( ) ( )∧ ↔ ∨a b a b( ) ( )a b a b∨ ↔ ∧

    m n↔mn

    ( )∧ ↔ ∧a b b a( ) ( )∨ ↔ ∨a b b aB∧∨

    B∨∧∧∨

    ( ) ( ) ( ):′ ∧ ∨ ↔ ∧ ∨ ∧B a b c a b a c

    ′BB

    ,F F

    F

    F

    F F+

  • ][

  • p p∨

    p

    p

  • pm

    mm

    m

    m

    p

  • FT∧FTTFFF

    p

    q

    pqp q∧

    p q∧pq

    TF

    p q∧

    p q∧

    pq

    TF

    p q∧T

    T

    F

    =

    q

    p

  • FT ∧TT

    F

    TF

    p q∧

    p q∧

    q

    pp q∧

    ppp

    p

    FT∧FTT

    FFF

    F T ∧F T T F FFFF

    q

    p

  • ( )pp( ){ }pp

    ( )pp

    ( )( ) =

    p

    ( )t p

    o

    ( ) ( )t p t p= −

    , / , o

    ppp

    ppFT

    TF

    pp T

    F TF

  • mnm n↔

    ( )p p↔( ) ( )p q q p→ ↔ →p p∨

    ( )p q p∧ →( )p q p∨ →

    ( )p p p→ ↔( ) ( )p q q p∧ ↔ ∧

    ( ) ( ) ( )p q r p q p r→ ∧ ↔ → ∧ →( ) ( ) ( )p q r p q q r∧ ∨ → ∧ ∨ ∧

    ( ) ( )p q p p q∧ → ↔ →( ) ( )p q r p q r→ → → → →

    ( )p q p∨ →( )q p q→ ∨

    p q∨( )p q∧

  • ( )p q∨p q∧( )p q↔p q∧( )p q↔p q↔

    ( )p q↔p q↔

    pqr

    p q→

    ( )p q r↔ ∧( )p q r∧ ∨

    p q→

    ( )p p q↔ ∧( )p q p∨ ∧

    p qp q∨

    p pp

    ( ) ( )p p q qp q∨∧

    Rm m∨m

    Rmpp m∨

    Rm n∨n m∨

    Rm n→p

    ( ) ( )p m p n∨ → ∨

  • ( ) ( )p q q p→ → →

    ( ) ( )a b c a b c∩ ∩ = ∩ ∩a b b a∩ = ∩

    a a a∩ =

    ( )a a b a∩ ∪ =a b→

    ( )p p q q∧ ∨ ↔( ) ( )p q p q∨ → ∧

    p q→

    pp q→q

    3. N. Bourbaki, Elements of the history of mathematics, New York: Springer-Verlag,1993. 4. D.M. Burton, The history of mathematics, An Introduction. Sixth Edition, McGraw-Hill Companies, Inc., 2007. 5. R.Cook, The history of mathematics: A brief course, 2nd ed., New York: Wiley, 2005.

  • 6. T. Tymoczko, New directions in the philosophy of mathematics, Princeton University Press, 1998.


Recommended