+ All Categories
Home > Documents > 07 Axisymmetric Finite Element Modeling

07 Axisymmetric Finite Element Modeling

Date post: 02-Jun-2018
Category:
Upload: schubertdeierlein
View: 229 times
Download: 0 times
Share this document with a friend

of 14

Transcript
  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    1/14

    8/12/2014

    1

    CE4257: Linear Finite Element Analysi s:

    Part C: Axisymmetric Elements

    Somsak SwaddiwudhipongDepartment of Civil & Environmental Engineering

    National University of Singapore

    Tel: 6516-2173Room: E1A-07-10

    Email: [email protected]

    2

    Objectives

    To demonstrate the formulation of axisymmetric finite elements

    and their applications to solve axisymmetric problems

    (involving axisymmetric geometries under axisymmetric loads).

    Intended Outcome

    You should be ab le to (i) develop axisymmetric finite elements,

    (ii) adopt appr opr iate axis ymmetr ic element s to analyse

    axis ymmetr ic problems and (iii) further study to solve

    problems involving axisymmetric geometries under

    nonsymmetrical loads.

    Objectives and Intended Outcome

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    2/14

    8/12/2014

    2

    Part C: Axisymmetric Elements

    4.8 Axisymmetric Elements4.8.1 Elasticity of Axisymmetric Problems4.8.2 Triangular Axisymmetric Element, TA34.8.3 Quadrilateral Axisymmetric Element, QA44.8.4 Boundary Condit ions4.8.5 Concluding Remarks

    4

    Applications of Axisymmet ric Elements

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    3/14

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    4/14

    8/12/2014

    4

    4.8.1 Elasticity of Axisymmetric Problems

    (4.8.1)

    (4.8.2)

    Only displacements in the r-z plane exist and all variables are independentof . The strains are given by:

    ; ; ;

    0

    0

    10

    r z rz

    r

    z

    rz

    u w u w ur z r r z

    r

    u zw

    r

    z r

    D

    1 01 0

    1 0(1 )(1 2 )

    1 22

    E

    sym

    D(4.8.3)

    (4.8.4)

    4 2

    Similar derivations may be made for displacement interpolation functionw(r,z), in the z-direction.

    (4.8.5)

    ( ) / det

    det *

    1

    1 1 2 2 3 3 2

    3

    1 1

    2 2

    3 3

    1 2 3

    1 2 3 3 2 1 2 3 1 3 2

    2 3 1 1 3 2 3 1 2 1 3

    3 1 2 2 1 3 1 2 3 2 1

    111

    2

    i i i i

    uu u u u

    u

    r zr zr z

    u N N N N N N

    N a b r c za r z r z b z z c r r a r z r z b z z c r r a r z r z b z z c r r

    area of triangle

    A

    A

    (4.8.6)

    (4.8.7)

    Writing both displacements in vector form, 11

    21 1 2 2 3 3

    21 1 2 2 3 3

    3

    3

    1 2 3

    1 2 3

    0 0 00 0 0

    uwuu u u uww v v vuw

    N N NN N NN N NN N N

    iu Nu

    4.8.2 Triangular Axisymmetric Element, TA3 :

    (4.8.8)

    r

    z Similar to T3 element,

    w1

    w2

    Fig 4.8.3 Triangularaxisymmetric element

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    5/14

    8/12/2014

    5

    Strain-Displacement Relation

    (4.8.9)

    Formulation procedure for element properties is similar to that of T3element. We have to add row 3 in strain matrix for hoop strain, that is,

    Strain matrix B is not a constant matrix.

    31 2

    1

    131 2

    2

    21 2 3

    3

    1 1 2 2 3 3 3

    00 0 0

    0 0 0 0

    10 0 0 0

    r

    z

    rz

    N N N r r r r

    w N N N u z z z z

    ww N N N r r r r

    N N N N N N w z r z r z r z r

    u

    u

    u

    iBu

    (4.8.10)

    31 2

    1 2 3

    1 1 2

    2

    2 3

    3

    3

    1

    00 0

    0 0 01

    2 2 22

    0 0 0

    bb b

    c c c

    A A A A

    c b c b c

    N N

    r r r

    b

    N

    B

    r r r

    Stiffness Matrix

    (4.8.11).2V A

    dV r dr dz T TK B DB B DB

    B is not a constant matrix and the evaluation of the integral in Eq (4.8.11)is no longer a simple procedure. We adopt either numerical in tegrationor t he following approximate method to evaluate the integral values.

    is B evaluated at and . Eq (4.8.12) provides acceptable accurateresults if small elements are used in the regions of high stressgradients. Once the consistent vector F i is evaluated as shown in thenext few slides, we have got the required set of element stiffnessequations: iu

