+ All Categories
Home > Documents > 0026-1394_30!5!011 Mise Definition Meter

0026-1394_30!5!011 Mise Definition Meter

Date post: 21-Jul-2016
Category:
Upload: alexander-martinez
View: 16 times
Download: 3 times
Share this document with a friend
Description:
Definición del metro
20
This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 190.27.239.34 This content was downloaded on 13/06/2014 at 22:37 Please note that terms and conditions apply. Mise en Pratique of the Definition of the Metre (1992) View the table of contents for this issue, or go to the journal homepage for more 1994 Metrologia 30 523 (http://iopscience.iop.org/0026-1394/30/5/011) Home Search Collections Journals About Contact us My IOPscience
Transcript
Page 1: 0026-1394_30!5!011 Mise Definition Meter

This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 190.27.239.34

This content was downloaded on 13/06/2014 at 22:37

Please note that terms and conditions apply.

Mise en Pratique of the Definition of the Metre (1992)

View the table of contents for this issue, or go to the journal homepage for more

1994 Metrologia 30 523

(http://iopscience.iop.org/0026-1394/30/5/011)

Home Search Collections Journals About Contact us My IOPscience

Page 2: 0026-1394_30!5!011 Mise Definition Meter

International Reports

Mise en Pratique of,the Definition of the Metre (1992)

T. J. Quinn

Foreword

In 1983, at the time of the adoption of the present definition of the metre by the 17th Conference Gene- rale des Poids et Mesures, the Comite International des Poids et Mesures (CIPM) drew up recommenda- tions for the practical realization of the definition. These are generally referred to as the mise en pratique of the definition. It was understood that the mise en pratique would, from time to time, be updated to take account of new measurements and improvements in techniques of laser stabilization.

In 1992 the CIPM, acting on the advice of its Comite Consultatif pour la Definition du Metre (CCDM), decided that the time had come for the 1983 mise en pratique to be revised. The 1992 revision is presented here.*

This comprises:

Recommendation 3 (CI- 1992) which was adopted by the CIPM at its 81st Meeting in October 1992, and which includes a list of recommended radia- tions.

Appendices M 2 and M 3 of the Report of the 8th Meeting of the CCDM, 1992. Appendix M 2 gives the source data and references for the prece- ding list of recommended radiations and Appen- dix M 3 gives tables of frequency intervals between hyperfine components of absorption lines of iodine.

In adopting the revised mise en pratique, the CIPM noted with satisfaction that the values of frequency and wavelength given in the new list of recommended

T. J . Quinn: Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sevres Cedex, France.

* Reprints of this-Merrologro publication are available from the BIPM. The French version of the mise en prorique, which is the official one, is published hy the BIPM in the Report of the 81st Meeting of the ClPM (1992). Copies available from the BIPM and from OFFILIB, 4X. rue Gay-Luswc. F-75005 Paris.

radiations, while having considerably smaller uncer- tainties, do not lie outside the overall uncertainties associated with the values given in 1983. In conse- quence, the implementation by national laboratories of the 1992 mise en pratique will lead to'no significant discontinuities in their standards of length.

Revision of the Mise en Pratique of the Definition of the Metre

Recommendation 3 (CZ-1992)

The Comitt International des Poids et Mesures. recalling

that in 1983 the 17th Conference Generale des Poids et Mesures (CGPM) adopted a new definition of the metre;

that in the same year the CGPM invited the Comite International des Poids et Mesures (CIPM)

to draw up instructions for the practical realiza- tion of the metre; to choose radiations which can be recommended as standards of wavelength for the interferome- tric measurement of length and draw up instruc- tions for their use; to pursue studies undertaken to improve these standards and in due course to extend or revise these instructions; that in response to this invitation the CIPM

made a number of recommendations in 1983 concer- ning the practical realization of the metre (the mise en pratique); considering

that science and technology continue to demand improved accuracy in the realization of the metre;

that since 1983 work in national laboratories, the BIPM and elsewhere has substantially improved the reproducibility of radiations which are suitable for the practical realization of the metre;

Page 3: 0026-1394_30!5!011 Mise Definition Meter

that such work has also substantially reduced the uncertainty in the determined values of the frequen- cies and wavelengths of some of these radiations; decides that the list of recommended radiations given by the CIPM in 1983 (Recommendation 1 (CI-1983)) be replaced by the list of recommended radiations given below.

List of Recommended Radiations, 1992

This list replaces the one published in BIPM Proc.- Verb. Com. Int. Poids et Mesures, 1983, 51, 25-28 and Metrologia, 1984, 19, 165-166.

In this list, the values of the frequency f and of the wavelength 1 should be related exactly by the relation 1f= c, with c = 299 792 458 m/s but the values of 1 are rounded.

The data and analysis used for the compilation of this list are set out in the associated Appendix: Source Data for the List of Recommended Radia- tions, 1992, and its Annotated Bibliography (see this document, Appendix M 2).

It should be noted that for several of the listed radiations, few independent values are available, so that the estimated uncertainties may not, therefore, reflect all sources of variability.

Each of the listed radiations can be replaced, without degrading the accuracy, by a radiation corres- ponding to another component of the same transition or by another radiation, when the frequency dif- ference is known with sufficient accuracy. It should also be noted that to achieve the uncertainties given here it is not sufficient just to meet the specifications for the listed parameters. In addition, it is necessary to follow the best good practice concerning methods of stabilization as described in numerous scientific and technical publications. References to appropriate articles, illustrating accepted good practice for a parti- cular radiation, may be obtained by application to a member laboratory of the CCDM, or to the BIPM.

I . Radiations of Stabilized Lasers

1.1 Absorbing molecule CH,, transition v 3 , P(7), component FL2) 1.1.1 Thevalues f=88376181600,18 kHz

1 = 3 392 231 397,327 fm with an estimated relative standard uncertainty of 3 x apply to the radiation of a He-Ne laser stabilized to the central component [(7-6) transition] of the resolved hyperfine-structure triplet, the mean of recoil splitting, for effectively stationary molecules, i.e. the values are corrected for second-order Doppler shift. 1.1.2 Thevalues f=88376181600,5 kHz

I = 3 392231 397,31 fm

with an estimated relative standard uncertainty of 2,3 x lo-" apply to the radiation of a He-Ne laser stabilized to the centre of the unresolved hyperfine structure of a room temperature methane cell, within or external to the laser, subject to the following condi- tions:

methane pressure < 3 Pa; mean one-way axial intracavity surface power d e n ~ i t y * < I O ~ W . m - ~ ; radius of wavefront curvaturea 1 m; inequality of power between counter-propagating waves < 5 %; detector placed at the output facing the laser tube.

transition 3P1 - lS0; Am,=O 1.2 Absorbing atom The values f = 455 986 2403 MHz

1 = 657 459 439,3 fm with an estimated relative standard uncertainty of 4,5 x lo-'' apply to the radiation of a laser stabilized with a thermal atomic beam.

1.3 Absorbing molecule lZ7I2, transition 8- 5 , P(lO), component a, (or g) The values f = 468 21 8 332,4 MHz

I = 640 283 468,7 fm with an estimated relative standard uncertainty of 4,5 x lo-'' apply to the radiation of a He-Ne laser stabilized with an internal iodine cell having a cold- finger temperature of (16 f 1) "C and a frequency modulation width, peak to peak, of ( 6 f 1) MHz.

1.4 Absorbing molecule 12712, transition 11 - 5 , R(127), component a13 (or i) The values f = 473 612 214 705 kHz

1 = 632 991 398,22 fm with an estimated relative standard uncertainty of 2,5 x lo-'' apply to the radiation of a He-Ne laser with an internal iodine cell, subject to the conditions:

cell-wall temperature (25 f 5) "C; cold-finger temperature (1 5 f 0,2) "C; frequency modulation width, peak to peak (6 f 0,3) MHz; one-way intracavity beam power* (1Of 5 ) mW,

for an absolute value of the power shift coefficient < 1,4 kHz/mW. These conditions are by themselves insufficient to ensure that the stated standard uncertainty will be achieved. It is also necessary for the optical and electronic control systems to be operating with the appropriate technical performance. The iodine cell may also be operated under relaxed conditions, leading to the larger uncertainty specified in Appen- dix M 2 of the CCDM Report (1992), see page 525.

1.5 Absorbing molecule 12'12, transition 9-2, R(47), component a, (or 0)

* Note: The one-way intracavity beam power is obtained by dividing the output power by the transmittance of the output mirror.

Page 4: 0026-1394_30!5!011 Mise Definition Meter

The values .f= 489 880 354,9 MHz = 61 1 970 770,O fm

with an estimated relative standard uncertainty of 3 x IO-" apply to the radiation of a He-Ne laser stabilized with an iodine cell, within or external to the laser, having a cold-finger temperature of ( - 5 f 2) "C.

1.6 Absorbing molecule 12'12, transition 17- 1, P(62), component a, The values f = 520 206 808,4 MHz

i. = 576 294 760,4 fm with an estimated relative standard uncertainty of 4 x IO-'' apply to the radiation of a dye laser (or frequency-doubled He-Ne laser) stabilized with an iodine cell, within or external to the laser, having a cold-finger temperature of (6 =i 2) "C.

1.7 Absorbing molecule 12712, transition 26 - 0, R( 12) component a, The values ,f= 55 1 579 482,96 MHz

i=543516333,1 fm with an estimated relative standard uncertainty of 2,5 x IO-' ' apply to the radiation of a frequency stabilized He-Ne laser with an external iodine cell having a cold-finger temperature of (0 i 2) "C.

1.8 Absorbing molecule 12712, transition 43 - 0, P( 13), component a3 (or s) The values ,f= 582 490 603,37 MHz

I,= 514 673 466,4 fm with an estimated relative standard uncertainty of 2,5x IO-'' apply to the radiation of an Ar' laser stabilized with an iodine cell external to the laser, having a cold-finger temperature of ( - 5 =i 2) "C.

