+ All Categories
Home > Documents > 0.5V Analog Integrated Circuits - Electrical Engineeringkinget/talks/kinget_0p5V_analog...• Why...

0.5V Analog Integrated Circuits - Electrical Engineeringkinget/talks/kinget_0p5V_analog...• Why...

Date post: 11-Jun-2018
Category:
Upload: duongnguyet
View: 222 times
Download: 5 times
Share this document with a friend
53
Peter Kinget (In collaboration with S. Chatterjee and Y. Tsividis) 0.5V Analog Integrated Circuits Department of Electrical Engineering
Transcript

Peter Kinget

(In collaboration with S. Chatterjee and Y. Tsividis)

0.5V AnalogIntegrated Circuits

Department of Electrical Engineering

www.cisl.columbia.edu

Analog, Digital, Mixed-Mode and RF Integrated Circuits

© Kinget 2005 3

Analog, Mixed Signal and RF Integrated Circuit Design Research

Ultra-low voltage circuits: 0.5V

RF integratedoscillators

Ultra-widebandRF circuits

Injection lockedcircuits

Biological Interfaces

Device mismatch & its influence onAnalog & RF ics

© Kinget 2005 4

Sample of Recent Chips

© Kinget 2005 5

Outline

• Why 0.5 V Analog Integrated Circuits?

• Design Challenges & Opportunities at 0.5 V.

• 0.5 V Operational Transconductance Amplifiers.

• 0.5 V Biasing circuits.

• 0.5 V Fully Integrated Active RC filter with on-chip automatic tuning.

• Conclusions.

© Kinget 2005 6

Analog in a Mixed Signal World• Sounds, images, EM waves, …. are ANALOG.• Information processing & storage are DIGITAL.• System-on-chip is powerful economic paradigm.

• Digital drives technology development & choice.

If Analog can be done in a digital technology, it will be done.

Most Digital ICs need some Analog!

D & A A & D A & D

© Kinget 2005 7

CMOS Trends: Supply Voltage

Analog VDD

Digital VDD

Digital VT

Technology node [nm]

[ITRS'04]

–O– High Perf.–∆– Low Standby–V– Low Power

© Kinget 2005 8

CMOS Trends: On chip Clock Speed

[ITRS'04]

Technology node [nm]

© Kinget 2005 9

MOS transistor

• Transconductor or Current SourceVDS > 0.15V (for VGS-VT ≤ 0.2)

• Switch/Resistoronly for very small signal range !?

SwitchResistor:

TransconductorWeak

Inversion

StrongInversion

0.24µm/0.36µm nMOSin 0.18µm CMOS

5φT

© Kinget 2005 10

Common Source Amplifier

0.15 V

0.15 V

0.2 Vpp

0.5 + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

© Kinget 2005 11

Common Drain Buffer

0.15 V

0.15 V

0.2 Vpp

0.5 + 0.15 + 0.1 + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

© Kinget 2005 12

Common Gate Amplifier / Cascode

0.15 V

0.15 V0.5 + 0.15 + x + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

0.15 V

© Kinget 2005 13

Differential OTA design challenges

0.15 V

0.5 V

0.65 V

0.8 V

-0.15 V

0.15 V

0.15 V

0.3 - 0.35 V

0.5 V

0.1 V

0.4 V0.4 V

0.1 V0.15 - 0.35 V

0.4 V

0.25 V

VT= 0.5 V VDS,sat= 0.15 V

© Kinget 2005 14

CMFB in Folded Cascode OTA

Common Mode Feedback requires ‘fast’ amplifier operating from Vout,CM= VDD/2 !?

© Kinget 2005 15

Challenges at 0.5 V• VDS,sat related challenges:

– Independent of region of operation!– Independent of VT!– Signal swings are limited.– Avoid transistor stacks.

• VGS related challenges:– Depend on region of operation & (VGS-VT).– Depend on VT!– Avoid signal swing on gate.

© Kinget/Chatterjee/Tsividis 16

‘Feedback to the rescue’

CM @ OTA-in > CM @ input and output

[Kar00] [Bul00]

© Kinget/Chatterjee/Tsividis 17

Opportunities at 0.5 V: MOS 4-terminal device

Body

Source

Drain

Gate

G D BS Sub

n+

n+n+n+ n+p+ p+

p

p

nMOS cross section(deep n-well process)

nMOS circuit equivalent(deep n-well process)

© Kinget/Chatterjee/Tsividis 18

Opportunities at 0.5 V• Body terminal

– Signal input: [Guz87]– VTH reduction & control

[Kob94], [Von94]– Bias control

• Latch-up not an issue– Assuming VDD and GND are

‘well behaved’.• Techniques can be ported

to ‘double gate’ devices

VBS 0.5 V

500

0

VTH

mV

300

430360

0.0

VGS 0.5 V0.2

3

0

IDS VBS ↑

µA

0.24µm/0.36µm nMOSin 0.18µm CMOS

0.5 V Body-input OTA

© Kinget/Chatterjee/Tsividis 20

Low-voltage differential-gain stage

0.15 - 0.35 V

0.5 V0.25 V

0.25 V

0.25 V

0.07 V

© Kinget/Chatterjee/Tsividis 21

Single-stage gain, CMRR

Differential mode load: gds

Common mode load: (gm1 + gm3)