    2

    V VdV dV r A

    T T TK K B DB B DB B DB

    B r z

    (4.8.12)

    1 2 33 r r r r 1 2 33 z z z z

    , r z (4.8.13)

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    6/14

    8/12/2014

    6

    Consistent Force Vectors ::

    F = P+P T+P b(a) Nodal Circumferential Line Forces, p i:

    1 1 1 1 2 2 2 2 3 3 3 32T

    r z r z r zr p r p r p r p r p r p P

    (4.8.14)

    (4.8.15)

    2i i iP r p

    We normally set a uniform line forces along the circular ring node i. Thecircumferential line load of p ir or p iz on the structure is equivalent to a pointload P ir or P iz on axisymmetric element at the same node on the elementscross sectional view, and

    If only a line force is applied along a circular ring node, say node 2,then only r 2p2r and r 2p2z exist. All other terms in Eq (4.8.15) vanish.

    2

    r

    z

    1

    3iP

    Consistent Force Vector is derived from 3 actions:(i) Nodal circumferential line forces, p i;(ii) Surface tractions, T along an edge;(iii) Body Forces, b

    Consistent Force Vectors

    (4.8.17)

    (b) Surface Tractions, T along Edge 1-2:

    (4.8.16)

    1 1

    1 1

    2 2

    2 2

    3

    3

    2

    0 0

    0 0

    0 0 2 2

    0 0

    0 0 00 0 0

    T A S

    r r

    z zS S

    dA r dS

    N rL

    N rL

    N T T rLrdS dS

    N T T rL

    N N

    T TP N T N T S is the coordinatealong element edge.

    The kernel of integral in Eq (4.8.16) involves LiL j that can be integrated inaccordance with Eq (4.1.31) and finally we have for any inclined edge, l12 :

    1 2

    1 2

    1 212

    1 2

    (2 )

    (2 )

    ( 2 )2( 2 )6

    0

    0

    r

    z

    r T

    z

    r r T

    r r T

    r r T lr r T

    P122

    2

    0

    0

    r

    z

    r T

    z

    T

    T

    T rlT

    P (4.8.18)

    For vertical edge,r 1=r 2=r and hence:

    l12 is the length of edge 1-2.

    1 1 2 2 3 3 r r L r L r L

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    7/14

    8/12/2014

    7

    Consistent Force Vectors

    (4.8.20)

    (4.8.19)

    1 1

    1 1

    2 2

    2 2

    3 3

    3 3

    0 00 0

    0 02 2 2

    0 0

    0 0

    0 0

    r r z zV A A A

    N rL N rL

    N rLb bdV r dA rdA dA

    N rLb b

    N rL

    N rL

    T TbP N b N b

    (c) Body Forces, b :

    The kernel of integral in Eq (4.8.19) involves LiL jthat can be integrated using Eq (4.1.30) and finallywe have, for constant b r and b z:

    _

    1

    _

    1

    _ 2

    _

    2

    _

    3

    _

    3

    ( 3 )

    ( 3 )

    ( 3 )212

    ( 3 )

    ( 3 )

    ( 3 )

    r

    z

    r b

    z

    r

    z

    r r b

    r r b

    r r b A

    r r b

    r r b

    r r b

    P

    Even when b r and b z are constant in eachelement, P b does not distribute the valuesat each node equally. Why?

    1 1 2 2 3 3 r r L r L r L

    Ex 4.8.1 Triangular Axisymmetric Element, TA3 :The coordinates (in cm) of a triangular ringelement are as shown in Fig E4.8.1. Theelement is under the body forces of b r =0 andbz=-10 N/cm 3. Evaluate the approximatestrain matrix and the consistent force vector.

    ( )( ) ( )( )

    ( )( ) ( )( )( )( ) ( )( )

    det1 1

    2 2

    3 3

    1 2 3 3 2

    2 3 1 1 3

    3 1 2 2 1

    1 2 3

    2 3 1

    3 1 2

    1 3 2

    2 1 3

    3 2 1

    4 6 3 4 12

    4 6 26 4 2

    4 4 0

    3 4 1

    2 3 1

    4 2 2

    1 1 2 41 1 4 41

    3 4 2 6 02 4 4 4 8

    r zr zr z

    a r z r za r z r za r z r z

    b z zb z zb z zc r r c r r c r r

    A

    ( ) ( ) ( )

    (

    1 3 6

    24 12 12 12 8 16 4

    2 areaof triangle) (b)

    Fig E4.8.1 Triangular axisymmetricelement

    (c)

    _ _ 14At ( , ) (3, )

    3r z

    ( )2 2 2 214 4

    0 29 9

    2r r r

    AN a zb c

    ( )3 3 3 38 28 4

    03 9 9

    2r r r

    AN a zb c

    ( )1 1 1 112 1 14 4

    23 3 3 9

    2r r r

    AN a zb c

    [Area of triangle is (2)(2)/2=2].