2. Radiations of Spectral Lamps

2.1 Radiation corresponding to the transition be- tween the levels 2p,, and 5d, of the atom of 86Kr The value E, = 605 780 210,3 fm with an estimated overall relative uncertainty of

Int. Poids et Mesures, 1960, 28, 71-72 and BIPM Comptes Rendus 11th Conf. Gin. Poids et Mesures, 1960, 85). 2.2 Radiations of atoms 86Kr, I9*Hg and '14Cd recommended by the CIPM in 1963 (BIPM Com. Cons. D i f . Mdtre, 1962, 3, 18-19 and BIPM Proc.- Verb. Com. Int. Poids et Mesures, 1963, 52, 26-27), with the indicated values for the wavelengths and the corresponding uncertainties.

APPENDIX M 2

Source Data for the List of Recommended Radiations, 1992

This Appendix has been derived from Document CCDM/92-3 taking into account the new data presen- ted at the 8th Meeting of the CCDM, 1992, and those of 1982 published in Appendix M 4 of the report of the 7th Meeting of the CCDM, 1982 [l]. The numbers in square brackets refer to thp Annotated Bibliogra- phy at the end of this Appendix.

Values of frequency (and wavelength) may be influenced by certain experimental conditions such as the pressure and the purity of the absorbing medium, the power transported by the beam through the medium and beam geometry, as well as other effects originating outside the laser itself and related to the servo-system. The magnitude of these influences remains compatible with the limits indicated by the uncertainty (one standard deviation) provided that the conditions of operation lie within the domain of the ensemble of those of the measurements referred to below. 1 . I Absorbing molecule CH,, transition v 3 , P(7). component FL2) (i. 3,39 pm) 1.1.1 Hyperfine structure resolved

Absolute frequency determinations, fCH4 = (88 376 181 000 + x) kHz

Year Laser Frequency CCDM x/kHz chain document

~ ~~~~~~

1991 Lebedev Phys. Inst. PTB 92-8a 600,29 1985-1986 Lebedev Phys. Inst. VNIIFTRI 92-9a 599,9 1989-1992 Lebedev Phys. Inst. VNIIFTRI 92-9a 600,ll 1989 PTB VNIIFTRI 92-9a 600,18 1992 PTB PTB 92- 14a 600,16 1988-1991 Inst. Laser Phys. IPL 92-23a 600.44

(IPL), Novosibirsk

Unweighted mean .f,,,,= 88 376 181 600.180 kHz

& 4 x [equivalent to three times the relative stan- dard uncertainty of 1,3 x IO-,] applies to the radia- tion emitted by a lamp operated under the conditions recommended by the CIPM (BZPM Proc.-Verb. Com.

Measurements whose uncertainties were larger than 200 Hz have not been taken into account In the calcu- lation of this mean. The relative standard uncertainty of one realization of 2,9 x was estimated using

Page 5: 0026-1394_30!5!011 Mise Definition Meter

the maximum deviation from the mean and rounded Adopted value: to 3 x Adopted value:*

fcH4=88 376 181 600,5 kHz standard uncertainty 2 kHz

fCH4=88376181600,18 kHz standard uncertainty 0,27 kHz relative standard uncertainty 3 x

relative standard uncertainty 2,3 x lo-".

From which:

&,=3 392231 397,31 fm standard uncertainty 0,08 fm relative standard uncertainty 2,3 x lo-".

From which:

IzcH4= 3 392 23 1 397,327 fm standard uncertainty 0,010 fm relative standard uncertainty 3 x

In 1983 [1.1.2-71, the value adopted by the CIPM wasf,,, = 88 376 18 1 608 kHz with an estimated over- -~~

I . 1.2 Hyperfine structure unresolved

Absolute frequency determinations, f&,4 = (88 376 181 000 + x ) kHz Year Institute Device References x/kHz

1983

1985

Mean value 1986/89/90/9 1

Mean value 1988190

Mean value 1987189

Mean value over 7 years

Mean value 1985186188

1986

Mean value over 7 years

Mean value 1988/89/91

1991

Inst. Laser Phys.** (Novosibirsk)

NRC (Ottawa)

NRC (Ottawa)

NRLM (Tsukuba)

PTB (Braunschweig)

VNIIFTRI (Moscow)

VNIIFTRI (Moscow)

VNIIFTRI (Moscow)

BIPM (Sevres)

BIPM (Sevres)

BIPM (Sevres)

Stationary device

Portable laser 2

Portable laser 3

Portable laser 1

CH, beam

Portable laser M 101

Portable laser P1

Portable laser PL

Portable laser B.3

Portable laser VB

Portable laser VNIBI

CCDM/92-23a also 1.1.2-1,2,3

CCDM/92-4a also 1.1.2-4

CCDM/92-4a also 1.1.2-4

1.1.2-4

1.1.2-5,6 also 1.1.2-4

CCDM192-9a also 1.1.2-4

CCDM/92-9a also 1.1.2-4

CCDM/92-9a

1.1.2-4

1.1.2-4

CCDM192-20a also 1.1.2-4

602,9

60 1,48

599,33

596,82

601,52

601,77

600,12

598,5

600,96

601,33

600.3

Unweighted mean fCH,=88376 181 600,46 kHz

Standard deviation of a determination 1,7 kHz. This is equivalent to a relative uncertainty of 1,92 x lo-", increased by the CCDM to 2,3 x lo-" to give an uncertainty of 2 kHz.

* This and subsequent adopted values are based upon the weighted or unweighted means but rounded taking into account the size of the uncertainties.

communicated to the BIPM as personal communications. If these two additional values arc taken into account the unweighted mean changes by only + 0. I 4 kHz.

the PTB to within its relative uncertainty of 2 parts in

** Two other values from this laboratory, obtained in 1991, were

*** A value obtained Irom subsequent measurements agreed with that of

all relative uncertainty of 1,3 x lo-'' (equivalent to three times the relative standard uncertainty).

1.2 Absorbing atom ,Oca, transition 3P, - 'So; AmJ = 0 (Ax 657 nm) The following values have been obtained for the ratio of the frequency fca of this transition to the frequency A (see Section 1.4): PTB 1989 [1.2-11

NRLM* ** 1991 [1.2-21 fca/h=0,96278395346(1d=7x lo-")

fca/A=0,9627839528 (1 f 1 x lo-') Weighted mean fCa/A = 0,962 783 953 45.

Page 6: 0026-1394_30!5!011 Mise Definition Meter

Taking into account the recommended value of ,f; = 473 612 214 705 kHz (Section 1.4) the following value of,fca is obtained:

jca = 455 986 240 477 kHz.

Given the large difference in the two uncertainty estimates, the CCDM considered it prudent to assume a relative standard uncertainty of 4,5 x lo-", the same as that determined for comparable measure- ments in Section 1.3. Adopted value:

fca = 455 986 240,5 MHz standard uncertainty 0,2 MHz relative standard uncertainty 4,5 x IO-''.

From which:

i.,, = 657 459 439,3 fm standard uncertainty 0,3 fm relative standard uncertainty 4,5 x IO-".

1.3 Absorbing molecule ''?I2, transition 8 - 5 , P(10), component a, (or g) (%%640 nm) The following values have been obtained for the fre- quency fa, of this transition: NPL 1984 [1.3-11

fag = 468 218 332 412 (1 i 1,0 x IO-") kHz

fa, = 468 218 332 303 (1 i 1,2 x 10- lo) kHz

fa, = 468 218 332 062 (1 i 4 , 6 x IO-'') kHz Weighted mean fa,=468 218 332358 kHz.

Given the small number of determinations, the CCDM considered it prudent to assume a relative standard uncertainty of 4,5 x IO-''. Adopted value:

NTM-CSMU-PTB 1985 [1.3-21

IMGC-BIPM 1985 11.3-31

fa,=468 218 332,4 MHz standard uncertainty 0,2 MHz relative standard uncertainty 4,5 x 10-lo.

From which:

i,, = 640 283 468,7 fm standard uncertainty 0,3 fm relative standard uncertainty 4,5 x 10- lo.

1.4 Absorbing molecule 12712, transition 11 - 5 , R(127). component a13 (or i ) (Ax633 nm) The recommended frequency or wavelength values are based on a phase-coherent frequency measurement at LPTF [CCDM/92-19a] using a laser of the TNM stabilized to component f. LPTF/ETCA/INM 1992 [1.4-11

J;=473612214705,4 (1 *2,5x IO-") kHz. Adopted value:

f, = 473 61 2 214 705 kHz standard uncertainty 12 kHz relative standard uncertainty 2,5 x lo-".

From which:

Ai=632991 398,22 fm standard uncertainty 0,02 fm relative standard uncertainty 2,5 x 10- '' For applications where relaxed tolerances, and

the resultant wider uncertainty range are acceptable, the coefficients detailed in the Annotated Bibliogra- phy [1.4-11 would lead to a standard uncertainty of about 50 kHz (or a relative standard uncertainty of 1 x lo-'') for a laser operated under the conditions recommended in 1983 [ 1.1.2-71.

In 1983, the value adopted by the CIPM was =473 612 214,8 MHz with an estimated overall rela-

(equivalent to three times tive uncertainty of 1 x the relative standard uncertainty).

