+ All Categories
Home > Documents > 02 MN1790 Coverage Planning

02 MN1790 Coverage Planning

Date post: 01-Jun-2018
Category:
Upload: taringtrenggana
View: 219 times
Download: 0 times
Share this document with a friend

of 99

Transcript
  • 8/9/2019 02 MN1790 Coverage Planning

    1/99

    MN 1790 2 - 1

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Coverage Planning: ContentsCoverage Planning: Contents

    Definition of Terms

    • Characteristics of Radio Wave Propagation

    • Radio Wave Propagation Models

    • Suitable prediction models for Macro-, Micro- and Pico-cells

    • Location Probability

    • Link Budgets

    • Fading

    • Fast Fading

    • Rice Fading

    • Rayleigh Fading

    • Slow Fading• Jake's Formula

    • Interference Margin

    • Noise Figure calculations

    • Amplifier Noise

  • 8/9/2019 02 MN1790 Coverage Planning

    2/99

    MN 1790 2 - 2

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Coverage Planning: ContentsCoverage Planning: Contents

    • Path Loss Balance

    • Cell Coverage Calculation

    • Basics about Digital Map Data

    • Principles of Planning Tools and their usage

    • Measurement Tools supporting Cell Planning

    • Cell Types

    • Omni versus Sector Cells

    • Exercises

  • 8/9/2019 02 MN1790 Coverage Planning

    3/99

    MN 1790 2 - 3

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Definition of TermsDefinition of Terms

    To achieve coverage in an area, the received signal strength in UL and DL must be above the so

    called receiver sensitivity level:

    Coverage: RX_LEV > (actual) receiver sensitivity level

    No Coverage: RX_LEV < (actual) receiver sensitivity level

    The minimum receiver sensitivity levels in UL and DL are defined in GSM 05.05:

    - for normal BTS : -104 dBm

    - for GSM 900 micro BTS M1 : -97 dBm

    - for GSM 900 micro BTS M2 : -92 dBm

    - for GSM 900 micro BTS M3 : -87 dBm

    - for DCS 1800 micro BTS M1 : -102 dBm

    - for DCS 1800 micro BTS M2 : -97 dBm

    - for DCS 1800 micro BTS M3 : -92 dBm

    - for GSM 900 small MS (class 4, 5): -102 dBm

    - for other GSM 900 MS: -104 dBm

    - for DCS 1800 class 1 or class 2 MS : -100 dBm

    - for DCS 1800 class 3 MS : -102 dBm

  • 8/9/2019 02 MN1790 Coverage Planning

    4/99

  • 8/9/2019 02 MN1790 Coverage Planning

    5/99

    MN 1790 2 - 5

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Definition of TermsDefinition of Terms

    Maximum output power (before combiner input) for normal BTS / TRX of different power classes:

    2.5 – (

  • 8/9/2019 02 MN1790 Coverage Planning

    6/99

    MN 1790 2 - 6

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Definition of TermsDefinition of Terms

    Maximum output power (per carrier, at antenna connector, after all stages of combining) for micro

    BTS / TRX of different power classes:

    >0.05 – 0.16 W>0.01 – 0.03 WM3

    >0.16 – 0.5 W>0.03 – 0.08 WM2

    >0.5 – 1.6 W>0.08 – 0.25 WM1

    GSM 1800

    micro-BTS

    GSM 900

    micro-BTS

    TRX power class

  • 8/9/2019 02 MN1790 Coverage Planning

    7/99

    MN 1790 2 - 7

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Definition of TermsDefinition of Terms

    The reference sensitivity performance as defined in GSM 05.05 for the GSM 900 system for

    different channel types and different propagation conditions:

  • 8/9/2019 02 MN1790 Coverage Planning

    8/99

    MN 1790 2 - 8

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Characteristics of Radio Wave PropagationCharacteristics of Radio Wave Propagation

    Physical Reasons

    • Diffraction

    • Reflection

    • Scattering

    • Absorption

    • Doppler shift

    Technical Problems

    • Distance attenuation

    (Path Loss)

    • Fading

    • Inter-symbol Interference

    • Ducting

    • Frequency shift /

    broadening

  • 8/9/2019 02 MN1790 Coverage Planning

    9/99

    MN 1790 2 - 9

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Characteristics of Radio Wave PropagationCharacteristics of Radio Wave Propagation

    Exercise:

    Which physical phenomena is sketched in the following pictures?

  • 8/9/2019 02 MN1790 Coverage Planning

    10/99

    MN 1790 2 - 10

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio wave propagation:

    The radio wave propagation is described by solutions of the Maxwell equations.

    Exact solutions of the Maxwell equations are not accessible for real space environment with

    obstacles which give rise to reflections and diffractions.

    However, the full information provided by an exact solution (e.g. exact polarization and phase of

    the field strength) is mostly not needed.

    What is needed is the the received power level.

    What a propagation model should provide is the attenuation of the power level due to the fact that

    the signal propagates from the transmitter to the receiver.

    Radio Wave Propagation Models

  • 8/9/2019 02 MN1790 Coverage Planning

    11/99

    MN 1790 2 - 11

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Empirical models and deterministic models:

    Empirical models are based on measurements. Some empirical models (like the ITU model) are

    curves derived from measurements. Others summarize the measurements in formulas (like the

    Okumura Hata model) which fit the measured data.

    Such models are very simple to handle but also usually rather imprecise. They are limited to

    environments similar to the one where the measurements were performed.

    Deterministic models are based on simplifying assumption for the general problem. This can be a

    mathematical approximation of the original problem (like the finite difference model). Or it can be a

    simple model for a special situation of the general problem (like the knife edge model).

    Deterministic model can reach a very high precision, but they suffer from a very high complexity.

    Semi empirical models are a combination of empirical models with deterministic models for special situations (like knife edge models).

    Radio Wave Propagation Models

  • 8/9/2019 02 MN1790 Coverage Planning

    12/99

    MN 1790 2 - 12

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Empirical models

    Log distance path loss

    ITU

    Okumura Hata

    COST HataDiffraction models

    Epstein Peterson

    Deygout

    Giovanelli

    Semi empirical models

    Okumura Hata & knife edge

    COST Hata & knife edge

    COST Walfisch Ikegami

    Deterministic models

    Ray launching, ray tracing

    Finite difference

  • 8/9/2019 02 MN1790 Coverage Planning

    13/99

    MN 1790 2 - 13

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Received power:

    P T :   Transmitted power 

    P R :   Reveived power 

    nT  R d 

    c P  P    ⋅=

    )lg()lg()lg(lg   d  Ad nc L P 

     P 

     Rα −−=+−==  

     

      

     −   101010Path loss:

    d: distance

    Radio Wave Propagation Models

    n

     Rd c

     P 

     P    −⋅=

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    2.5 5.0 7.5 10.0

  • 8/9/2019 02 MN1790 Coverage Planning

    14/99

    MN 1790 2 - 14

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    0 . 0 0 0 1

    0 . 0 0 1

    0 . 0 1

    0 . 1

    1

    1 2 5 1 0

    n = 4n = 3n = 2

    0

    0 . 2

    0 . 4

    0 . 6

    0 . 8

    1 . 0

    2 . 5 5 . 0 7 . 5 1 0 . 0

    n = 4n = 3

    n = 2

    Received power level

    as function of distance d 

    on linear scale.

    n R d 

     P    1∝

    Received power level

    as function of distance d 

    on log scale.

    n R

    d  P    1∝

    Radio Wave Propagation Models

  • 8/9/2019 02 MN1790 Coverage Planning

    15/99

    MN 1790 2 - 15

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    2

    4     

      

     ⋅∝

    d  P 

     R

    π 

    λ 

    Example: Free space propagation

    ? : wavelength in vacuum; , speed of light in vacuum

    f: frequency in MHz

    d: distance in km

    The influence of the surface is neglected completely

     f 

    c=λ 

     smc   81099792   ⋅=   .