    ( ) /2 i i

    i ir r r AN a zb c Det AEq (4.8.10):

    (a)

    r

    u22

    (4,4)(2,4)

    (3.6)

    z

    1

    3

    u1

    w1 w2

    Eq (4.8.6):

    310 N cm zb

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    8/14

    8/12/2014

    8

    Strain Matrix and Force Vector

    Eq (4.8.9):

    (d)

    31 2

    1 2 3

    1 2 3

    1 1 2 2 3 3

    00 0

    0 0 01

    2 2 22

    0 0 0

    bb b

    c c c

    AN AN AN Ar r r

    c b c b c b

    B _

    2 0 2 0 0 0

    0 1 0 1 0 21

    4 4 44

    0 0 09 9 9

    1 2 1 2 2 0

    B

    _

    1

    _

    1

    _ 2

    _

    2

    _

    3

    _

    3

    ( 3 )0 0

    ( 3 )(2 3(3))( 10) 110

    ( 3 ) 0 02 N

    (4 3(3))( 10) 13012 3 3( 3 )

    0 0( 3 ) (3 3(3))( 10) 120

    ( 3 )

    r

    z

    r b

    z

    r

    z

    r r b

    r r b

    r r b A

    r r b

    r r b

    r r b

    P

    Eq (4.8.20):

    (e)

    P b does not distribute thevalues at each node equally.

    2

    (4,4)(2,4)

    (3.6)

    z

    1

    3

    u1

    w1 w2

    r

    4.8.3 Quadrilateral Axisymmetric Element, QA4 :

    1 11 24 4

    1 13 44 4

    (1 )(1 ) (1 )(1 )

    (1 )(1 ) (1 )(1 )

    N s t N s t

    N s t N s t

    1

    1

    2

    1 2 3 4 2

    1 2 3 4 3

    3

    4

    4

    0 0 0 0

    0 0 0 0

    r

    z

    r

    N N N N zr

    N N N N r z

    z

    r

    z

    As an example, we will consider a QA4 element. The shape functions aresimilar to those of Q4 element as follows:

    Geometry:

    (4.8.21)

    (4.8.22)

    Displacement:

    1

    1

    2

    1 2 3 4 2

    1 2 3 4 3

    3

    4

    4

    0 0 0 0

    0 0 0 0

    u

    w

    u

    N N N N wu

    N N N N uw

    w

    u

    w

    (4.8.23)

    Fig 4.8.4 AxisymmetricQA4 master element

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    9/14

    8/12/2014

    9

    Strain-Displacement Relation :

    (4.8.24)

    Formulation procedure for element properties is similar to that of Q4element. We have to add row 3 in strain matrix for hoop strain, that is,

    Strain matrix B is normally derived through iso-parametric concept usingJacobian transformation matrix.

    31 2 4

    31 2 4

    1 2 3 4

    1 1 2 2 4 43 3

    00 0 00

    0 0 0 0 0

    10 0 0 00

    r

    z

    rz

    N N N N r r r r r

    N N N N u z z z z zw N N N N

    r r r r r N N N N N N N N

    z r z r z r z r z r

    1

    1

    2

    2

    3

    3

    4

    4

    u

    w

    u

    w

    u

    w

    u

    w

    iBu

    1 1 2 2 3 3 4 4, , , , r N s t r N s t r N s t r N s t r (4.8.22)

    Jacobian Transformation Matrix

    Chain rule gives:

    where J is the Jacobian transformation matrix.

    (4.8.25)

    (4.8.26)

    u u r u zs r s z su u r u zt r t z t

    [ ]

    u r z u us s s r r J u r z u ut t t z z

    1 1 1

    u u z z u z u z ur s t s s t s s t J u u r r u r u r u J J z t t s t s t t s

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    10/14

    8/12/2014

    10

    Jacobian Transformation Matrix :

    (4.8.22)

    (4.8.28)

    1 2

    43[ ]

    r zJ Js sJJ Jr z

    t t

    (4.8.27)

    3 31 2 4 1 2 44 41 1 2 3 2 1 2 3

    3 31 2 4 1 2 44 4 43 1 2 3 1 2 3

    N NN N N NN NJ r r r r J z z z z

    s s s s s s s s

    N NN N N NN NJ r r r r J z z z zt t t t t t t t

    Geometry:

    Jacobian:

    The characteristics (qualities) of the transformation (Jacobian) J matrixaffect greatly the FE performances adopting iso-parametric concept.