1.5 Absorbing molecule I2?I2, transition 9 - 2, R(47), component a, (or 0) (Ax612 nm) The following values have been obtained for the fre- quency fa, of this transition: NPL 1982 [1.5-11

f,, = 489 880 354972 (1 f 1 x IO-'') kHz

fa,=489880354721 (1 f 2 , l x IO-")kHz

fa, =489880 355019 (1 f 8,4 x IO-") kHz

f,,=489880355055(1 f 3 , O x lO-")kHz

,f,,=489880354841(1*8,4x 1O-l')kHz

Unweighted mean fa, = 489 880 354 922 kHz. Other available values having relative standard

uncertainties higher than 3 x IO-' ' have not been used. The relative standard deviation calculated from the dispersion of these five values is 2,8 x lo-''. This value is rounded to 3 x 10- '' as the relative standard uncertainty.

Adopted value:

BIPM 1982 [1.5-11

PTB/BIPM 1986 [1.5-21

VNIIM 1989 [1.5-31

TNM 1991 [lS-41

fa, = 489 880 354,9 MHz standard uncertainty 0,15 MHz relative standarduncertainty 3 x IO- lo .

From which:

;la, = 61 1 970 770,O fm standard uncertainty 0,18 fm relative standard uncertainty 3 x lo-''.

In 1983, the value adopted by the CIPM was fa, = 489 880 355,l MHz with an estimated overall relative uncertainty of 1,l x lo-, (equivalent to three times the relative standard Uncertainty).

1.6 Absorbing molecule I2?I2, transition 17 - I , P(62), component a , (or 0) (Ax576 nm)

Page 7: 0026-1394_30!5!011 Mise Definition Meter

The following values have been obtained for the fre- quency f,, of this transition: NBS 1982 [1.6-11

fa, = 520 206 808 491 (1 f 1,5 X IO-") kHz

fa,=52O2068O8272(1f1 x lO-")kHz Unweighted mean fa, = 520 206 808 382 kHz. With this mean based on only two determina-

tions, the CCDM considered it prudent to assume an estimated relative standard uncertainty of 4 x lo-", closely equivalent to the difference between the two values. Adopted value:

NPL 1984 [1.6-21

f,, = 520 206 808,4 MHz standard uncertainty 0,2 MHz relative standard uncertainty 4 X 10-lo.

From which:

A,, = 576 294 760,4 fm standard uncertainty 0,2 fm relative standard uncertainty 4 X lo-''.

In 1983, the value adopted by the CIPM was fa, = 520 206 808,51 MHz with an estimated overall relative uncertainty of 6 x lo-'' (equivalent to three times the relative standard uncertainty). 1.7 Absorbing molecule 12712, transition 26- 0, R(12), component a, (A FZ 543,5 nm) The following values have been obtained for the fre- quency fa, of this transition: PTB 1991 [1.7-11

f,, = 551 579 483 029 (1 f 8,4 x lo-") kHz

f,,=551579482900(1f13x 10-l')kHz Unweighted mean fa, = 551 579 482 964 kHz. With this mean based on only two determina-

tions, linked by the same reference frequency, the CCDM considered it prudent to assume an estimated relative standard uncertainty of 2,5 x lo-'' closely equivalent to the difference between the two values. Adopted value:

NPL 1992 [1.7-21

fa, = 551 579 482,96 MHz standard uncertainty 0,14 MHz relative standard uncertainty 2,5 x

A,, = 543 5 16 333,l fm standard uncertainty 0,14 fm relative standard uncertainty 2,5 x lo-''.

From which:

1.8 Absorbing molecule 12712, transition 43 -0, P(13), component a3 (or s) (Ax515 nm) The following values have been obtained for the ratio of the frequency f., of this transition to the frequency A (see Section 1.4): NPL 1982 [1.8-11

S,,/A=1,22988931688(1fl x lo-'')

BIPM 1982 [1.8-11 fa3/x= 1,22988931688(1&2,5~ lo-'')

&,/A = 1,229 889 317 33 (1 f 7 x lo-")

fa3/A= 1,22988931744(1&7x lo-")

fa,/&= 1,229 889 317 36 (1 f 8 x lo-'')

fa& = 1,229 889 317 45 (1 f 8 x lo-") Unweighted mean &,/A = 1,229 889 3 17 22. Other available values having relative uncertain-

ties higher than 2,5 x lo-'' have not been used. Taking the recommended value

A = 473 612 214 705 kHz (Section 1.4),

PTB 1989 [1.8-21

PTB 1985 [1.8-31

PTB 1986 [1.8-41

PTB 1991 [1.8-51

the following value for fa, is obtained:

fa, = 582 490 603 371 kHz.

The relative standard uncertainty calculated from the dispersion of the six values is 2,2 x lo-", which the CCDM preferred to round up to 2,5 x lo-''. Adopted value:

fa, = 582 490 603,37 MHz standard uncertainty 0,15 MHz relative standard uncertainty 2,5 x lo-''.

A,, = 5 14 673 466,4 fm standard uncertainty 0,13 fm relative standard uncertainty 2,5 x 10-lo.

In 1983, the value adopted by the CIPM was fa, = 582 490 603,6 MHz with an estimated overall relative uncertainty of 1,3 x lo-' (equivalent to three times the relative standard uncertainty).

2.1 Radiation corresponding to the transition be- tween the levels 2p10 and 5d, of the atom of (A x 606 nm) The following value was obtained from (Ai)Kr x (l/AKr):

From which:

[2. 1-11 &/A= 1,04491924205.

Taking the recommended value of L=473612214705kHz (Section 1.4) and using the relative standard uncertainty as given in [2.1-11 of 1,3 x lo-,, the following value forfKr is obtained:

Adopted value: fKI = 494 886 516 41 5 kHz.

fKr = 494 886 5 16,4 MHz standard uncertainty 0,6 MHz relative standard uncertainty 1,3 x lo-,.

From which: AKI=605 780210,3 fm standard uncertainty 0,8 fm relative standard uncertainty 1,3 x lo-,.

Page 8: 0026-1394_30!5!011 Mise Definition Meter

In 1983, the value adopted by the CIPM was R,, = 605 780 210 fm with an estimated overall relative uncertainty of 4 x lo-' (equivalent to three times the relative standard uncertainty).

Annotated Bibliography

I .

1 . I .2-1

1.1.2-2

I . 1.2-3

1.1.2-4

1.1.2-5

1.1.2-6

1.1.2-7

1.2-1

1.2-2

BIPM Com. Cons. Di$ Metre, 1982, 7, M53- M64. Zakharyash V. F., Klementyev V. M., Nikitin M. V., Timchenko B. A., Chebotayev V. P., Absolute measurement of the frequency of the E- line of methane, SOV. Phvs. Tech. Phys., 1983,

Chebotayev V. P., Klementyev V. M., Nikitin M. V., Timchenko B. A., Zakharyash V. F., Comparison of frequency stabilities of the Rb standard and of the He-Ne/CH, laser stabilized to the E-line in methane, Appl. Phys.. 1985, B36,

Bagayev S. N., Borisov B. D., Gol'dort V. G. , Gusev A. Yu et al., An optical standard of time. Actometrya, 1983, 3, 37-58. Felder R., A decade of work on the determination of the frequency of the Fi methane transition at I. = 3,39 Fm, BIPM Rapport BIPM/92-8. Weiss C. O., Kramer G., Lipphardt B., Garcia E., Frequency measurement of a CH, hyperfine line at 88 THz/"Optical clock", IEEE J . Quant. Elec,tron., 1988, 24, IO, 1970-1972. Felder R., Robertsson L., Report on the 1989 PTB experiment, BIPM Rapport BIPMl92-7. BIPM Proc.-Verb. Com. Int. Poids et Mesures, 1983, 51, 25-28 and Documents concerning the new definition of the metre, Metrologia, 1984, 19,

Bonsch G.. Nicolaus A., Brand U,, Wellenlangen- bestimmung der Ca-Interkombinationslinie mit dem Michelson-Interferometer der PTB, PTB Mitteilungen. 1989, 99, 329-334 [Document CCDMi92-14iI. This paper gives:

23, 11, 1374-1375.

59-6 1.

165-166.

j .ca ' i i=l ,038 65461863 ( l f 7 x I O - " )

One calculates:

,fca/x = 0,962 783 95346(l i 7 x IO- ' I ) .

Ito N., Ishikawa J., Morinaga A., Frequency locking a dye laser to the central optical Ramsey fringe in a Ca atomic beam and wavelength mea- surement, J . Opt. Soc. Am., 1991, B8, 1388-1390 [Document CCDM/92-13d]. This paper gives:

j.,,=657,4594396(1 f 1 x 10-9)nm.

With the value adopted by the CIPM in 1983 [ I ] of

,fi=473 612 214,8 ( I f 3 , 4 x lo-'') MHz,

one can calculate:

fca/J=0,9627839528(1 f 1 x

1.3-1 Bennett S . J., Mills-Baker P., Iodine stabilized 640 nm helium-neon laser, Opt. Commun., 1984. 51, 322-324 [Document CCDM/92-12d]. From this paper, the ratio f J f i has been calcula- ted [Document CCDM/92-12a]. The value is:

fglfi=0,988 61 1 184 191 (1 f 1 x IO-") (1 standard deviation).

With the recommended value of

x=473612214705 (l*2,5 x IO-") kHz

(Section 1.4), one calculates:

a t an iodine pressure of 16 Pa (or a cold-finger reference temperature of 14,3"C) and a modula- tion width of 7 MHz. For a reference temperature of 16°C and a modulation width of 6 MHz, peak to peak, corrections of -23 kHz and + 8 kHz have to be applied to this value assum- ing pressure-dependent frequency shift of - 7,8 kHz/Pa and modulation-dependent shift of -7,6 kHz/MHz, similar to that reported in [ 1.3-21, giving:

fa9=468218332412(1 f 1,Ox IO- ' ' ) kHz.

fg=468218332427 ( l f 1 , 0 3 x lo-'') kHz

1.3-2 Zhao K. G., Blabla J., Helmcke J., '271,-stabili- zed 3He-22Ne laser at 640 nm wavelength, ZEEE Trans. Instrum. Meas., 1985, IM-34. 252-256 [Document CCDM/92- 10.2c]. This paper gives:

il a9 =640,2834688(1f I , l x lo-') nm (3 standard deviations).