    ( ) ( )d  f  L   lglg.   20204432   ++=

  • 8/9/2019 02 MN1790 Coverage Planning

    16/99

    MN 1790 2 - 16

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Example: 2 ray model

    d 1

    d 2a

    d 2b

    hBS 

    hMS 

    ( )  ( )

    ( )  ( )

    hhd d 

    hhd hhd d 

    d d d 

    hhd hhd d 

     MS  BS 

     MS  BS 

     MS  BS 

    ba

     MS  BS 

     MS  BS 

    2

    2

    2

    12

    2

    22

    2

    222

    2

    22

    1

    =−

    ++≈++=

    +=

    −+≈−+=

  • 8/9/2019 02 MN1790 Coverage Planning

    17/99

    MN 1790 2 - 17

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Example: 2 ray model    

     

     

     

     ⋅⋅  

     

     

     

     ≈− 

     

     

     

     ∝−−

    hhk 

    d d 

    e

    e P    MS  BS 

    ikd ikd 

     R

    2

    22

    21

    2

    444

    21

    sinπ 

    λ 

    π 

    λ 

    ( ) ( )    

      

        

      −−++=

    hhk d  f  L   MS  BS sinlg.lglg.   2002620204432

    ( )d hh L MS  BS 

      lg)lg()lg(   402020120   +−−=

    d c

    hh f 

    hhk 

    hhk hhk d 

    c

     f k 

     MS  BS  MS  BS  MS  BS 

     MS  BS 

    π 

    π 

    2

    2

    =≈   

      ⇒>>

    =

    sinfor large

    f: frequency in MHz

    d: distance in km

    hBS 

    : height base station in m

    hMS : height mobile station in m

    The ground is assumed to be flat and perfectly reflecting.

    The model is valid for hBS > 50m and d in the range of km or for LOS microcell channels

    in urban areas.

  • 8/9/2019 02 MN1790 Coverage Planning

    18/99

    MN 1790 2 - 18

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    80

    100

    120

    140

    1601 10 100

    900MHz1800 MHz

    path loss in dB

    distance in km

    Example: 2 ray model

    hBS 

    = 50 m

    hMS 

    = 1.5m

    Radio Wave Propagation Models

  • 8/9/2019 02 MN1790 Coverage Planning

    19/99

    MN 1790 2 - 19

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Log-distance path loss model:

    n

     R

    d  P 

      

     

     

     

     ∝

    0

       

      

     +=

    0

    100

    d n L L

    d   lg

    d 0 : reference distance ca. 1km for macro cells or in the range of 1m -100m for micro cells;

    should be always in the far field of the antenna

    Ld0 : reference path loss; to be measured at the reference distance.

    2-3Obstructed in factories

    4-6Obstructed in building

    1.6-1.8In building LOS

    3-5Shadowed urban area

    2.7-3.5Urban area

    2Free space

    Exponent nEnvironment

  • 8/9/2019 02 MN1790 Coverage Planning

    20/99

    MN 1790 2 - 20

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Okumura Hata model:

    Based on empirical data measured by Okumura in 60’s Hata developed a formula with

    correction terms for different environments.

    The Okumura Hata model assumes a quasi flat surface, i.e. obstacles like buildings are not

    explicitly taken into account. Thus the Okumura Hata model is isotropic. The different types of

    surfaces (big cities, small cities, suburban and rural) are distinguished by different correction

    factors in this model.

    Parameter range for this model:

    Frequency f= 150… 1500MHz 

    Height base stationh

    BS 

    = 30… 200m

    Height Mobile station hMS = 1… 10m

    Distance d= 1… 20km

  • 8/9/2019 02 MN1790 Coverage Planning

    21/99

    MN 1790 2 - 21

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    [ ]

    [ ] [ ]

    [ ]

    −⋅

    −−−=

    −+−−−+=

    974751123

    805617011

    556944821316265569

    2

    .).lg(.

    .)lg(..)lg(.

    )(

    )lg()lg(..)()lg(.)lg(..

     MS 

     MS 

     MS 

     BS  MS  BS urban

    h

     f h f 

    hd 

    d hchd h f  L

    small cities

    big cities (f>400MHz )

    Radio Wave Propagation Models

    Okumura Hata model:

    f: frequency in MHz

    d: distance in km

    hBS  : height base station in m

    hMS 

     : height mobile station in m

    ( )[ ]   94403318784

    4528

    2

    2

    2

    .)lg(.lg.

    .lg

    +−⋅=

    +

       

      ⋅=

     f  f c

     f c suburban areas

    rural areas

  • 8/9/2019 02 MN1790 Coverage Planning

    22/99

    MN 1790 2 - 22

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    ≈−

    ≈+

    =

    ⋅+−−=

    00010

    0020

    223542126

    .

    .

    )(

    )lg(.)(.

     MS 

     MS urban

    hd 

    d chd  L

    small cities

    big cities

    Radio Wave Propagation Models

    Okumura Hata model:

    For f= 900MHz, hBS = 30m, hMS = 1,5m the formula reads:

    d: distance in km

    5128

    949

    .

    .

    =

    =

    c

    c suburban areas

    rural areas

  • 8/9/2019 02 MN1790 Coverage Planning

    23/99

    MN 1790 2 - 23

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    COST Hata model:

    The Okumura Hata model cannot be applied directly to systems like GSM 1800/1900 or DECT.

    Therefore it was extended to higher frequencies in the framework of the European research

    cooperation COST (European Cooperation in the field of scientific and technical research).

    Parameter range for this model:

    Frequency f= 1500… 2000MHz 

    Height base station hBS = 30… 200m

    Height Mobile station hMS = 1… 10m

    Distance d= 1… 20km

    [ ]

    [ ] [ ]805617011

    5569448213933346

    .)lg(..)lg(.)(

    )lg()lg(..)()lg(.)lg(..

    −−−=

    −+−−−+=

     f h f hd 

    d hchd h f  L

     MS  MS 

     BS  MS  BS urban

  • 8/9/2019 02 MN1790 Coverage Planning

    24/99

    MN 1790 2 - 24

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    COST Hata model:

    suburban areas

    rural areas

    city center 

    The major difference between the Okumura Hata model is a modified dependence on

    frequency and additional correction factor for inner city areas

    For f= 1800MHz, hBS = 30m, hMS = 1,5m the correction term for the dependence on hMScan again be neglected. For the other terms of COST Hata model the insertion of the values

    serves:

    )lg(..   d c Lurban

      ⋅+−=   223524136

    ( )[ ]   94403318784

    4528

    2

    3

    2

    2

    .)lg(.lg.

    .lg

    +−⋅=

    +

       

      ⋅=

    −=

     f   f  c

     f  c

    c

  • 8/9/2019 02 MN1790 Coverage Planning

    25/99

    MN 1790 2 - 25

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®Both models, the Okumura Hata model and the COST Hata model can lead locally

    to substantial deviation from the measured attenuation since these models are

    isotropic. Local properties of the surface (big buildings, hills etc.) are not taken intoaccount.