    1 1 2 2 3 3 4 4, , , , r N s t r N s t r N s t r N s t r

    1 1 2 2 3 3 4 4, , , , z N s t z N s t z N s t z N s t z

    Elements of Strain Matrix

    (4.8.29)

    (4.8.31)

    (4.8.30)

    4 2

    1

    1 3

    1 1 1

    u u z z u z u z u u u

    J Jr s t s s t s s t s tJu u J r r u r u r u u u

    J Jz t t s t s t t s t s

    J J

    1

    2

    3

    4

    3 31 1 2 2 4 44 4 4 42 2 2 2

    3 31 1 2 2 4 41 3 1 3 1 3 1 3

    41 2 3

    1

    1

    r r r r

    z

    uu

    uu

    N NN N N N N NJ J J J J J J J

    s t s t s t s tN NN N N N N NJ J J J J J J J J

    t s t s t s t s

    uB B B Br Bu

    z

    1

    2

    3

    4

    4 2

    42 31 3

    i iir

    zz z i iiz

    uuuu

    N NB J J J

    s tB B B N N

    B J J Jt s

    14 2

    2

    31 3

    4

    41 2 3

    41 2 3

    1 1 r r r r zz z z

    ww z w z w w wJ J wr t s s t s t

    ww r w r w w wJ J

    z s t t s t s w

    B B B BB B B BJ J

    1 1 2 2 3 3 4 4 N u N u N u N uu

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    11/14

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    12/14

    8/12/2014

    12

    Consistent Force Vectors

    F = P+P T+P b

    (a) Nodal Circumferential Line Forces, p i:

    1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 42 T

    r z r z r z r zr p r p r p r p r p r p r p r pP

    (4.8.34)

    (4.8.35)

    2 i iP rp

    We normally set a uniform line forces along the circular ring node i. Theline load p ir or p iz on the structure is equivalent to a point load P ir or P iz onaxisymmetric element at the same node on the elements cross section,and

    If only a line force is applied along a circular ring node, say 3, then onlyr 3p3r and r 3p3z exist. All other terms in Eq (4.8.35) vanish.

    Consistent Force Vectors(b) Surface Traction, T:

    (4.8.36)

    1

    1

    21

    2

    31

    3

    4

    4

    0

    0

    0

    02 2

    0

    0

    0

    0

    ir T t t z A S

    N

    N

    N

    N T dA r dS r J ds

    N T

    N

    N

    N

    T TP N T N T

    1 1 2 2 3 3 4 4, , , , G G G G G G G Gr N s t r N s t r N s t r N s t r We normally adopt Gauss quadrature to evaluate the integrals.

    2 T A S

    dA r dS T TP N T N T

    Consider surface along t=t i: it t dS J ds

    2 dA rdS

    Note that dS is the differential length,while s is a natural coordinate.

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    13/14

    8/12/2014

    13

    Consistent Force Vectors

    (4.8.37)

    1

    1

    21 1

    2

    31 1

    3

    4

    4

    0

    0

    0

    02 2 .

    0

    0

    0

    0

    r zV A

    N

    N

    N

    N bdV r dA r J ds dt

    N b

    N

    N

    N

    T TbP N b N b

    (c) Body Force, b :

    1 1 2 2 3 3 4 4, , , , G G G G G G G Gr N s t r N s t r N s t r N s t r

    We normally adopt Gauss quadrature to evaluate the integrals.

    2 2 . dV rdA r J ds dt

    4.8.4 Boundary Conditions(a) Displacement u = 0 at the points along the axis of symmetry (z-axis);(b) Remove rigid body motion in the z-direction by setting w = 0 (at leastat one node).

    4.8.5 Concluding Remarks

    1. If geometry, materials and forces are axisymmetric, variables areindependent of and hence only u(r,z) and w(r,z) exist. 3-Dproblems can be solved as 2-D with additional hoop strain andstress;

    2. Formulation process follows that of corresponding plane elementswith hoop actions and appropriate boundary conditions;

    3. If geometry is axisymmetric but the loads are not, express the loadvia Fourier series comprising both symmetric and antisymmetriccomponents and each part is handled separately. More details aregiven in many textbooks including Asghar Bhati (2006), 154-166.

  • 8/10/2019 07 Axisymmetric Finite Element Modeling

    14/14

    8/12/2014

    30

    10 N/mm(4,3)

    (8,4)

    (11,10)

    (2,8)

    12

    43

    21

    3

    658

    7

    4

    z

    r

    Length unitin mm.

    Fig. E4.8.1: Applied forces in axisymmetri c element

    Exercise 4.8: Axisymmetric Elements

    Exercise E4.8.1: Establish the strain matrix B and the consistent forcevector for a quadrilateral ring element shown in Fig. E4.8.1.


Recommended