Bonsch G., Simultaneous wavelength comparison of iodine-stabilized lasers at 515 nm, 633 nm and 640 nm, IEEE Trans. Instrum. Meas., 1985. IM-

This paper gives: 34, 248-25 1.

Li/ia9 = 0,988 61 1 183 86 (1 f 12 x 10- '') (1 standard deviation)

[Document CCDM/92-14a]. With the recommended value of

~ = 4 7 3 6 1 2 2 1 4 7 0 5 ( 1 f 2 , 5 x IO-") kHz

(Section 1.4) one calculates:

f a , = 468 21 8 332 270 (1 f 1.23 x I O - I o ) kHz

at a cold-finger temperature of 18°C (iodine pressure = 22,6 Pa). For a reference temperature of 16 "C (iodine pressure = 18,9 Pa) a correction of +29 kHz (using -7,8 kHz/Pa) has to be applied to this value. To account for the modula- tion width of 6,s MHz, peak to peak, and a modulation dependence of - 7,6 kHz/MHz, an additional correction of + 4 kHz has to be applied, giving:

fa,=468 218 332 303 ( 1 k I .2 x 10- I " ) kHz

Page 9: 0026-1394_30!5!011 Mise Definition Meter

1.3-3

1.4- 1

Document CCDM/92-6a and document CCDM/ 92-20a. These papers give:

1.q (17°c)/~al,(200c) = 1,011 520 341 04 (1 & 4,6 x 10- lo).

With the recommended value of

fi=473612214705 ( 1 f 2 , 5 x IO-") kHz

(Section 1.4) one calculates:

S,,=468 218 332 048 ( 1 & 4 , 6 ~ IO-'') kHz

at a cold-finger tempefature of 17 "C (iodine pressure = 20,7 Pa). For a reference temperature of 16 "C (iodine pressure = 18,9 Pa) a correction of + 14 kHz has to be applied to this value, giving:

f,,=468218332062(1f4,6x lo-'') kHz.

Acef O., Zondy J. J., Abed M., Rovera D. G., Gtrard A. H., Clairon A., Laurent Ph., Mille- rioux Y. , Juncar P., A CO, to Visible Optical Frequency Synthesis Chain: Accurate Measure- ment of the 473 THz He-Ne/I, Laser, Opt. Com- mun., 1993, 97, 29-34 and document CCDM/92- 19a. These papers give:

ff (INM) = (473 612 353 586 & 3,4 ) kHz. Taking into account the frequency difference fr -fi = (1 38 892 f 5) kHz between the components f and i [Appendix M3, Table 121, the frequency of component i of the INM laser is

J(INM)=473 612214694,O kHz.

Document CCDM/92-20a. This paper gives:

h w i z - ~ B I P M ~ = -(1194* 195) kHz.

Chartier J.-M., Robertsson L., Fredin-Picard S., Recent activities at BIPM in the field of stabilized lasers - Radiations recommended for the defini- tion of the meter, IEEE Trans. Instrum. Meas., 1991, 40, 181-184 [Document CCDM/92-20p]. Chartier J.-M., Robertsson L., Sommer M. et al., International comparison of iodine-stabilized helium-neon lasers at 1 = 633 nm involving seven laboratories, Metrologia, 1991, 28, 19-25 [Docu- ment CCDM/92-20q]. Chartier J.-M., Darnedde H., Frennberg M. et al., Intercomparison of Northern European 2712 stabilized He-Ne lasers at 1 = 633 nm, Metrologiu,

Document CCDM/92-20y. These papers show that the frequency of laser BIPM4 is very close to the mean. It was agreed that the CCDM should adopt an international value close to this average. By applying the corresponding frequency difference (CCDM/92-20a) f,(BIPM) -fi(INM) = 1 1,4 kHz, the value is

1992, 29, 331-339.

'

fi = 473 612 214 705,4 kHz.

The standard uncertainty was derived from the uncertainty of the frequency chain and uncertain- ties resulting from variations in operational para- meters listed below:

Iodine cell cell-wall temperature (25 f 5) "C [coefficient 0,5 kHz/'C] cold-finger temperature (1 5 f 0,2) "C [coefficient - 15 kHz/"C] uncertainty of the iodine purity

Frequency modulation width, peak to peak, (6 f 0,3) MHz [coefficient - 10 kHz/MHz]

One-way intracavity beam power, (10 f 5) mW [absolute value of the coefficient < 1,4 kHz/mW]

Uncertainty of the intervalfr-f; Uncertainty of the frequency difference

Uncertainty of the LPTF/ETCA/INM frequency measurement

Combined standard uncertainty Relative standard uncertainty

h N M - fBIPM

2,s kHz

3,O kHz

5,O kHz 3,O kHz

7,O kHz

5,O kHz 1,5 kHz

3,4 kHz

11,7 kHz 2,5 x IO-"

1.5-1 BIPM Com. Cons. DkJ MPtre, 1982, 7 , M 57 and Documents concerning the new definition of the metre, Metrologia, 1984, 19, 167. These papers give: NPL 1982 [I21

f,/fi= 1,03434907243 (1 * 1 x IO-'')

BIPM 1982 [24]

f0/~=1,03434907190 ( l f 2 , l x lo-").

Measurements whose relative uncertainties were larger than 3 x IO-'' have not been taken into account. From the values of these ratios and with the recommended value of

J =473 612214 705 (1 f 2,5 x IO-'') kHz

(Section 1.4), one calculates:

NPL 1982 f, orfa, =489 880 354 972 (1 & 1 x IO-") kHz BIPM 1982 fo orf., =489880354721(1*2,1 x IO-")kHz.

1.5-2 Bonsch G., Glaser M., Spieweck F., Bestimmung der Welleniangenverhaltnisse von Drei "1,- Stabilisierten Lasem bei 515 nm, 612 nm und 633 nm, PTB Jahresbericht, 1986, 161 [Document CCDM/92-14n] and Document CCDM/92-14a. These papers give:

1blS/1i =0,966 791 921 43 (1 *8 X lo-").

With the recommended value of

fi = 473 612 214 705 (1 f 2,5 x IO-") kHz

(Section 1.4), one calculates:

fblS =489880194701 ( 1 f 8 , 4 x IO-") kHz.

Page 10: 0026-1394_30!5!011 Mise Definition Meter

Using the frequency difference

fb l s -fa,=(-160318f3)kHz

[Appendix M 3, Table 81, one calculates:

fa, =489 880 355019(1 f 8,4 x IO-") kHz.

Vitushkin L. F., Zakharenko Yu. G., Yvanov I. V., Leibengardt G. I., Shur V. L., Measurements of wavelength of high-stabilized He-Ne/I, laser at 612 nm, Opt. Spektr., 1990, 68, 705-707. This paper gives:

1.5-3

j.,J& = 1,034 348 712 (1 f 3 x 10- lo).

With the recommended value of

f, = 473 612 214 705 (1 f 2,5 x lo-") kHz

(Section 1.4) and using the frequency difference f, -fi = (165 1 16 f 5) kHz between the compo- nents d and i [Appendix M 3, Table 121, one cal- cula tes:

,f, = 473 612379 821 (1 *2,7 x lo-") kHz

and

,f, or,fa,=489880355055(1 i3 ,O x IO-'O)kHz.

Himbert M., Bouchareine P., Hachour A., Juncar P., Millerioux Y., Razet A., Measurements of optical wavelength ratios using a compensated field sigmameter, IEEE Trans. Instrum. Meas., 1991,40,200-203 [Document CCDM/92-19g] and Document CCDM/92-19a. These papers give:

1.5-4

A or fa, , = (489 880 604 541 f 88) kHz.

With the values adopted by the CIPM in 1983 [l] off, = 473 612214,s MHz and the frequency diffe- rence f, -f, = (1 52 255 f 5) kHz [Appendix M 3, Table 121, one obtains:

fe=473 612 367 055 kHz and fa,,/fe= 1,034 349 267.

With the recommended value of

,fi=473612214705 ( 1 f 2 , 5 x lo-") kHz

(Section 1.4) and the frequency difference f, -A, one calculates:

fe=473 612 366 960 kHz and fa, , = 489 880 604 443 kHz

using the uncertainty on the ratio fa13/fe given in document CCDM/92-19g of * 8 x 10- ' I , one obtains:

fal,=4898806O4443 ( l f8 ,4xlO-")kHz.

Using the frequency difference

fa, -fa,, = ( - 249 602 f 10) kHz

between the components a, and a13 [Appendix M 3, Table 71 one calculates:

fa,=489 880 354 841 ( 1 i 8 , 4 ~ lO-")kHz.

1.6-1

1.6-2

1.7-1

1.7-2

NBS measurement of frequencies in the visible and near IR [Document CCDM/82-301. This document gave the value 520 206 808 547 (1 f 1,5 x 10-lo) kHz, which was reduced by 12 kHz at the request of the delegate at the 7th Meeting of the CCDM. The value must now also be multiplied by the ratio (88 376 181 600,5/88 376 181 608) to account for the 1992 respecification of the methane frequency (Section 1.1.2), giving:

,fa, = 520 206 808491 (1 f 1,5 x lo-") kHz.

Barwood G. P., Rowley W. R. C., Characteristics of a '271,-stabilized dye laser at 576 nm, Metrolo- gia, 1984, 20, 19-23 [Document CCDM/92-12c]. This publication supersedes Document CCDM/

This paper gives: 82-34.

f,,/fa13= 1,098 381 317 29 (1 f 1 x lo-").

