+ All Categories
Home > Documents > 1 Amplitude Modulation - gschyd.files.wordpress.com · 07. Refer Solution no: 4 . 08. Ans: (c) Sol:...

1 Amplitude Modulation - gschyd.files.wordpress.com · 07. Refer Solution no: 4 . 08. Ans: (c) Sol:...

Date post: 23-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
57
Amplitude Modulation 1 1 01. Ans: (d) Sol: µ + = 2 1 P P 2 C T 5 . 0 1 400 600 2 2 = = µ 1 2 1 2 2 = µ = µ 02. Ans: (b) Sol: µ + = = 2 1 P kW 10 P 2 C T For µ = 0.6, kW 47 . 8 18 . 1 10 P C = = 03. Ans: (c) Sol: Assuming single tone modulation, total power µ + = 2 1 P P 2 C T . For µ = 0, P T = P C and for µ = 1, P T = 1.5P C . 04. Ans: (c) Sol: µ = 1 given P t = P C µ + 2 1 2 P t = 2 3 P C = 1.5P C 05. Ans (c) Sol: C t I I 1 = 1 2 t t I 100 115 I = 2 μ 1 I I 2 C t 2 + = 2 μ 1 I I 2 t t 1 2 + = 2 μ 1 100 115 2 2 = µ = 0.803 06. Ans: (b) Sol: (t) m K 1 (t) m ˆ K ) (η Efficiency 2 2 a 2 2 a + = Where, (t) m 2 mean square value of m(t) K a = Amplitude sensitivity m(t) square wave 2 m 2 A (t) m = 100 A K 1 A K η % 2 m 2 a 2 m 2 a × + = ] A K μ [ 100 μ 1 μ η % m a 2 2 = × + = Maximum value of µ = 1 % 50 100 1 1 1 η % = × + = 07. Refer Solution no: 4 08. Ans: (c) Sol: s(t) = ω ω + t sin 2 1 t cos 2 1 1 2 1 cos t c ω cos t c ω + 4 1 [ ] t cos . t cos 2 1 c ω ω 4 1 [ ] t sin . t cos 2 2 c ω ω A m A m m(t) LEVEL – 1 (Solutions) ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)
Transcript
  • Amplitude Modulation 1 1

    01. Ans: (d)

    Sol:

    µ+=

    21PP

    2

    CT

    5.01400600

    2

    2

    =−=µ

    121

    2

    2

    =µ⇒=µ

    02. Ans: (b)

    Sol:

    µ+==

    21PkW10P

    2CT

    For µ = 0.6, kW47.818.1

    10PC ==

    03. Ans: (c) Sol: Assuming single tone modulation, total

    power

    µ+=

    21PP

    2CT .

    For µ= 0, PT = PC and for µ = 1, PT = 1.5PC. 04. Ans: (c) Sol: µ = 1 given

    Pt = PC

    µ+

    21

    2

    Pt = 23 PC = 1.5PC

    05. Ans (c) Sol: Ct II 1 =

    12 tt

    I100115I =

    2

    μ1II2

    Ct 2+=

    2

    μ1II2

    tt 12+=

    2

    μ1100115 22

    =−

    µ = 0.803 06. Ans: (b)

    Sol: (t)mK1

    (t)m̂K)(ηEfficiency

    22a

    22a

    +=

    Where, (t)m2 → mean square value of m(t)

    Ka = Amplitude sensitivity m(t) → square wave 2m

    2 A(t)m =

    100AK1

    AKη% 2

    m2a

    2m

    2a ×

    +=

    ]AKμ[100μ1

    μη% ma22

    =×+

    =

    Maximum value of µ = 1

    %5010011

    1η% =×+

    =

    07. Refer Solution no: 4 08. Ans: (c)

    Sol: s(t) =

    ω−ω+ tsin

    21tcos

    211 21 cos tcω

    ∴ cos tcω + 41 [ ]tcos.tcos2 1c ωω

    −41 [ ]tsin.tcos2 2c ωω

    Am

    −Am

    m(t)

    LEVEL – 1 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 2 Electronics & Communication Engg. ACE ∴ PSB = 1/8

    PT = Pc + PSB = 21 +

    81 = 5/8

    ∴Power efficiency =T

    SB

    PP

    ×100%= 20%

    09. Ans: (a) Sol: Total modulation indices

    22

    21

    2t µ+µ=µ = 0.3

    2 + 0.42 = 0.25

    ∴ Total power Pt = PC

    µ+

    21

    2t

    = 10 × 103

    +

    225.01 = 11.25kW

    10. Ans: (a) Sol: Efficiency (η)

    = %11.111005.02

    5.01002

    2

    2

    2

    =×+

    =×µ+

    µ

    11. Ans: (d) Sol: Following frequency will be present in the

    output 1000± 0.3 = 1000.3 kHz and 999.7 kHz and 1000±2 = 1002 kHz and 998 kHz

    12. Ans: (d)

    Sol: 2 fm = cf1001

    fc = 200 fm = 200 × 10 k = 2 MHz 13. Ans: (d) Sol: The given equation is compared with

    [ ] tf2costf2cos1A cmC ππµ+ Where AC = 2 µ = 0.4 fm = 3 K fc = 1 M

    56c 1021010

    21f ×=×=

    = 5×105 fc = 500 K

    2fm = 6000 fm = 3 K

    Given cutoff frequency of ideal low pass filter i.e. fc = 8 K

    So the spectral components at the output of the LPF are 3 KHz & 6 KHz.