    9231

    141

    3

    .

    .

    =

    =

    −=

    c

    c

    c

    COST Hata model:

    suburban areas

    rural areas

    city center 

    Radio Wave Propagation Models

  • 8/9/2019 02 MN1790 Coverage Planning

    26/99

    MN 1790 2 - 26

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    ITU model:

    The ITU (or CCIR) model was originally developed for radio broadcasting. It is based onmeasurements in the UHF and VHF range which are summarized in graphs

    (ITU-R 370-7, ) for the field strength.

    The different topographic situations are described by the parameters hBSeff and  ∆h.

    The ITU model describes the radio wave propagation for the ranges

    f= 30... 250 MHz and 450... 1000MHz

    d= 10... 1000km

    Definition:

    hBSeff is the antenna height above the mean elevation of the terrain measured in a range from 3km

    to 15 km along the propagation path.

    ∆h is the mean irregularity of the terrain in the range from 10km to 50 km along the propagation

    path, i.e. 90% of the terrain exceed the lower limit and 10% of the terrain exceed the upper limit of

    the band defined by ∆h.

    The curves for the field strength are given for different hBSeff and  ∆h = 50m. The correction for

    other values of ∆h is given in an additional graph.

    Since local effects of the terrain are not taken into account the deviation between predicted and

    actual median field strength may reach 20dB for rural areas. In urban areas this value may be well

    exceeded.

    Radio Wave Propagation Models

  • 8/9/2019 02 MN1790 Coverage Planning

    27/99

    MN 1790 2 - 27

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    ITU model:

    Radio Wave Propagation Models

    hBSeff 

    ∆h

    3km 10km 15km 50km

    90%

    10%

    0km

  • 8/9/2019 02 MN1790 Coverage Planning

    28/99

    MN 1790 2 - 28

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Correction to the ITU model: clearance angle method

     An improvement of the ITU model is obtained by considering the maximum of the angle (clearance

    angle) between the horizontal line and the elevations in the range of 0 to 16km along the

    propagation path. The correction to the field strength ITU model (with ∆h=50m ) is give as graphs

    for the clearance angle. The clearance angle correction applies to both the receiving and the

    transmitting side.

    Radio Wave Propagation Models

    16km

    γ 

    MS, BS Position

  • 8/9/2019 02 MN1790 Coverage Planning

    29/99

    MN 1790 2 - 29

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    COST Walfisch Ikegami model:

    For a better accuracy in urban areas building height and street width have to be taken intoaccount, at least as statistical parameters. Based on the Walfisch Bertoni propagation model for

    BS antennas place above the roof tops, the empirical COST Walfisch Ikegami model is a

    generalisation including BS antennas placed below the roof tops.

    Parameter range for this model:

    Frequency f= 800… 2000MHz 

    Height base station hBS = 4… 50m

    Height Mobile station hMS = 1… 3m

    Distance d= 0.02… 5km

    Further parameter:

    Mean building height: ∆h in m

    Mean street width: w in m

    Mean building spacing: b in m

    Mean angle between propagation path and street: ϕ  in °

  • 8/9/2019 02 MN1790 Coverage Planning

    30/99

    MN 1790 2 - 30

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    b w

    dBS

    MS

    ∆hhBS

    hMS

    COST Walfisch Ikegami model:

    Radio Wave Propagation Models

    ϕ 

    BS

    MS

  • 8/9/2019 02 MN1790 Coverage Planning

    31/99

    MN 1790 2 - 31

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    COST Walfisch Ikegami model:

    With LOS between BS and MS (base station antenna below roof top level):

    Radio Wave Propagation Models

    )lg()lg(.   d  f  L LOS 

      2620642   ++=

    With non LOS:

      ++

    =

    ,

    ,

    0

    0

     L

     L L L

     L

    msd rts

     NLOS 

    0

    0

    ≤+

    >+

    msd rts

    msd rts

     L L

     L L

    free space propagation:

    rts L roof top to street diffraction and scatter loss:

    ⋅−

    ⋅+

    ⋅+−

    +−∆++−−=

    ,..

    ,..

    ,.

    )lg()lg()lg(.

    ϕ 

    ϕ 

    ϕ 

    114004

    075052

    354010

    201010916 MS rts

      hh f w L

    00

    00

    0

    9055

    5535

    350

  • 8/9/2019 02 MN1790 Coverage Planning

    32/99

    MN 1790 2 - 32

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    COST Walfisch Ikegami model:

    Radio Wave Propagation Models

    msd  L multiscreen diffraction loss:

    )lg()lg()lg(   b f k d k k  L L f d amsd msd 

      91

      −⋅+⋅++=

    hh BS 

      ∆>

    ( )

       

       −+−

       

       −+−

    =

    ∆∆−

    ⋅−

    =

    ⋅∆−⋅−

    ∆−⋅−=

      ∆−+−

    =

    ,.

    ,.

    ,

    ,

    ,.

    )(.

    ),(.

    ,

    ,

    ),lg(

    1925

    704

    1925

    704

    1518

    18

    508054

    8054

    54

    0

    118

    1

     f 

     f 

    h

    hhk 

    d hh

    hhk 

    hh L

     f 

     BS d 

     BS 

     BS a

     BS 

    msd 

    hh BS 

      ∆≤

    hh BS 

      ∆>

    hh BS 

      ∆>

    hh BS    ∆≤

    hh BS 

      ∆≤

    hh BS 

      ∆≤   50.>d 

    and

    and

    50.≤d 

    Medium sized cities and suburban centres

    with moderate tree density

    Metropolitan centres

  • 8/9/2019 02 MN1790 Coverage Planning

    33/99

    MN 1790 2 - 33

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    COST Walfisch Ikegami model:

    Radio Wave Propagation Models

     Although designed for BS antennas placed below the mean building height the COST Walfisch

    Ikegami model show often considerable inaccuracies.

    This is especially true in cities with an irregular building pattern like in historical grown cities. Also

    the model was designed for cities on a flat ground. Thus for a hilly surface the model is not

    applicable.

  • 8/9/2019 02 MN1790 Coverage Planning

    34/99

    MN 1790 2 - 34

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Lee micro cell model:

    Radio Wave Propagation Models

    This model is based on the assumption that the path loss is correlated with the total depth B of 

    the building blocks along the propagation path. This results in an extra contribution to the LOS

    attenuation

    )()(   Bd  L L LOS 

      α +=

    )(d  L LOS 

      )( Bα For both and can be read off graphs based on extensive measurements.

    This model is not very precise and large errors occur in the following situation:

    • When the prediction point is on the main street but there is no LOS path

    • When the prediction point is in a side street on the same side of the main street as the BS.

  • 8/9/2019 02 MN1790 Coverage Planning

    35/99

    MN 1790 2 - 35

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction knife edge model:

    Diffraction models apply for configurations were a large obstacle is in the propagation path and theobstacle is far away from the transmitter and the receiver, i.e.: and 21   d d h   ,h

    The obstacle is represented as an ideal conducting half plane (knife edge)

    hMS 

    hBS 

    d 1

    h

    d 2 

    Huygens secondary source

  • 8/9/2019 02 MN1790 Coverage Planning

    36/99

    MN 1790 2 - 36

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction knife edge model:

    Huygens principle: all points of a wavefront can be considered as a source for a secondary wavelet⇒sum up the contributions of all wavelets starting in the half plane above the obstacle

    Phase differences have to be taken into account (constructive and destructive interferences)

    Difference between the direct path and the diffracted path,

    the excess path length

    Phase difference: with Fresnel Kirchoff diffraction parameter.