With the recommended value of

fa13=4736i22i4705 ( l f 2 , 5 x I O - " ) kHz (Section 1.4) one calculates:

fa, = 520 206 808 272 (I * 1 x lO-'O)kHz

Documents CCDM/92-14a, CCDM/92-14j and Brand U., Ein iodstabilisiertes He-Ne Laser-Wel- lenlangennormal griiner Strahlung, PTB Bericht, 1991, Opt.34, 1-109 [Document CCDM192-1411. These papers give:

,?a9/Li = 0,858 647 265 30 (1 f 8 x 10- ") (1 standard deviation).

With the recommended value of

J;=473612214705 ( 1 f 2 , 5 x lo-") kHz (Section 1.4) one calculates:

fa,=551 579 483 037 ( 1 f 8 , 4 x lo-") kHz

at a cold-finger temperature of - 10°C (iodine pressure = 1,4 Pa). For a reference temperature of 0°C (iodine pressure=4,1 Pa), a correction of -8 kHz has to be applied to this value with the pressure dependence of - 3,O kHz/Pa (document CCDM/92-14j, p. 44), giving:

fa,= 551 579483 029 ( 1 f 8.4 x lo-") kHz. Document CCDM/92- 12a. This paper gives:

f b l o (O OC)/fi = 1,164624021 92 (1 & 12X lo-").

With the recommended value of

f;=473612214705 ( 1 i 2 . 5 ~ lo -") kHz

(Section 1.4) one calculates:

fblo=551 580162320 (1+12,3x lo-") kHz

at a cold-finger temperature of 0°C (iodine pressure = 4,l Pa). From the measured value of fb!o -fa9 = (679 420 i 15) kHz (standard uncer- tainty) [Appendix M 3, Table 51, one calculates:

fa,= 551 579482900(1 f 13 x lo-") kHz.

Page 11: 0026-1394_30!5!011 Mise Definition Meter

1.8-1

1.8-2

1.8-3

BIPM Com. Cons. 0125 M?tre, 1982, 7, M 57 and Documents concerning the new definition of the metre, Metrologia, 1984, 19, 168. These papers give: NPL 1982 [I21

fa,/L = 1,229 889 316 88 (1 f 1 x IO- lo)

BIPM 1982 [27l

f&= 1,229 889 316 88 (1 If: 2,5 x 10- lo).

Measurements whose relative uncertainties were larger than 2,5 x have not been taken into account. Bonsch G., Nicolaus A., Brand U., Wellenlangen- bestimmung der Ca-Interkombinationslinie mit dem Michelson-Interferometer der PTB, PTB Mitteilungen, 1989, 99, 329-334 [Document CCDM/92-14i]. This paper gives:

,(/&=0,813081 29594(1&7x IO-");

one calculates:

fa,/fi = 1,229 889 3 17 33 (1 i 7 x 10- I I ) .

Bonsch G., Simultaneous wavelength comparison of iodine-stabilized lasers at 515 nm, 633 nm and 640 nm, IEEE Trans. Instrum. Meas., 1985, IM-

This paper gives: 34, 248-251.

A/fa3 =0,813081295 87(1 f 7 x lo-");

APPENDIX M 3

Frequency Intervals between Hyperfine Components of Absorption Lines of Iodine

These tables replace those published in BIPM Com. Cons. D&J M&e, 1982, 7 , M65-M75 and Metrologia,

The notation for the hyperfine components is 1984, 19, 170-178.

that used in the bibliography.

Table 1. (unit: MHz; s: estimated standard uncertainty)

1.8-4

1.8-5

2.1-1

one calculates:

fJA= 1,229 889 31744 (1 * 7 x IO- ll).

Bonsch G., Glaser M., Spieweck F., Bestimmung der Wellenlangenverhaltnisse von drei 2712- stabilisierten Lasern bei 515 nm, 612 nm und 633 nm, PTB Jahresbericht, 1986, 161 [Document CCDM/92-14n]. This paper gives:

fi/fa, = 0,813 081 295 92(1 f 8 x IO-");

one calculates:

fa,/A=1,229 8 8 9 3 1 7 3 6 ( l f 8 ~ 1 0 - ~ ~ ) .

Bonsch G., Nicolaus A., Brand U., Wellenlangen- bestimmung fur den I,-stabilisierten He-Ne-Laser bei 544 nm, PTB Jahresbericht, 1991, 173-174 [Document CCDM/92-141]. This paper gives:

= 0,813 081 295 86 (1 f 8 x 10- ");

one calculates:

f,,h = 1,229 889 3 1745 (1 f 8 x lo-' ').

BIPM Com. Cons. D& Metre, 1982, 7, M 58 and Documents concerning the new definition of the metre, Metrologia, 1984, 19, 168.

fKr/A= 1,04491924205(1 i 1 , 3 x

The values adopted for the frequency intervals are the weighted means of the values given in the bibliography.

For the uncertainties, account has been taken of the uncertainties given by the authors; the spread in the different determinations of a single component; the effect of any perturbing components; and the difference between the calculated and the measured values.

12515 nm; '*'I2, transition 43-0, P(13)

Reference: component a3 (or s), f= 582 490 603,37 MHz [I] Component f ( a J -f (a31 S Component f (a,) -f (a,) S

a1 - 131,770 0,001 a1 1 393,962 0,002 a2 - 59,905 0,001 a12 43 5,599 0,003 a3 0 - a13 499,7 1 2 0,005 a4 76,049 0,002 a14 518 1 a5 203,229 0,005 a15 587,396 0,002

a8 338,699 0,005 a1 8 740 1 a9 349,7 17 0,005 742 1 a10 369 1 a20 757,631 0,010

a6 240,774 0,005 a16 616,756 0,005 a1 255,005 0,oo 1 a 1 7 660,932 0,005

a2 1 817,337 0,005 Ref. [2-51

Page 12: 0026-1394_30!5!011 Mise Definition Meter

Table 2. (unit: MHz; s: estimated standard uncertainty)

;.=SI5 nm; 1 2 7 1 2 , transition 43-0, R(15) L

0 componenta,, 43-0, P(13), lZ7I2,f=582490603,37 MHz[I]

0 f(b,)-f(al)=[283,835+0,005] MHz [3,6] 0 f (a , ) - f (a , )=[ - 131,77OfO,001] MHz (Table 1)

Component f (b,)-.f(b,)

0 69.739

129.155 217 335.828 368 396.442 47 1 412 500.627

S

0,005 0,005 0.005 1 0,005 I 0,005 1 1 0.005

f ( b J - f ( b 1 )

525,207 566,287 630,782 658,178 725,166 739,394 791,673 865,523 874,840 892,895 947,278

0,005 0,005 0,005 0,005 0,005 0.005 0,005 0,005 0,005 0.010 0,010

Ref. [ 3 . 4. 61

Table 3. (unit: MHz; s: estimated standard uncertainty)

i - 5 1 5 nm: 1 2 ' 1 2 , transition 58-1, R(98)

0 componenta,, 43-0, P(13), '271Z,f=582490603,37 MHz[l] 0 f(d6)-f(a3)=[-2100+1] MHz [7]

Component f (4) -f (d6) S Component f (d,) -f (ds) S

References

d , 1 - 413,488 0,005 d8 8 200,478 0,005 d2 2 - 359,553 0,005 d9 9 225,980 0,005 d 3 3 - 194,521 0,005 dl0 10 253 1 d4 4 - 159,158 0,005 dl1 11 254 1 d5 5

d, 7 172,200 0,005 dl4 14 481,574 o.uu3

- 105,769 0,005 d l , 12 3 14,13 1 0.005 d6 6 0 - d13 l 3 426,691 0.005

dl5 15 510,246 0,005 Ref. [4. 6. 71

Table 4. (unit: MHz; s: estimated standard uncertainty)

ix543.5 nm: '"1,. transition 26-0. R(12)

Reference: component a,, f= 551 579482,96 MHz [l]

Component f (a,) -f (as) S Component .f (a,) -f (as) S

a1 -482,822 0,015 a9 0 -

a2 - 230,450 0,O 15 a10 83,283 0,015 - 220,688 0,028 a1 1 193,769 0,033 a3

a4 - 173,917 0,015 a1 2 203,037 0,030 - 168,710 0,015 a 1 3 ' 256,166 0.023 a5 - 11 6,493 0,015 a14 269,370 0,017

a7 - 72,983 0,015 a15 373,511 0,015 - 53.724 0,O 15

a6

Ref. [8-131 533

Page 13: 0026-1394_30!5!011 Mise Definition Meter

Table 5. (unit: MHz; s: estimated standard uncertainty)

12543,5 nm; 12'12, transition 28-0, R(106)

Reference: component a,, 26-0, R(12), 12'12, f=551 579482,96 MHz [l]

Component f (b") -f (as) S Component f (b,) -f (as) 5

bl 105,637 0,O 16 b9 564,849 0,015 b2 358,943 0,015 b10 679,420 0,015 b3 387,823 0,O 16 bll 804,246 0,020 b4 397,265 0,015 b12 811,724 0,020 b5 425,741 0,020 b13 833,939 0,020 b6 506,727 0,015 b14 842,064 0,020 b7 519,996 0,017 bl5 966,655 0,021 b8 5 5 1,66 1 0,021

Ref. [8-13]

Table 6. (unit: MHz; s: estimated standard uncertainty)

l e 5 7 6 nm; 12'12, transition 17-1, P(62)

Reference: component a, (or o), f= 520206808,4 MHz [l]

Component f ( a , ) - f ( a J S Component f ( a 3 -f (all 5

a1 0 0 a2 n 275,03 a3 m 287,05 a4 1 292,57 a5 k 304,26 a6 j 416,67

- a7 i 4283 1 0,02 a, h 440,17 0,02 a9 g 452,30 0,02 a10 f 579,43 0,02 - - - 0,02 a1 5 a 869,53