© Kinget/Chatterjee/Tsividis 22

Two-stage fully-differential OTA

Pole splitting using Miller capacitor

© Kinget/Chatterjee/Tsividis 23

Setup for open-loop measurements

0.18 µm CMOS

© Kinget/Chatterjee/Tsividis 24

Open loop frequency response

DC gain: 52 dBGBW: 2.5 MHz

Phase Margin: 450

Frequency [Hz]

Simulation

Measurement

© Kinget/Chatterjee/Tsividis 25

Bulk-input OTA performanceC

lose

d lo

opO

pen

loop

0.5 V Gate-input OTA

© Kinget/Chatterjee/Tsividis 27

Setting common-mode voltages

0.5 V

0.4 V

0.4 V

0.5 V

Rb = 2/3 • Ri||Rf

0.25 V 0.25 V

© Kinget/Chatterjee/Tsividis 28

0.5 V OTA gate-input stage

© Kinget/Chatterjee/Tsividis 29

Two stage OTA

• Common-mode output of first stage is 0.4 V

0.25 V

0.4 V

0.4 V

© Kinget/Chatterjee/Tsividis 30

Two-stage fully differential 0.5 V OTA with Miller compensation

© Kinget/Chatterjee/Tsividis 31

Open Loop Performance (meas.)

Frequency [Hz]

Gai

n [d

B]

42 dB

GBW: 10 MHz

CL= 10pF (diff.)RL= 50kΩIDD= 150 µA

62 dB 350mV; automatic bias

© Kinget/Chatterjee/Tsividis 32

66.711.413289.5100 η [1/V]

----Depl.MOS

Lat.BJT

-Lat.BJT

SpecialDevices

0.180.180.50.72.50.50.352Techn. [um]

DDDSSSSSSE/Diff.101014-1220722CL [pF]75110-4600.5-5300Power [uW]102.541.36e-31.30.21.3GBW [MHz]

50/6252598470537049ADC [dB]0.50.50.91.30.90.811VDD [V]

G-IB-I[Pel98]

[Fer96]

[Sto02]

[Leh01]

[Las00]

[Bla98]

On-chip automatic biasing circuits

© Kinget/Chatterjee/Tsividis 34

On-chip biasing circuits

Vbn generating circuit

Level shift biasing circuit

(Simplified OTA)

© Kinget/Chatterjee/Tsividis 35

Error amplifier for biasing

• 20 kHz GBW for 1 pF load• 2 µA current• Controlled body voltage sets the amplifier threshold

Vin Vout

Vou

t[V

]

Vin [V]

© Kinget/Chatterjee/Tsividis 36

OTA dc transfer characteristics and VNR generation

VNR generating circuit

Replica of OTA stage 1

Input differential voltage [mV]

Out

put d

i ff v

olta

g e [V

]

Increasing VNR

© Kinget/Chatterjee/Tsividis 37

Open Loop Performance (meas.)

Frequency [Hz]

Gai

n [d

B]

42 dB

GBW: 10 MHz

CL= 10pF (diff.)RL= 50kΩIDD= 150 µA

62 dB 350mV; automatic bias

0.5 V Continuous time tunable active RC Filter

© Kinget/Chatterjee/Tsividis 39

0.5 V 5th order elliptic LPF

Frequency [Hz]

Gai

n [d

B]

280 kHz

135 kHz

© Kinget/Chatterjee/Tsividis 40

Filter tuning challenges at 0.5 V• Gm-C• MOSFET-C• Switching banks of R’s and C’s• Varactor-R techniques

Vtune [V]

Cgs

/Cox

Gate (0.4 V) Source

Drain (0.25 V)

Body (Vtune)

© Kinget/Chatterjee/Tsividis 41

Low-voltage tunable integrator

0.25 V 0.25 V

0.4 V

+

-Vin Vout

+

-

VDD

VDD

© Kinget/Chatterjee/Tsividis 42

Die photograph

• 0.18 µm CMOS

• MIM capacitors

• High-res resistors

• Standard VT

• Triple well devices

Filter PLL

Biasing circuits

OTAs

1mm

1mm

© Kinget/Chatterjee/Tsividis 43Frequency [Hz]

Gai

n [d

B]

Measured filter response for different supply voltages

© Kinget/Chatterjee/Tsividis 44

Measured filter response for different tuning voltages

Frequency [Hz]

Gai

n [d

B]

88 - 154 kHz(1.75x)