    Note: this derivation is also valid for

    ( )

    21

    21

    2

    2   d d 

    d d h   +≈∆

    2

    2

    2υ 

    π 

    λ 

    π ϕ    =

    ∆=

      ( )

    21

    212

    d d 

    d d h

    λ υ 

      +⋅=

    0

  • 8/9/2019 02 MN1790 Coverage Planning

    37/99

    MN 1790 2 - 37

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction knife edge model:

    Diffraction loss:    

      

        

      −+−=  

     

      

     −=   ∫ 

    ν 

    π ν    du

    ui i 

     E 

     E  L

      D

     D

    22

    12020

    2

    0

    explglg)(

    0 E 

     D E 

    field strength obtained by free field propagation without diffraction (and ground effects).

    diffracted field strength

    Shadow border region:

    +≈≈

    )lg(.)(

    υ 

    ν 

    20513

    0

     D L

    ,

    ,

    0

    0

    >>

  • 8/9/2019 02 MN1790 Coverage Planning

    38/99

    MN 1790 2 - 38

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction knife edge model:

    Fresnel Zone:

    Condition for the nth Fresnel Zone:

    d1 d2

    r Fnl1 l2

    22121λ ⋅=−−+   nd d l l 

     Fnr d d    >>

    21,

     Fn

     Fn

    hn

    nd d 

    d d r d d l l 

    2

    22

    1

    21

    212

    2121

    =⇒

    ⋅=   

      

        +≈−−+

    ν 

    λ 

    The diffraction parameter ν can be rewritten with quantities describing the Fresnel zonegeometry.

    For obstacles outside the 1st Fresnel zone:

    For obstacles outside the 5th Fresnel zone:

    dB L D

      112   .)(   ±=−

  • 8/9/2019 02 MN1790 Coverage Planning

    39/99

    MN 1790 2 - 39

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction multiple knife edge Epstein Petersen model:

    The attenuation of several obstacles is computed obstacle by obstacle with the single knife edgemethod, i.e. first diffraction path: l 1l 2 , second diffraction path: l 2 l 3 .

    The model is valid for .   j i    d h  

  • 8/9/2019 02 MN1790 Coverage Planning

    40/99

    MN 1790 2 - 40

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction multiple knife edge Epstein Petersen model:

    .

    ( )

    21

    21

    11

    2

    d d 

    d d h

    λ υ 

      +⋅=

    )()(21

      ν ν   D D Dtotal 

      L L L   +=

    The Fresnel integral is replaced by an empirical approximation:

    ( )[ ]

    +−+−+≈

    110102096

    0

    2

    ..lg.)(

    υ υ ν 

     D L

    ..

    ,.

    780

    780

    −≥

    −<

    ν 

    ν 

    This model is rather unprecise. The error grows with the number of obstacles.

    ( )

    32

    32

    22

    2

    d d 

    d d h

    λ υ 

      +⋅=

  • 8/9/2019 02 MN1790 Coverage Planning

    41/99

    MN 1790 2 - 41

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction multiple knife edge Deygout model:

    This model is recursive. First the attenuation of the main obstacle is computed (in this example O1with the path l 1s1). In the second step the possible (main) obstacles along the paths to and from the

    main obstacle are computed (here O2 with  l 2 l 3 ). This procedure is continued until all obstacles are

    taken into account.

    d 1

    h1

    d 2 

    h2 

    d 2    d 3 

    l 1

    l 2 

    l 3 

    s1

    O 1

    O 2 

    H 2 

  • 8/9/2019 02 MN1790 Coverage Planning

    42/99

    MN 1790 2 - 42

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction multiple knife edge Deygout model:

    .

    ( ))(

    321

    321

    11

    2

    d d d 

    d d d h

    +++

    ⋅=λ 

    υ 

    ),()()(2121

      OOC  L L L D D Dtotal 

      −+=   ν ν 

    ( )

    32

    32

    22

    2

    d d 

    d d h

    λ υ 

      +⋅=

     p

    q

     pOOC 

    2

    21

    1

    22012   

     

      

     ⋅

      

     

     

     

     

    −−=

    π α 

    lg),(

    ,

    )(

    arctan    

     

     

        ++

    = 313212

    d d 

    d d d d α 

    ( ),)(

    321

    321

    1

    2

    d d d 

    d d d 

    h p +

    ++

    ⋅= λ ( )

    )(123

    321

    2

    2

    d d d 

    d d d 

     H q +

    ++

    ⋅= λ 

    Correction term:

    The correction term is chosen such that the result coincides in a good approximation with

    an exact solution. After n steps this models may cover up to 2n-1 obstacles.

  • 8/9/2019 02 MN1790 Coverage Planning

    43/99

    MN 1790 2 - 43

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction multiple knife edge Giovanelli model:

     Also the Giovanelli model is recursive. The recursion procedure is the same as for the Deygoutmodel. Instead of taking a correction term in the attenuation the receiver is considered at an

    effective position at an height heff . .

    d 1

    h1

    d 2 

    heff 

    d 2 

      d 3 

    l 1

    l 2 

    l 3 

    O 2 

    O 1

    H 1  H 

    effective

    receiver positionh2 

  • 8/9/2019 02 MN1790 Coverage Planning

    44/99

    MN 1790 2 - 44

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Diffraction multiple knife edge Giovanelli model:

    .

    ( ))(

    321

    321

    11

    2

    d d d 

    d d d h

    +

    ++⋅⋅=

    λ υ 

    )()(21

      ν ν   D D Dtotal 

      L L L   +=

    ( )

    32

    32

    22

    2

    d d 

    d d h

    λ υ 

      +⋅=

    The attenuation predicted by this model is between the values obtained from theEpstein Peterson model and the Deygout model without the correction term.

    eff h

    d d d 

    d hh

    321

    1

    11

    ++

    −=   )(12

    2

    3

    2  H  H 

    d hh

    eff   −+=

  • 8/9/2019 02 MN1790 Coverage Planning

    45/99

    MN 1790 2 - 45

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Semi empirical models:

    Semi empirical model combine deterministic models like knife edge models with empirical modelslike Okumura Hata or COST Hata.

    The mentioned empirical models are only valid for a quasi flat surface. In combination with knife

    edge models they can be extended to hilly surface or a mountain area.

    The combination of empirical and deterministic models requires usually additional correction terms.

    For the specific combination of models and their correction terms most user develop their own

    solution which they calibrate with their measurements. .

  • 8/9/2019 02 MN1790 Coverage Planning

    46/99

    MN 1790 2 - 46

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Deterministic models:

    Ray tracing and ray launching:

    With the methods of geometrical optics all possible propagation paths from the transmitter to

    the receiver are determined and summed up, i.e. there is a free space propagation from the

    antenna to the first obstacle or from obstacle to obstacle and at the obstacle the ray is reflected or

    diffracted until it reaches the antenna. The algorithm takes only rays with an adjustable maximum

    number of reflections and diffractions.

    With this method a very high precision for the prediction of the path loss can be obtained.

    • For this method a digital map with high accuracy is required.