0,02 0,02 0,02 0,03

0,03 -

Ref. [14, 151

Table 7. (unit: MHz; s: estimated standard uncertainty)

12612 nm; 12'12, transition 9-2, R(47)

Reference: component a, (or o), f= 489 880 354,9 MHz [ 11

Component f (a,) -f (a,) S Component f (a,) -f (a,) 5

249,602 0,o 1 a2 t - 333,97 0,o 1 a1 2

a3 s -312,46 0,02 3 1

a4 r - 86,168 0,007 a14 284,304 0,01

a6 P - 36,773 0,003 a16 384,66 0,o 1 a7 0 0 - e 403,764 0,02 a8 n 8 1,452 0,003 a18 d 429,993 0,02 a9 m 99,103 0,003 a19 C 527,165 0,02 a10 1 107,463 0,005 a20 b 539,222 0,02

a2 1 a 555,093 0,02

a1 -357,16 0,02 a1 1 k 119,045 0,006 j 2 1 9,602 0,006

a5 4 - 47,274 0,004 a1 5 g 358,37 0,03

Ref. [16, 18, 19, 21, 241

Page 14: 0026-1394_30!5!011 Mise Definition Meter

Table 8. (unit: MHz; s: estimated standard uncertainty)

i.2612 nm: '"I2, transition 11-3, P(48)

Reference: component a,, 9-2, R(47), 12712r f=489880354,9 MHz [ I ]

Component f (b , ) -/(a7, 12712) S Component f (b , ) - f (a , , l Z 7 I 2 ) S

b, - 1 034,75 0,07 b9 - 579,91 0,o 1 b2 - 755.86 0,05 bl, -452,163 0,005 b3 - 748,28 0,03 bll -316,6 0,4 b4 - 738,35 0,04 b12 -315,8 0,4 b5 - 731,396 0,006 b,, - 297,42 0,03 b6 - 616,Ol 0,03 b,4 - 294,72 0,03 b. - 602,42 0,03 bl5 - 160,318 0,003

Ref. [16. 18. 19. 21. 241

b8 - 593,98 0,o 1

Table 9. (unit: MHz: s: estimated standard uncertainty)

1-612 nm: 12'12, transition 15-5, R(48)

Reference: component a,, 9-2, R(47), lZ7I2, f=489 880354,9 MHz [I]

Component f (c , ) - f (a , , 12'12) S

C 1 - 513,83 0,03 c2 - 237,40 0,03 c3 - 228,08 0,03 c4 - 218,78 0,03 c5 - 209,96 0,03 '6 - 97,74 0,03 C8 - 73,92 0,03 c9 - 59,30 0,03 Ref. [I61

Table 10. (unit: MHz; s: estimated standard uncertainty)

Az612 nm; 12912, transition 10-2, P(110)

Reference: component a7, 9-2, R(47), '''I2, f=489880354,9 MHz [I]

Component f (a , ) - f (a , , 12712) S Component f W -f(a, , lZ712) s

a , b' - 376,29 0,05 a1 5 n 1,61 0,20

a3 - 230,79 0,20 7 1 15,82 0,20 a4 Y - 229,40 0,20 a18 25,32 0,lO

j 49,44 0.15 54,66 0,20 a6 w - 149,37 0,lO a20 1

a7 v - 134,68 0,lO a2 1 h 69,02 0,lO a8 - 130,98 0,lO a22 g 74,47 0.15 a9 t - 116,67 0,05 a23 f 110,60 0,lO a10 s - 96,26 0,20 a 2 4 e 153,09 0,20 a11 r - 90,70 0,20 a2 5 d 154,70 0,20 a12 q - 84,12 0,20 a 2 6 C 163,98 0,20 a13 P - 77,79 0,20 7 b 166,22 0,20 a14 - 72,70 0,20 a28 a 208,29 0,lO

a2 a' - 244,76 0,lO a16 m 10,63 0,15

a5 x -216,lO 0,05

Ref [27. 75. 261

Page 15: 0026-1394_30!5!011 Mise Definition Meter

Table 11. (unit: MHz; s: estimated standard uncertainty)

1,=612 nm; 12912, transition 14-4, R(113)

Reference: component a7, 9-2, R(47), 12712, f=489880354,9 MHz [l]

-410,4 - 390,O - 383,9 - 362,8 - 352,9 - 346,4 - 330,O - 324,9 - 304,7

b28 i b29 h b30 g

b32 e b33 d b34 C

b35 b b36 a

b31

- 289,4 -273,l - 255,7 - 247 - 237 - 223 - 198,6 - 193,l - 187,O

Ref. [25, 261

Table 12. (unit: MHz; s: estimated standard uncertainty)

2x633 nm; 12'12, transition 11-5, R(127)

Reference: component a I 3 (or i), f=473612214,705 MHz [ I ]

Component f (an) -f 3) S Component f (a,) -f (a1 3) S

j a3 s - 558,9 O S a13 1

a4 r - 320,73 0,Ol a14 21,939 0,005

a2 t - 582,9 095 a12 - 21,565 0,005 - 0

a5 9 - 292,69 0,05 a1 5 g 125,694 0,005 a6 P - 290,29 0,05 a16 138,892 0,005 a7 0 - 263,20 0,Ol a 1 7 e 152,255 0,005 a8 n - 162,814 0,005 a18 d 165,116 0,005

a10 1 - 137,994 0,005 a20 b 291,100 0,005 a11 k - 129,950 0,005 a2 1 a 299,93 1 0,005 Ref. [27-391

a9 m - 153,801 0,005 a19 C 283,006 0,005

Table 13. (unit: MHz; s: estimated standard uncertainty)

13633 nm; 12712, transition 6-3, P(33)

References 0 componenta,,, 11-5, R(127), 12712,f=473612214,705 MHz [ I ] 0 f(b2,)-f(a13, 11-5, R(127)) = [ - 39333 &0,02] MHz [40]

Component f (bd- f (b21) S Component f@") -f (b2l) S

bl U - 922,57 0,02 bll k - 439,02 0,02 b2 t - 895,06 0,02 b12 j - 347,36 0,02 b3 s - 869,68 0,02 b13 i -310,28 0,02 b4 r - 660,52 0,02 b14 h - 263,60 0,02 b5 9 -610,71 0,02 bl 5 g -214,56 0,02 b6 P - 594,Ol 0,02 b16 - 179,30 0,02 b? 0 - 547,42 0,02 bl 7 e - 153,94 0,02 b8 n - 487,08 0,02 bl8 d - 118,22 0,02 b9 m - 461,27 0,02 bl9 C - 36,72 0,02

- 453,23 0,02 b2o b - 21,98 0,02 b10 1 - b2 1 a 0

Ref. [35, 40,-421

Page 16: 0026-1394_30!5!011 Mise Definition Meter

Table 14. (unit: MHz; s: estimated standard uncertainty)

i z 6 3 3 nm; lZ9I2, transition 8-4, P(54)

0 componenta,,, 11-5, R(127), 1271z,f=473612214,705 MHz [l] 0 f(a28,8-4,P(54))-f(a13, 11-5, R(127))=[95,90*0,04] MHz [43-451 References

Component f(a,)-f(a, ,) S Component fb") -f(a2s) S

a, z' - 449 2 5 j ' - 206,05 0 2 a3 Y J - 443 2 a16 i' - 197,73 0,08 a, x' - 434 2 a17 h' - 193,23 0,08 a5 w' - 429 2 a18 g' - 182,74 0,03

a, U' - 345,l 1 a20 e' - 155,72 0,05 a, t ' - 340,8 1 a2 1 d ' - 138,66 0,05 a, s' - 325,4 1 a2 2 C' - 130,46 0,05 a10 r' - 307,O 1 a2 3 - 98,22 0.03

a6 V I - 360,9 1 a19 f ' - 162,61 0,os

a11 q' - 298,2 1 a24 ''1 - 55,6* 0.5 a12 P' - 293,l 1 a25 n1

a14 n' - 282,7 1 a 2 7 m1 - 41,24 0,os a13 - 289,7 1 a26 m2 - 43,08 0,03

- a28 k 0 *Also component m, of 6-3, P(33), 1271'291.

Ref. [46-511

Table 15. (unit: MHz; s: estimated standard uncertainty)

i.2633 nm; lz9I2, transition 12-6, P(69)

References 0 componenta,,, 11-5, R(127), 12712,f=473612214,705 MHz [l] 0 , f (aZ8, 8-4, P(54)) -f (al3, 11-5, R(127))= [95,90+0,041 MHz [43-451

Component f ( W - f ( a Z 8 , 1291z) S Component f(b,)-f(a,,, lz9I2) S

b, b"' 99,12 0,05 b20 q' 507,66 0,lO b, a"' 1 16,08 0,os b 2 2 Of 535,65 0,lO b3 z" 132,05 0,05 b2 3 n' 536,59 0,lO

b5 r" 256,90* 0,os b25 1' 560,94 0,os b6 q" 264,84** 0,os b26 kt 566,19 0,os

b, s" 234,54 0,05 b24 m' 545,06 0,05

b, P" 288,06 0,05 b 2 7 j ' 586,27 0,03 b, k" 337,75 0,1 b28 i' 601,78 0,03

b29 h' 620,85 0,03 0,5 b30 g' 632,42 0,03 b9 I 1 358,8

373,80 0,05 b3 1 f ' 644,09 0,03 0,03 b, , d " 387,24 0,os b32 e' 655,47

b10 1 2

bl , f*'

b,, c" 395,3 0 2 b33 d ' 666,8 1 0,lO b,, b" 402,45 0,05 b34 C' 692,45 0,lO b l , a" 407 4 b35 b' 697,96 0,lO bl, z' 412,37 0,05 b36 a' 705,43 0,lO bl, Y' 417 4 * Also component m,, of 6-3, P(33), 1271'291