© Kinget/Chatterjee/Tsividis 45

Measured filter response for different chips

Frequency [Hz]

Gai

n [d

B]

1.3 % std dev in cut-off

frequency for 20 samples

© Kinget/Chatterjee/Tsividis 46

Measured 3rd order inter-modulation

25 kHz

20 kHz

15 kHz

30 kHz

40 dB

Input differential rms amplitude [V]

Out

put d

iffe r

entia

l rm

s am

plitu

d e [ V

]

Effect of gain enhancement

Frequency [Hz]

Gai

n [d

B]

Without gain-enhancement

With gain-enhancement

© Kinget/Chatterjee/Tsividis 48

Performance summary at 27C

727285104VCO feed-thru @280kHz [µV rms]

69.0150.5

84.5148.0

88.0154.5

96.5153.0

Tuning range [kHz] Vtune = VDD

Vtune = 0.0 V

58575755Dynamic range [dB]5353Out-of-band IIP3 [dBV]-3-3-3-5In-band IIP3 [dBV]50505050Input [mV rms] (100kHz / 1% THD)65687487Noise [µV rms]4.33.32.21.5Total current [mA]

135.0135.0135.0135.0-3 dB cut-off frequency [kHz]0.600.550.500.45VDD [V]

Functionality tested from 5C to 85C at 0.5 V

• Measured CMRR (10 kHz common mode tone): 65 dB• Measured PSRR (10 kHz tone on power supply): 43 dB

© Kinget/Chatterjee/Tsividis 49

Conclusions• Developed true low voltage design

techniques for 0.5 V analog circuits.• Low voltage OTAs designed - can be used as

building block in other designs.• Automatic biasing and tuning through bodies

of devices.• PLL-tuned 5th order elliptic low-pass filter

demonstrated.• Step towards 0.5 V analog circuits for the

nano-scale CMOS era

© Kinget 2005 52

Acknowledgments

• Analog Devices for supporting part of this work.

© Kinget 2005 53

More details

• [Cha 05] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V filter with PLL-based tuning in 0.18 um CMOS technology," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 506-507, February 2005.

• [Cha 04] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V bulk input fully differential operational transconductance amplifier," in European Solid-State Circuits Conference (ESSCIRC), pp.147-150, September 2004.

© Kinget 2005 54

References• [Guz 87] A. Guzinski, M. Bialko, and J. Matheau, "Body driven

differential amplifier for application in continuous-time active-C filter,''Proceedings of ECCD, pp. 315--319, 1987.

• [Bla 98] B. Blalock, P. Allen, and G. Rincon-Mora, "Designing 1-V op-amps using standard digital CMOS technology,'‘ IEEE Trans. Circuits Syst. II, vol. 45, pp. 769--780, July 1998.

• [Las 00] K. Lasanen, E. Raisanen-Ruotsalainen, and J. Kostamovaara, "A 1-V 5 µW CMOS-opamp with bulk-driven input transistors,'' 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 1038--1041, 2000.

• [Leh 01] T. Lehmann and M. Cassia, "1-V power supply CMOS cascode amplifier,'' IEEE J. Solid-State Circuits, vol. 36, pp. 1082--1086, July 2001.

• [Sto 02] T. Stockstad and H. Yoshizawa, "A 0.9-V 0.5-µA rail-to-rail CMOS operational amplifier,'' IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 286--292, 2002.

• [Fer 96] G. Ferri and W. Sansen, "A 1.3V opamp in standard 0.7µmCMOS with constant gm and rail-to-rail input and output stages,''IEEE International Solid State Circuits Conference, pp. 382--383, 478, 1996.

© Kinget 2005 55

References• [Pel 98] V. Peluso, P. Vancorenland, A. M. Marques, M. Steyaert,

and W. Sansen, "A 900-mV low-power ∆Σ A/D converter with 77-dB dynamic range,'' IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1887--1897, Dec. 1998.

• [Kob94] T. Kobayashi and T. Sakurai, “Self-adjusting threshold-voltage scheme (SATS) for low-voltage high-speed operation,” in IEEE Custom Integrated Circuits Conference (CICC), May 1994, pp. 271–274.

• [Von94] V. R. Kaenel, M. D. Pardoen, E. Dijkstra, and E. A. Vittoz, “Automatic adjustment of threshold and supply voltages for minimum power consumption in CMOS digital circuits,” in IEEE Symposium on Low Power Electronics, pp. 78–79, 1994.

• [Kar00] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E. Lee, “Low-voltage analog circuit design based on biased inverting opampconfiguration,” IEEE Trans. Circuits Syst. II, vol. 47, no. 3, pp. 176–184, March 2000.

• [Bul00] K. Bult, “Analog design in deep sub-micron CMOS,” in European Solid-State Circuits Conference (ESSCIRC),September 2000, pp. 11–17.


Recommended