    • For the reflection and diffraction attenuation factors have to be specified which depend on

    the building surface (e.g. glass or brick wall).

    • The algorithm is very complex and computer power consuming.

    However, there are continuous improvements for hardware, software and algorithms.

  • 8/9/2019 02 MN1790 Coverage Planning

    47/99

    MN 1790 2 - 47

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Radio Wave Propagation Models

    Deterministic models:

    Finite difference algorithm:

    Since the solution to field equation are inaccessible the partial derivatives for the fields are

    replaced by finite differences. This is obtained by introducing a grid and considering the the fields

    only at the nodes of the grid. The derivatives become differences along the edges of the grid. The

    partial differential equation becomes a linear equation system. However, the linear equation

    system involves very large matrices for realistic problems to be treated with a sufficient precision.

    With this method a very high precision for the prediction of the path loss can be obtained.

    • For this method very precise surface data are required.

    • The surface data have to be parameterised in an appropriate way for the grid.

    However, as for the ray launching and ray tracing method, there are continuous improvements

    for hardware, software and algorithms.

  • 8/9/2019 02 MN1790 Coverage Planning

    48/99

    MN 1790 2 - 48

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Summary of the application areas of the different models:

    +00Finite difference

    +++Ray launching ray tracing

    -+-COST Walfisch Ikegami

    -0+COST Hata & knife edge-0+Okumura Hata & knife edge

    -++Giovanelli

    -++Deygout

    -++Epstein Peterson

    -0+COST Hata

    -0+Okumura Hata

    --+ITU

    +++Log-distance path loss

    inhouseurbanruralPropagation model

    Suitable prediction models for

    Macro-, Micro-, and Pico- cellsSuitable prediction models for

    Macro-, Micro-, and Pico- cells

  • 8/9/2019 02 MN1790 Coverage Planning

    49/99

    MN 1790 2 - 49

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Location ProbabilityLocation Probability

    The propagation conditions of electromagnetic waves in real environments are not stable, but

    location (and time) dependent fluctuations appear.

    The radio network planner has to take this into account by working with probabilities, e.g. with the

    following two coverage probabilities:

    • Cell edge probability

    • Cell area probability

    Typical cell edge probabilities for:

    Very good coverage: 95%

    Good coverage: 90%

     Acceptable coverage: 75%

     As will be discussed later, these values correspond to the following cell area probabilities:

    Very good coverage: 99%

    Good coverage: 97%

     Acceptable coverage: 91%

  • 8/9/2019 02 MN1790 Coverage Planning

    50/99

    MN 1790 2 - 50

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Link BudgetsLink Budgets

    Before dimensioning the radio network, the link budget for different environments (indoor, outdoor,

    in-car) must be considered.

    From the link budget, the maximum allowable path loss can be derived.

    Body LossBuilding (indoor)

    penetration loss

    Path Loss

    (Fading) Margins

    Diversity Gain,

     Antenna Gain

    Cable LossesBTS

  • 8/9/2019 02 MN1790 Coverage Planning

    51/99

    MN 1790 2 - 51

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Link BudgetsLink Budgets

    MS

    Maximum output power [dBm]

    Feeder loss [dB]

     Antenna gain [dBi]

    EIRP [dBm]

    Receiver sensitivity [dBm]

    BTS

    Rx-diversity gain [dB]

     Antenna gain [dB]

    Head amplifier gain [dB]

    Jumper, feeder, connector losses [dB]

    Duplexer losses [dB]

    Receiver sensitivity [dBm]

    Environment

    Body loss [dB]

    Building (indoor) penetration loss [dB]

    Path loss [dB]

    Fading margin (lognormal and Rayleigh) [dB]

    Interference margin [dB]

    Frequency hopping gain [dB]

    Terms which enter the link budget:

  • 8/9/2019 02 MN1790 Coverage Planning

    52/99

    MN 1790 2 - 52

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Link BudgetsLink Budgets

    Example of an UL link budget (GSM 900 MHz MS power class 4, BS with tower mounted amplifier,

    frequency hopping on, receive diversity used):

    UL

    Link Budget

    Outdoor MS

    (Class 4)

    Indoor MS

    (Class 4)

    Car mounted MS

    (Class 2)

    Units Remarks

    MS Max. Output power 33 33 39 dBm

    Feeder Loss 0 0 -2 dB

     Antenna Gain 0 0 +2 dBi

    Environment Body Loss

    (900 / 1800) MHz

    -5 / -3 -5 /-3 0 dB

    Building (Indoor) penetration Loss 0 -18 0 dB

    Path loss dB

    Fading Margin: lognormal:

    for 1sigma=10 and cell area probability=99%

    -12 -12 -12 dB

    Fading Margin: Rayleigh -3 -3 -3 dB

    Interference Margin -2 -2 -2 dB

    Frequency hopping gain +3 +3 +3 dB

    BS Rx - diversity gain +3.5 +3.5 +3.5 dB

     Antenna gain +17 +17 +17 dBi

    Tower mounted amplifier gain +6 +6 +6 dB

    Jumper + Feeder + Connector Losses -4 -4 -4 dB

    Duplexer Losses -0.5 -0.5 -0.5 dB

    Receiver Sensitivity -107 -107 -107 dB

  • 8/9/2019 02 MN1790 Coverage Planning

    53/99

    MN 1790 2 - 53

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Fading occurs on different scales due to different causes.

    Fading appears statistically but different fading types obey different probability distributions.

    Propagation models predict only the average value of the receive level.

     An extra margin has to be added due the fading effect.

    The common question for all fading effects is: how big to chose the margin such that the receive

    level drops not below a given limit with a specified probability?

    Fading

  • 8/9/2019 02 MN1790 Coverage Planning

    54/99

    MN 1790 2 - 54

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Fast Fading

    Fast fading appears due to multi path propagation. The receive level is affected by interferences

    due to different path lengths in the multi path propagation.

    The field strength at the receiver is the vector sum of the fields corresponding to the different

    propagation paths. Usually the fading is described by the probability function for the absolute value

    of the field strength.

    The generic situations:

    Rice fading:

    It exists a dominant path (usually the LOS path):

  • 8/9/2019 02 MN1790 Coverage Planning

    55/99

    MN 1790 2 - 55

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Rice Fading

    Rice fading:    

      

        +−⋅   

      

     ⋅=

     N 

     R R

     N 

     R R

     N 

     R R

     P 

    V V 

     P 

    V V  I  P 

    V V  f 

    2

    22

    11

    0   exp)(

     RV 

    1 RV 

    0 I 

    += ∑=

     N 

    i  R N  i 

    V  P 1

    2

    : received signal strength

    : received signal from the dominant signal

    : modified Bessel-Function of the first kind and zero order.

    other noise sources : received power of the non dominant signals including other 

    noise sources like man made noise.

    For the Rice distribution can be approximated by a Gauß distribution:12

    1 >> N 

     R

     P V 

    ( )   

      

        −−⋅

    ⋅=

     N 

     R R

     N 

     R

     P 

    V V 

     P V  f 

    22

    1  2

    1exp)(π 

  • 8/9/2019 02 MN1790 Coverage Planning

    56/99

    MN 1790 2 - 56

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Rice Fading

    0

    0.1

    0.2

    0.3

    0.4

    0 2 4 6 8 10

    Absolute value of signal amplitude in V

    Probability

    Eample: Gaußean distributed signal for:   V V  R

      51  =

  • 8/9/2019 02 MN1790 Coverage Planning

    57/99

    MN 1790 2 - 57

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Rayleigh Fading

    Rayleigh fading is the other important special case of the Ricean fading. Rayleigh fading

    describes the situation were there is no dominant path, i.e. a non LOS situation.