** Also component mI9 of 6-3. P(33), 12'I'291. ~~~

Ref. [46, 49, 511

Page 17: 0026-1394_30!5!011 Mise Definition Meter

E .s Table 16. (unit: MHz; s: estimated standard uncertainty)

1 ~ 6 3 3 nm; 12'12, transition 8-4, P(60)

0 componenta,,, 11-5, R(127), lZ7I2, f=473612214,705 MHz [l] 0 f(a2,,8-4,P(54))-f(a,,, 11-5, R(127))=[95,90f0,04] MHz [43-451

f(d,) - f (a28r 12'12)

References

Component S

d23 A' - 555

d24 -511 d25 } d28 . K ' - 456

Ref. [46]

Table 17. (unit: MHz; s: estimated standard uncertainty)

2.~633 nm; ,''I,, transition 6-3, P(33)

0 componenta,,, 11-5,R(127), l2'I2, f=473612214,705 MHz [l] 0 f(e2)-f(a,,, 11-5, R(127))=[988,29*0,20] MHz [52-541

Component f (e,) -f (e2) S Component f (e,) -f (e21 5

- 19,82 0,05 e9 1 239 2 e2 B 0 - e10 J 249 2 e1 A

e3 c 17,83 0,03 e1 1 K 260 2 e4 D 102,58 0,05 e12 1 269 3 e5 E 141 2 e13 M 273 4 e6 157 2 e14 N 287 4 e7 G 191 2 el 5 0 293 5 e8 H 208 2 e16 P 295 5

References

Q 306 6 Ref. [46, 51-53]

Table 18. (unit: MHz; s: estimated standard uncertainty)

Ax633 nm; 12711291, transition 6-3, P(33)

0 componenta,,, 11-5, R(127), 12712,f=473612214,705 MHz [l] 0 f(a28, 8-4,P(54))-f(a1,, 11-5, R(127))=[95,90+0,04] MHz [43-45]

Component f ( m J -f(a2,, 12912) S Component f ( m J -f(a,,, 1291z) 5

References

- 254 - 233,71 -226,14 - 207 - 117,79 - 87,83 - 78,2 - 56* - 17,55

12,04 15,60 33,16 39,9 41,3 50J2 54,06 69,33 75,06

3 0,lO 0,lO 1,5 0,lO 0,15 O S 1 0,05 0,03 0,03 0,03 0 2 092 0,03 0,lO 0,03 0,03

m26

m27

m28 m29

m30

m3 1

m32

m3 3

m34 m35

m3 7

m38

m39

m36

m40

m4 1

m42

m43

U" t" r" q" 0" n" m" 1 " k;' k;' j "

g" e" d " X'

W' V'

hit

212,80 2 19,43 256,90 264,84 299,22 3 12,43 324,52 333,14

337,7

345,05 362,18 369,78 380,37 385 43 1 445 456.7

0,05 0,05 0,10 0,05 0,05 0,05 0,03 0,03

0,5 0,05 0,10 0,03 0,03 4 4 4 O S

(continued on page 539)

Page 18: 0026-1394_30!5!011 Mise Definition Meter

Table 18 icontinuedfrom page 5381. (unit: MHz; s: estimated standard uncertainty)

i . ~ 6 3 3 nm; 12'112,1, transition 6-3, P(33)

References componenta,,, 11-5, R(127), 12712,f=473612214,705 MHz [ l ] 0 f(a28, 8-4,P(54))-f (a l3 , 11-5, R(127)) =[95,90* 0,041 MHz [43-451

Component .f(mJ-f(a2,, 12912) S Component f(m,)-f(a28, 12912) S

{ m19 b 80,OO m20 a 95,OO m21 Yt1 160,74 m,, x" .199,52 mZ3 w" 205,06

m24 ";' 1 207,9 m2s v;'

0,03 0,03 0,03 0,03 0,05

0.5

m44 477,17 m45 t' 486,43 m46 sf 495,16 m47 r' 503,55 m48 P' 515,ll

0,05 0,05 0,05 0,05 0,05

* Also components aZ4 and aZ5 of 8-4, P(54), '2912.

Ref. [34. 46, 49-51]

Table 19. (unit: MHz; s: estimated standard uncertainty)

1 ~ 6 4 0 nm; ' 2 7 1 2 , transition 8-5, P(10)

Reference: component a, (or g), f=468 218 332,4 MHz [ l ]

Component f (a,) -.f (a,) S Component f (a,) -f (as) S

- 495,4 -241,s - 233,O - 177,8 - 175,2 - 130,8 - 82,45 - 61,85

0,4 0,7 0,35 1,3 0,6 0,04 0,03 0,14

a9

a10 a1 1

a12 a13

a14

0 77,84

186,22 199,51 256,6 272,75 374,O

- 0,03 0,07 0,07 0,15 0,07 0 2

Ref. [9, 19) and [55-621

Table 20. (unit: MHz; s: estimated standard uncertainty)

i . z640 nm: 12'1,, transition 8-5, R(16)

Reference: component a,, 8-5, P(10), 12'12. f=468218332,4 MHz [ l ]

Component .f (b") -f (a,) S

bl 62,83 0,o 1 b, 329,8 0 2 b3 335,99 0,02

Ref. [9, 191 and [55-621

Bibliography

1. Recommendation M 1 (BIPM Com. Cons. Dkj: Metre, 8th Meeting, 1992) has been adopted by the Comite International des Poids et Mesures at its 81st Meeting as Recommendation 3 ((3-1992).

2 . Hackel L. A., Casleton K. H., Kukolich S. G., Ezekiel S . , Observation of Magnetic Octupole and Scalar Spin- Spin Interactions in I, Using Laser Spectroscopy, Phys. Rea. Lett . , 1975, 35, 568-571.

3. Camy G., Thesis, Universite Paris-Nord, 1979. 4. Borde J. C., Camy G., Decomps B., Descoubes J.-P.,

High Precision Saturation Spectroscopy of "'I, with

Argon Lasers at 5145 A and 5017 A: Main Resonanccs, J . Phys., 1981. 42, 1393-1411.

5 . Spieweck F., Glaser M., Foth H. J., Hyperfine Struc- ture of the P(13), 43-0 Line of 12'1, at 514,5 nm, European Conference on Atomic Physics, Apr. 6-10, 1981, Heidelberg. In Europhysics Conference Abstracts, 5A, Part I, 325-326.

6. Spieweck G., personal communication. 7. Foth H. J., Spieweck F., Hyperfine Structure of the

R(98), 58-1 Line of '*'I2 at 514,5 nm, Chem. Phys. Lett . , 1979, 65, 347-352.

8. Chartier J.-M., Hall J. L., Glaser M., Identification of the I,-Saturated Absorption Lines Excited at 543 nm with the External Beam of the Green He-Ne Laser, Proc. CPEM'86, 1986, 323.

Page 19: 0026-1394_30!5!011 Mise Definition Meter

'4; c;

2 3

540

9. Glaser M., Hyperfine Components of Iodine for Opti- cal Frequency Standards, PTB-Bericht, 1987, PTB-Opt- 25.

10. Chartier J.-M., Fredin-Picard S., Robertsson L., Frequency-Stabilized 543 nm He-Ne Laser Systems: a New Candidate for the Realization of the Metre?, Opt. Commun., 1989, 74, 87-92.

1 1, Brand U,, Ein iodstabilisiertes He-Ne Laser Wellen- langennormal gruner Strahlung, PTB-Bericht, 1991,

12. Simonsen H., Poulsen O., Frequency Stabilization of an Internal Mirror He-Ne Laser at 543,4 nm to 1,- Saturated Absorptions, Appl. Phys., 1990, B50, 7-12.

13. Fredin-Picard S., Razet A., On the Hyperfine Structure of 12712 Lines at the 543 nm Wavelength of the He-Ne Laser, Opt. Commun., 1990, 78, 149-152.

14. Baird K. M., Evenson K. M., Hanes G. R., Jennings D. A., Petersen F. R., Extension of Absolute Frequency Measurements to the Visible: Frequency of Ten Hyper- fine Components of Iodine, Opt. Lett., 1979, 4, 263- 264.

15. Barwood G. P., Rowley W. R. C., Characteristics of a '271,-Stabilized Dye Laser at 576 nm, Metrologia, 1984,

16. Razet A., Millerioux Y., Juncar P., Hyperfine Structure of the 47R(9-2), 48P(11-13) and 48R(15-5) Lines of '"I2 at 612 nm as Secondary Standards of Optical Frequency, Metrologia, 1991, 28, 309-316.

17. Cerez P., Bennett S. J., Helium-Neon Laser Stabilized by Saturated Absorption in Iodine at 612 nm, Appl.

18. Glaser M., Properties of a He-Ne Laser at 1=612 nm, Stabilized by Means of an External Iodine Absorption Cell, IEEE Trans. Instrum. Meas., 1987, IM-36, 604- 608.

19. Bertinetto F., Cordiale P., Fontana S., Picotto G. B., Recent Progresses in He-Ne Lasers Stabilized to '''II,, IEEE Trans. Instrum. Meas., 1985, IM-34, 256-261.

20. Bertinetto F., Cordiale P., Picotto G. B., Chartier J.- M., Felder R., Glaser M., Comparison Between the '271,-Stabilized He-Ne Lasers at 633 nm and at 612 nm of the BIPM and the IMGC, IEEE Trans. Instrum. Meas., 1983, IM-32, 72-76.

21. Glaser M., Hyperfine Components of Iodine for Opti- cal Frequency Standards, PTB-Bericht, 1987, PTB-Opt- 25.

22. Dschao K., Glaser M., Helmcke J., I,-Stabilized He- Ne Lasers at 612 nm, IEEE Trans. Instrum. Meas.,

23. Bertinetto F., personal communication, poster pre- sented at CPEM'84, Delft, 1984.

24. Robertsson L., Lasers a He-Ne asservis sur I'absorption saturke de I'iode en cuve interne ou externe a 1=612 nm, BIPM Proc.-Verb. Com. Int. Poidset Mesu- res, 1992, 60, and Document CCDM/92-20a (BIPM).

25. Ciddor P. E., Brown N., Hyperfine Spectra in Iodine 129 at 612 nm, Opt. Commun., 1980, 34, 53-56.

26. Glaser M., Dschao K., Foth H. J., Hyperfine Structure and Fluorescence Analysis of Enriched 12912 at the 612 nm Wavelength of the He-Ne Laser, Opt. Com- mun., 1981, 38, 119-123.

27. Rowley W. R. C., Wallard A. J., Wavelength Values of the 633 nm Laser, Stabilized with 1271,-Saturated Absorption, J. Phys. E., 1973, 6, 647-651.

PTB-Opt-34.

20, 19-23.

Opt., 1979, 18, 1079-1083.

1980, IM-29, 354-357.

28. Hanes G. R., Baird K. M., De Remigis J., Stability, Reproducibility, and Absolute Wavelength of a 633 nm He-Ne Laser Stabilized to an Iodine Hyperfine Compo- nent, Appl . Opt., 1973, 12, 1600-1605.

29. Cerez P., Brillet A., Hartmann F., Metrological Propcr- ties of the R(127) Line of Iodine Studied by Laser Saturated Absorption, IEEE Trans. Instrum. Meas..

30. Bayer-Helms F., Chartier J.-M., Helmcke J . , Wallal-d A. J., Evaluation of the International Intercomparison Measurements (March 1976) with '271,-Stabilized He- Ne Lasers, PTB-Bericht, 1977, Me-17, 139-146.

31. Bertinetto F., Rebaglia B. I., Performances of IMGC He-Ne (Iz7I,) Lasers, Euromeas, 77, ZEEE, 1977, 152.

32. Tanaka K., Sakurai T., Kurosawa T., Frequency Stabi- lity and Reproducibility of an Iodine Stabilized He-Ne Laser, Jap. J . Appl. Phys., 1977, 16. 2071-2072.

33. Blabla J., Smydke J., Chartier J.-M., GlBser M., Com- parison of the '271,-Stabilized He-Ne Lasers at 633 nm Wavelength of the Czechoslovak Institute of Metrology and the Bureau International des Poids et Mesures, Metrologia, 1983, 19, 73-75, and Document CCDM/82- 26.

34. Document CCDM182- 1 Ya (Means of measuremcnts made during the international comparisons between the BIPM and LHA, NPL, PTB, IMGC, INM, NBS,

35. Morinaga A., Tanaka K., Hyperfine Structure in the Electronic Spectrum of lZ7I2 by Saturated Absorption Spectroscopy at 633 nm, Appl. Phys. Lett., 1978, 32,

36. Blabla J., Bartos M., Smydke J., Weber T., Hantke D., Phillip H., Sommer M., Tschirnich J., Frequency Intervals of HFS Components of an '271;-Stabilized He-Ne Laser at 633 nm Wavelength, ASMW Metrolo- gische Abhandlungen, 1983, 3, 4.

37. Charticr J.-M., Results of International Comparisons Using Methane-Stabilized He-Ne Lasers at 3,39 pm and Iodine Stabilized He-Ne Lasers at 633 nm, ZEEE Trans. Instrum. Meas., 1983, IM-32, 81-83.

38. Charticr J.-M., Robertsson L., Fredin-Picard S., Recent Activities at BIPM in the Field of Stabilized Lasers - Radiations Recommended for the Definition of the Meter, IEEE Trans. Instrum. Meas., 1981, 40, 181-184.

39. Petru F., Popela B., Vesela Z., Iodine Stabilized He- Ne Lasers at 1=633 nm of a Compact Construction, Metrologia, 1992, 29, 301 -307.

40. Razet A., Gagniere J., Juncar P., Hyperline Structure Analysis of the 33P (6-3) Line of lZ7I2 at 633 nm Using a Continuous-Wave Tunable Dye Laser, Metrologia, 1993, 30, 61-65. (This paper gives

1974, IM-23, 526-528.

38-39.

NIM, CSMU, 1974-1981).

114-1 16.

f b 2 , - fa ,6(or/)= -[532,425*0,0151 MHz

using the frequency difference

A,6-,fA,3 = [138,892%0,005] MHz [Table 121,

one calculates:

. f b 2 , - f a , , = -[393,533fO.O161MH/.)

Page 20: 0026-1394_30!5!011 Mise Definition Meter

41. Hanes G. R., Lapierre J., Bunker P. R., Schotton K. C., Nuclear Hyperfine Structure in the Electronic Spectrum of 1 2 7 1 2 by Saturated Absorption Spectros- copy, and Comparison with Theory, .I. Mol. Spectrosc..

42. Bergquist J. C., Daniel H. U., A Wideband Frequency- Offset Locked Dye Laser Spectrometer Using a Schottky Barrier Mixer, Opt. Commun., 1984, 48, 327- 333.

43. Rowley W. R. C., Document CCDMi82-2 (measure- ments made at t l Z 9 , = t12712=80C) .

44. Chartier J.-M., Determination et reproductibilite de l'intervalle de frequence (12912, k)-(Iz7I,, i), BIPM Rapport BIPM-82/10 (measurements made at t , 2912

45. Chartier J.-M., Lasers a He-Ne asservis sur l'absorption saturee de l'iode en cuve interne a 2. = 633 nm, BIPM Proc.- Verb. Com. Int. Poids et Mesures, 1989, 52, 44.

1971, 39, 506-515.

- - t 1 2 , 1 2 = 8 "C).

46. Gerlach R. W., Thesis, University Cleveland, 1975. 47. Knox J. D., Yoh-Han Pao, High-Resolution Saturation

Spectra of the Iodine Isotope 12'1, in the 633 nm Wave- length Region, Appl. Phys. Lett., 1971, 18, 360-362.

48. Tesic M., Yoh-Han Pao, Theoretical Assignment of the Observed Hyperfine Structure in the Saturated Absorp- tion Spectra of '"I2 and 1271'291 vapors in the 633 nm Wavelength Region. J . Mol. Spectrosc., 1975, 57, 75- 96.

49. Magyar J. A.. Brown N.. High Resolution Saturated Absorption Spectra of Iodine Molecules lZ9I,, 12911271, and '''I2 at 633 nm, Metrologia, 1980, 16, 63-68.

50. Chartier J.-M.. Mesures d'intervalles entre composantes hyperfines de I,, BIPM Proc.-Verb. Com. Int. Poids et Mesures, 1978, 46, 32-33.

51. Chartier J.-M., Mesures d'intervalles de frequence entre composantes hyperfines des transitions 8-4, P(54); 12- 6. P(69); 6-3. P(33) de 12912 et 6-3, P(33) de 12711291, BIPM Rapport BIPM93-3. and Document CCDMI92- 20a (BIPM).

52. Schweitzer Jr. W. G., Kessler Jr. E. G., Deslattes R. D.. Layer H. P., Whetstone J. R., Description, Per- formances, and Wavelengths of Iodine Stabilized Lasers. Appl. Opt., 1973, 12, 2927-2938.

53. Helmcke J., Bayer-Helms F., He-Ne Stabilized by Satu- rated Absorption in I,, IEEE Trans. Instrum. Meas., 1974, IM-23, 529-53 1 (measurements reduced to

t 1 2 9 1 2 = t 1 2 7 1 2 = 2 "'1'

54. Chartier J.-M., Lasers a He-Ne asservis sur l'absorption saturee de l'iode en cuve interne ( i=633 nm), BIPM Proc.-Verb. Com. Int. Poids et Mesures, 1985, 53, 50.

55. Bennett S. J., Cerez P., Hyperfine Structure in Iodine at the 612 nm and 640 nm Helium-Neon Wavelengths, Opt. Commun., 1978. 25, 343-341.

56. Dschao K., Jie X., Cheng-Yang L., Han-Tian L., Hyperfine Structure in Iodine Observed at the 612 nm and 640 nm 3He-22Ne Laser Wavelengths, Acta Metro- logia Sinica, 1982, 3, 322-323 and Document CCDM: 92- 10-2a (NIM).

57. Zhao K., Hua L., Hyperfine Structure of Iodine at 640 nm 3He-22Ne Laser Wavelength and Identification, Acta Metrologica Sinica, 1983, 3, 673-677 and Docu- ment CCDM/92-10-2d (NIM).

58. Bennett S . J., Mills-Baker P., He-Ne Stabilized 640 nm Helium-Neon, Opt. Commun., 1984, 51, 322-324.

59. Zhao K. G., Blabla J., Helmcke J., 1271,-Stabilized 3He-22Ne Laser at 640 nm Wavelength, IEEE Trans. Instrum. Meas., 1985, IM-34, 252-256 and Documents CCDM/92-10a and 10-2c (NIM).

60. Zhao K., Hua L., Analysis and Calculation of Hyper- fine Lines of Iodine Molecule, Acta Metrologica Sinica, 1985, 6, 83-88 and Document CCDM/92-10-2c (NIM).

61. Glaser M., Identification of Hyperfine Structure Com- ponents of Iodine Molecule at 640 nm Wavelength, Opt. Commun., 1985, 54, 335-342.

62. Zhao K., Cheng-Yang L.. Hua L., Jie X., He W., Investigations of '271,-Stabilized He-Ne Laser at 640 nm, Acta Metrologica Sinica, 1987, 8, 88-95 and Document CCDM/92- IO-2f (NIM).

Received on 15 June 1993.


Recommended