     All contribution to the received signal are comparable in strength and arrive statistically distributed.

    with : averaged field strength, and :   

      

     −=

    2

    2

    22

     R

     R

     R

     R

     R

    V V  f    exp)(

     RV 

       

      

     −=

    0

    0

    0

    0

    1

     P 

     P 

     P  P  f    exp)(

    2

    0

    2

    1

     RV  P   = averaged receive power:

  • 8/9/2019 02 MN1790 Coverage Planning

    58/99

    MN 1790 2 - 58

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    0.001

    0.01

    0.1

    1

    -30 -20 -10 0 10 20

    Power / averaged power in dB

    Integrated probability for the power to be below a fading marging for 

    a Rayleigh distributionProbability

    Rayleigh Fading

  • 8/9/2019 02 MN1790 Coverage Planning

    59/99

    MN 1790 2 - 59

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Fast Fading

     All described types of fast fading have as characteristic length scale the wavelength of the signals.To combat Fast Fading:

    ⇒ Use frequency hopping

    ⇒ Use antenna diversity

  • 8/9/2019 02 MN1790 Coverage Planning

    60/99

    MN 1790 2 - 60

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Slow Fading

    σ  X d  Ld  L   +=   )()(

    Slow fading denote the variation of the local mean signal strength on a longer time scale.

    The most important reason for this effect is the shadowing when a mobile moves around (e.g. in a

    city).

    Measurements have shown that the variation of the the mean receive level is a normal distribution

    on a log scale ⇒ log normal fading.

    The fading can be parameterized by adding a zero mean Gaussian distributed random variable .σ 

     X 

    Let Pm be a minimal receive level, what is the probability that the receive level is higher

    than the minimal receive level, i.e. ?))(Pr(   =>  m R

      P d  P 

    Pr 

    The σ has to be determined by measurements.

    ( )  

     

     

     

      −−⋅

    ⋅=

    2

    2

    22

    1

    σ σ π σ 

     P  P  P  X    exp)(

  • 8/9/2019 02 MN1790 Coverage Planning

    61/99

    MN 1790 2 - 61

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Slow Fading

    To compute the probability that the receive level exceeds a certain margin the Gaussian

    distribution has to be integrated. This leads to the Q function:

    )(1)(

    21

    2

    1

    2exp

    2

    1)(

    2

     z Q z Q

     z erf  dx

     x z Q

     z 

    −−=

       

      

       

      

     −=  

     

      

     −⋅= ∫ 

    π 

  • 8/9/2019 02 MN1790 Coverage Planning

    62/99

    MN 1790 2 - 62

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Slow Fading

    0.001353.00.022752.00.158661.00.500000.0

    0.000053.90.001872.90.028721.90.184060.9

    0.000073.80.002562.80.035931.80.211860.8

    0.000113.70.003472.70.044571.70.241960.7

    0.000163.60.004662.60.054801.60.274250.6

    0.000233.50.006212.50.066811.50.308540.5

    0.000343.40.008202.40.080761.40.344580.4

    0.000483.30.010722.30.096801.30.382090.3

    0.000693.20.013902.20.115071.20.420740.2

    0.000973.10.017862.10.135671.10.460170.1

    Q(z)zQ(z)zQ(z)zQ(z)z

    Tabulation of the Q function

  • 8/9/2019 02 MN1790 Coverage Planning

    63/99

    MN 1790 2 - 63

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Jake’s Formula

    Jake’s formula gives a relation for the probability that a certain value Pm at the cell boundary at

    radius R is exceeded and the corresponding probability for the whole cell. It is based on

    the log distance path loss model:

       

      

     +−=

    0

    0   lg10)()(d 

    d nd  L P d  P  T  R

       

      

     

       

        −− 

      

        −+−=

    22

    11

    21exp)(1

    2

    1)(Pr 

    b

    aberf  

    b

    abaerf   P mcell 

    )(Pr mcell 

      P 

    ( )σ 2

    )( R P  P a

      Rm −= σ 2

    )lg(10   enb =

  • 8/9/2019 02 MN1790 Coverage Planning

    64/99

  • 8/9/2019 02 MN1790 Coverage Planning

    65/99

    MN 1790 2 - 65

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Log-normal FadingLog-normal Fading

    From measurements the standard deviation 1 sigma (σ LNF ) in a certain environment.

    Typical measurement values (outdoor, indoor) are given in the following table:

    9 dB

    9 dB

    8 dB

    σ LNF(i)

    10 dB

    8 dB

    6 dB

    Dense urban

    Urban

    Rural

    σ LNF(o)Environment

  • 8/9/2019 02 MN1790 Coverage Planning

    66/99

    MN 1790 2 - 66

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Log-normal FadingLog-normal Fading

    To achieve a certain cell edge probability σ LNF must be multiplied with a factor given in the

    following table:

    (Cell edge probability means the probability to have coverage at the border of the cell)

    0.000

    0.126

    0.253

    0.385

    0.524

    0.674

    0.842

    1.036

    1.282

    1.645

    1.751

    1.881

    2.054

    2.326

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    96

    97

    98

    99

    Factor for calculation of

    lognormal fading margin

    Cell edge probability in %

  • 8/9/2019 02 MN1790 Coverage Planning

    67/99

    MN 1790 2 - 67

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Log-normal FadingLog-normal Fading

    Integrating the Gaussian distribution function over the whole cell area delivers cell area

    probabilities. Some example results are given in the following table:

    77

    91

    97

    99

    50

    75

    90

    95

    Cell area probability in %Cell edge probability in %

  • 8/9/2019 02 MN1790 Coverage Planning

    68/99

    MN 1790 2 - 68

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Interference MarginInterference Margin

     An interference margin can be introduced in the link budget in order to achieve accurate coverage

    prediction in case that the system is busy.

    This margin in principle depends on the traffic load, the cell area probability and the frequency

    reuse. The required margin will be small if interference level decreasing concepts like frequency

    hopping, power control and DTX are used.

    Typically, a margin of 2 dB is recommended.

  • 8/9/2019 02 MN1790 Coverage Planning

    69/99

    MN 1790 2 - 69

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Noise Figure calculationsNoise Figure calculations

    Thermal Noise:

    Every object which is at a temperature T > 0°K emits electromagnetic waves

    (thermal noise). Therefore, electromagnetic noise can be related to a temperature.

    P = s * e* A * T4

    Noise Factor:

    The Noise Factor can be calculated from the Noise Temperature as follows:

    Noise Factor = Noise Temperature / 290°K + 1

    Noise Figure:

    The noise figure is the value of the Noise Factor given in dB:

    Noise Figure = 10 * log (Noise Factor)

  • 8/9/2019 02 MN1790 Coverage Planning

    70/99

    MN 1790 2 - 70

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Conversion table:

    4384.02893.01702.0751.0

    4223.92752.91591.9670.9

    4063.82632.81491.8590.8

    3903.72502.71391.7510.7

    3743.62382.61291.6430.6

    3593.52262.51201.5350.5

    3443.42142.41101.4280.4

    3303.32022.31011.3210.3

    3163.21912.2921.2140.2

    3023.11802.1841.170.1

    Noise

    Temp.

    Noise

    Figure

    Noise

    Temp.

    Noise

    Figure

    Noise

    Temp.

    Noise

    Figure

    Noise

    Temp.

    Noise

    Figure

    Noise figure in dB

    Noise Temperature in °K

    Noise Figure calculationsNoise Figure calculations

  • 8/9/2019 02 MN1790 Coverage Planning

    71/99

    MN 1790 2 - 71

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Amplifier NoiseAmplifier Noise

    Amplifier:

    • An amplifier amplifies an input signal, as well as the noise of the input signal.

    • It adds its own noise, which is also amplified.

    GTin

    Tnoise

    G * Tin + G * Tnoise

  • 8/9/2019 02 MN1790 Coverage Planning

    72/99

    MN 1790 2 - 72

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Amplifier NoiseAmplifier Noise

    Cascade of amplifiers:

    G1Tin

    Tn1

    G1* Tin + G1 * Tn1

    G2

    Tn2

    G2 * (G1 * Tin + G1 * Tn1) + G2 * Tn2

    = G1*G2* (Tin + Tn1 + Tn2/G1)

    = G * (Tin + Tnoise)

    With Tnoise = Tn1 + Tn2/G1 and

    G = G1 * G2

    GTin

    Tnoise

    G * Tin + G * Tnoise

    Equivalent to cascade of amplifiers

  • 8/9/2019 02 MN1790 Coverage Planning

    73/99

    MN 1790 2 - 73

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Amplifier NoiseAmplifier Noise

    Friis formula:

    Tnoise = Tn1 + Tn2 / G1 + Tn3 / (G1*G2) + ...

    GTin

    Tnoise

    G * Tin + G * Tnoise

    Equivalent to cascade of amplifiers

    Tnoise = Tn1 + Tn2/G1

    G = G1 * G2

  • 8/9/2019 02 MN1790 Coverage Planning

    74/99

    MN 1790 2 - 74

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Amplifier NoiseAmplifier Noise

    Example:

    G1Tin

    Tn1

    G1* Tin + G1 * Tn1

    G2

    Tn2

    G1*G2* (Tin + Tnoise)

    With

    Tnoise = Tn1 + Tn2/G1

    Assumptions:

    G1 = 16 Tn1 = 28°KG2 = 20 Tn2 = 200°K

    Result:

    Gain = 320

    Tnoise = 40.5°K

    Assumptions:

    G1 = 20 Tn1 = 200°KG2 = 16 Tn2 = 28°K

    Result:

    Gain = 320

    Tnoise = 201.4°K

    Consequence:

    Position of amplifier in chain

    is very important

  • 8/9/2019 02 MN1790 Coverage Planning

    75/99

    MN 1790 2 - 75

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Amplifier NoiseAmplifier Noise

    Exercise 1:

    Calculate the noise temperature of the following system:

    G Tnoise ?

     Antenna cable

    Loss 10 dB

     Amplifier in BTS

    Gain 25 dB

    Noise temperature 240°K

  • 8/9/2019 02 MN1790 Coverage Planning

    76/99

    MN 1790 2 - 76

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Amplifier NoiseAmplifier Noise

    Exercise 2:

    Calculate the noise temperature of the following system:

    Tnoise ?

    Cable to antenna mast

    Loss 10 dB

    G

     Amplifier in BTS

    Gain 2 dB

    Noise temperature 290°K

    G

    Mast Head Amplifier 

    Gain 28 dB

    Noise temperature 260°K

  • 8/9/2019 02 MN1790 Coverage Planning

    77/99

    MN 1790 2 - 77

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Path Loss BalancePath Loss Balance

    Since the coverage range in UL should be the same as the coverage range in DL, the radio link

    must be balanced:

    Maximum allowable path loss in UL = Maximum allowable path loss in DL

    Considering the link budget, usually the UL is the bottleneck, i.e. the maximum allowable path loss

    is determined by the UL and not by the DL, although:

    • The BS receiver sensitivity is usually better than the MS receiver sensitivity.

    • Diversity is usually only used in the receive path.

    In case of an unbalanced link with weak UL, the UL sensitivity and therefore also the UL coverage

    range can be increased by using tower mounted amplifiers.

  • 8/9/2019 02 MN1790 Coverage Planning

    78/99

    MN 1790 2 - 78

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Cell Coverage CalculationCell Coverage Calculation

    From consideration of link budget Maximum allowable path loss

    Using radio wave propagation formulas (e.g.Hata) Maximum cell size

    Exercise:

    Consider a class 4 MS of height = 1.5 m. The BTS height = 30 m. Assume Hata

    propagation conditions and a cell area probability of 97%. What is the maximum outdoor,

    indoor cell radius and in-car cell radius:

    a) In a dense urban environment (σ LNF,o= 10 dB; σ LNF,i= 9 dB )?

    b) In a suburban environment (σ LNF,o= 8 dB; σ LNF,i= 9 dB)?

    c) In an open area (σ LNF,o= 6 dB; σ LNF,i= 8 dB)?

     Assume an in-car penetration loss of 6dB.

  • 8/9/2019 02 MN1790 Coverage Planning

    79/99

    MN 1790 2 - 79

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Basics about Digital Map DataBasics about Digital Map Data

    The cell planning tools require as one input digital map data (which are often based on paper

    maps, satellite photos,…). These digital map data should contain information about, the land

    usage ( so called “Clutter” information), about the height of obstacles and they should also containso called vector data (like rivers, streets,…).

     A digital map is an electronic database containing geographical information.

    The smallest unit on such a map is called a pixel. The typical edge-length of such a pixel is

    ranging from several meters to several hundred meters. A digital map is often subdivided into

    several blocks consisting of many pixels. The different layers of information in one block always

    use the same resolution, whereas different blocks can have different resolutions.

    Each pixel should contain information about:

    • Land usage (“Clutter” information)

    • Height data

    • Vector data (like rivers, streets,…)

    •…

    Before working with these digital data, some pre-processing of the data may be required. Some

    ideas are sketched on the following pages.

  • 8/9/2019 02 MN1790 Coverage Planning

    80/99

    MN 1790 2 - 80

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Basics about Digital Map DataBasics about Digital Map Data

    Definition of terms

    • Geoid• Spheroid / Ellipsoid

    • Geodetic Datum / Map Datum / Datum

    Projections

    • Are used to transfer the 3 dimensional earth to a 2 dimensional map

    • “Nobody is perfect”

    • No projection is at the same time exact in area, exact in angle and exact in distance.

  • 8/9/2019 02 MN1790 Coverage Planning

    81/99

    MN 1790 2 - 81

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Geodetic datum — simplified mathematical representation of the size and shape of the earth

    1. Local geodetic datum — best approximates the size and the shape of the particular part of 

    the earth

    2. Geocentric datum — best approximates the size and shape of the earth as a whole

    spheroidgeoid

    The GPS uses a geocentric datum to express its position because of its global extent.

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    82/99

    MN 1790 2 - 82

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Two coordinates systems are implicitly associated with a geodetic datum:

    a. Cartesian coordinate systemb. Geodetic (geographic) coordinate system

     A third coordinate system is provided by a map projection.

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    83/99

    MN 1790 2 - 83

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    1. reference surface

    2. mapping surface

    3. projecton plane

    Map projections:

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    84/99

    MN 1790 2 - 84

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Cylindrical projection — true at the equator and distortion increases toward the poles

    1. Regular cylindrical projections

    a. Equirectangular projection

    b. Mercator projection

    c. Lambert‘s cylindrical equal area

    d. Gall‘s sterographic cylindrical

    e. Miller cylindrical projection

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    85/99

  • 8/9/2019 02 MN1790 Coverage Planning

    86/99

    MN 1790 2 - 86

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    3. Oblique cylindrical projections

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    87/99

    MN 1790 2 - 87

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Conic projections — true along some parallel somewhere between the equator and a pole and

    distortion increases away from this standard

    1. Lambert conformal conic

    2. Bipolar oblique conic conformal

    3. Albers equal-area conic

    4. Lambert equal-area conic

    5. Perspective conic

    6. Polyconic

    7. Rectangular polyconic

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    88/99

    MN 1790 2 - 88

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Azimuthal projections — true only at their centre point, but generally distortion is worst at the

    edge of the map

    1. The Gnomonic projection

    2. The azimuthal equidistant projection

    3. Lambert azimuthal equal-area

    4. etc.

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    89/99

    MN 1790 2 - 89

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Compromise projection

    1. Gall‘s projection

    2. Miller projection

    3. Robinson projection

    4. Van der Grinten Projection

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    90/99

    MN 1790 2 - 90

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    For transformation of parameters (Latitude and Longitude) from the 3 dimensional representation into

    a 2 dimensional rectangular system often a combination of WGS-84 ellipsoid & UTM rectangular

    coordinate system is used (like e.g. for GPS).UTM (Universal Transverse Mercator) system defines 2 dimensional positions using zone numbers

    and zone characters for longitudinal and horizontal scaling:

    UTM zone number (1-60):

    longitudinal strips: range: 80° south latitude - 84° north latitude, width: 6 degree

    UTM zone characters (using 20 characters, also called designators):

    horizontal strips: range: 180° east - 180° west longitude, width: 8 degree

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    91/99

    MN 1790 2 - 91

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Hints concerning the usage of maps:

    • Avoid in any case the referencing of geodetic co-ordinates to a wrong geodetic datum.Referencing to a wrong datum can result in position errors of several hundred meters! (In

    the meantime people agreed to use in the future the World Geodetic System 1984

    [WGS-84] for all maps.)

    • Remember that e.g. different nations may use different geodetic datum.

    • If a datum conversion is necessary a careful transformation of seven parameters is necessary:

    3 for translation, 3 for rotation, 1 for scaling

    • For daily work, try to use the same geodetic datum: in your planning tool(s), for your

    GPS systems, and for your paper maps.

    • Prefer the following map scales:

    1:50000 (for rural areas and 900 MHz cell planning)

    1:20000 (for rural areas and 1800/1900 MHz cell planning)

    1:10000- 1:5000 (for urban areas and for micro cell planning)

    In the maps, height information should be included as contour lines.

    Basics about Digital Map DataBasics about Digital Map Data

  • 8/9/2019 02 MN1790 Coverage Planning

    92/99

    MN 1790 2 - 92

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Principles of Planning Tools and their usagePrinciples of Planning Tools and their usage

    Main Task of radio network planning tools:

    • Coverage planning

    • Capacity planning

    • Frequency planning

    • Link Budget calculations

    • Propagation predictions

    • Propagation model fine tuning

    • Co- and adjacent channel interference analysis

    • Macro, micro cell planning

    • Handling of multi-layer structures

    • Repeater system handling

    • Microwave planning

    • …

  • 8/9/2019 02 MN1790 Coverage Planning

    93/99

    MN 1790 2 - 93

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Principles of Planning Tools and their usagePrinciples of Planning Tools and their usage

    Remarks to radio network planning tools and required digital map data:

    Tools using empirical propagation models require map data with less resolution compared to tools

    working with deterministic propagation models.

    In case empirical propagation models are used:

    • Typical pixel size: 50m x 50m to 200m x 200m

    • Using statistics, the signal variation around the mean value is taken into account

    • In case that the BS antenna is higher then the surrounding, the clutter correction term of the

    target pixel contain most propagation effects. For the clutter boundaries often several pixels

    before the target pixel are taken into account.

    In case deterministic propagation models are used:

    • Digital data with high resolution are required (often very expensive)

    • Typical pixel size: 2m x 2m to 10m x 10m

    • Mostly used for big cities only

  • 8/9/2019 02 MN1790 Coverage Planning

    94/99

    MN 1790 2 - 94

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Principles of Planning Tools and their usagePrinciples of Planning Tools and their usage

    Remarks to tools and required computational time:

    Depending not only on the hardware used but also on the algorithms behind the software,

    the computational time required by different tools varies significantly.

  • 8/9/2019 02 MN1790 Coverage Planning

    95/99

    MN 1790 2 - 95

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Principles of Planning Tools and their usagePrinciples of Planning Tools and their usage

    Planning tools do not run fully automatically but always require some input and anintelligent and creative usage.

    Remember:

    Garbage in Garbage out

  • 8/9/2019 02 MN1790 Coverage Planning

    96/99

    MN 1790 2 - 96

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Measurement Tools supporting Cell PlanningMeasurement Tools supporting Cell Planning

    Fine tuning (calibration) of propagation models:

    Why? When? How?

    • Since propagation models does not necessarily describe exactly the real situation, a fine tuning

    of the models is necessary (e.g. clutter data may vary from country to country).

    • This tool tuning should be done in the start phase of the network planning (i.e. before a detailed

    plan is performed).

    • A test transmitter is located at typical site locations, a test receiver measures the RX_LEV

    along predefined measurement routes. These measured values are taken as input for the tool fine

    tuning.

  • 8/9/2019 02 MN1790 Coverage Planning

    97/99

  • 8/9/2019 02 MN1790 Coverage Planning

    98/99

    MN 1790 2 - 98

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    Omni versus Sector CellsOmni versus Sector Cells

    Omni sites:

    Advantages of omni sites:

    • Trunking gain (especially interesting for those networks having only a few frequencies)

    • Omni antennas are usually less bulky than sector antennas

    • Suitable in those areas, where the surrounding terrain limits the coverage (before the

    maximum omni cell radius is reached)

    Disadvantages of omni sites:

    • In case of horizontal antenna diversity: Diversity gain depends on direction

    • Greater reuse distance required

    • Less flexibility in network optimization (concerning antenna tilt, power control

    parameters, handover parameters)

    • TX/RX antenna separation difficult (usually TX/RX antennas are mounted on different

    vertical levels to achieve sufficient separation)

    • Limited mounting positions: no wall mounting possible

  • 8/9/2019 02 MN1790 Coverage Planning

    99/99

     ©

    T E  C H C  OM

     C  on s  ul     t   i    n  g ®

    ExercisesExercises

    1) Consider:

    an extended cell with 100 km cell radius covering a sea area (clutter term: 30 dB),a 900 MHz mobile station of power class 4,

    a BS with the GSM minimum receiver sensitivity,

    an (BS) antenna gain of 15 dBi.

    What should be the height of the BS antenna?

    2) Consider:

    a mobile station with 2 Watts output power maximum,

    a BS receiver sensitivity of –104 dBm,

    an (BS) antenna gain of 15 dBi.

    For a satellite carrying the BS, what would be the maximum radius for the satellite orbit.

    3) How many sites can be saved in principle if TMAs with 6 dB gain are used in the

    network? Use typical values and Hata’s propagation formula for calculation.


Recommended