    14. Ans: (a)

    Sol: 33.0510510

    EEEE

    minmax

    minmax =+−

    =+−

    15. Ans: (c) Sol: Given equation is compared with

    ( )( )tff2cos2

    Atf2cosA mc

    CcC −π

    µ+π

    ( )( )tff2cos2

    Amc

    c +πµ

    +

    fc = 2000 Hz, fc−fm = 1800 Hz fm = 200 Hz and Pc = 200 W and η = 0.2

    22

    2 µ+µ

    22

    22.0

    µ+µ

    =

    222.04.0 µ=µ+

    0.4 = 0.8 µ2

    707.02

    1212 ==µ⇒=µ

    16. Ans: (d) Sol: from the equation above

    2002

    AP

    2c

    C ==

    400A2c = ⇒ Ac = 20 = M

    and N = 2

    AC µ

    22

    12M

    N=

    µ=

    07.72

    1022

    2022

    MN ====

    fc = 8 K 0

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communications Postal Coaching Solutions. 3

    17. Ans: (a)

    Sol: given Pc = 1000R2A2c =

    10005002

    A2c =×

    ⇒ Ac = 610

    ∴ Ac = 103 18. Ans: (c) Sol: given 6.0=µ Amax = Ac (1+µ) = 103 (1+ 0.6) = 103 (1.6) = 1600V Amin = Ac (1−µ) = 103(1−0.6) = 400V 19. Sol: Given Amax = 110V and Amin = 90V

    2

    AAA minmaxC

    +=

    1002

    2002

    90110==

    +=

    minmax

    minmax

    AAAA

    +−

    1.020020

    9011090110

    ==+−

    =

    The amplitude of each sideband is

    No option is correct 20. Ans: (a) Sol: s(t) = 10 m(t) cos (2π x 106 t) m(t) = [1 + 0.5 cos (2π×103 t) + 0.4 cos

    2π (10 × 103) t + 0.3 cos 2π(20×103) t]

    It contains 7 spectral components Hence option 1 is not true 2. BW = 2×20×103

    = 40×103 = 40 K Option 2 is true

    3. ( ) ( ) ( )222t 3.04.05.0 ++=µ 707.05.0 == Option 3 is true

    4. %202 2t

    2t =µ+

    µ=η

    Option 4 is not true 21. Ans: (d) Sol: ( ) ( )[ ] ( )t40costm20ts π+= [ ]t4cos2t2cos424 π+π+=

    π+π+= t4cos

    121t2cos

    61124

    Here 121,

    61

    21 =µ=µ

    ∴ 2221t µ+µ=µ

    0347.0121

    61 22

    =

    +

    = 0.18 22. Ans: (d) Sol: The power of the AM signal is

    µ+=

    21PP

    2t

    Ct

    ( ) ( )

    +=

    218.01

    224 22

    = 292.66 ~ 293 W

    2Ac

    41.0100

    4Ac ×=

    µ =2.5V

    fc−fm fc fc+fm 1220 1200 1180

    fc fc+fm1 fc+fm2 fc+fm3 fc−fm3 fc−fm2 fc−fm1

    4

    1μcA

    43μcA

    2cA

    4

    1µcA 4

    2µcA 4

    3µcA 42µcA

    1.

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 4 Electronics & Communication Engg. ACE 23. Ans: (c) Sol: Given equation is compared with

    [ ]tf2costf2costf2cos1A3m32m21m1c πµ+πµ+πµ+

    so AC = 10, µ1 = 0.5 , µ2 = 0.8, µ3= 0.9 fm1 = 1K, fm2 = 10K, fm3 = 20K and given fc = 1M

    The band width of the signal = 2(maximum frequency) = 2(20K) = 40 kHz 24. The power taken by the component 990

    kHz is (a) 8 (b) 10 (c) 20 (d) 30 24. Ans: (a) Sol:

    8.0

    K990K10)(

    K1000→−

    Power taken by the component

    990 kHz = ( ) 88

    8.0108

    A 22222C =

    ×=

    µ

    25. Ans: (a)

    Sol: 502

    10020

    2A

    P22

    cC ==

    1==

    23

    22

    21t µ+µ+µ=µ

    222t 9.08.05.0 ++=µ 3.1=

    µ+=

    21PP

    2t

    Ct

    ( )

    +=

    23.1150

    2

    = 92.25 PSB = Pt−Pc = 42.25 PUSB = PLSB = 21.125

    The ratio 2289.025.92125.21

    PP

    t

    USB ==

    26. Ans: (a)

    Sol:

    µ+=

    21PP

    2t

    Ct

    ( )

    +=

    23.1150

    2

    = 92.25 27. Ans: (c)

    Sol: 2322

    21t µ+µ+µ=µ

    222t 9.08.05.0 ++=µ 3.1=

    459.02 2t

    2t =µ+

    µ=η

    28. Ans: (c) Sol: S(t) = AC[1 + Ka m(t)] cos ωct

    Ka m(t) > 1 Envelope is |AC(1 + Ka m(t))|

    29. Ans: (b) Sol: The Time constant RC > Tc (= 1/fc) and RC < Tm (= 1/fm).

    Since fc = 1MHz, RC > 1 µsec, and fc = 2 KHz, RC < 500 µsec

    30. Ans: (a) Sol: V(t) = Ac.cosωct + 2 cosωmt . cosωct.

    Comparing this with the AM−DSB−SC signal A cosωct + m(t).cosωct, it implies that m(t) = 2cosωmt ⇒ Em = 2

    To implement Envelope detection, Ac ≥ Em

    ∴ (Ac)min = 2 31. Ans: (c) Sol: x(t) = 5(1 + 2 cos 200πt) cos(2000πt) compare with standard single tone AM x(t) = AC(1 + µ cos 2πfmt) cos 2πfct µ = 2 For µ > 1 only synchronous demodulator

    is used to demodulate the signal. 32. Ans: (a)

    Sol: To avoid diagonal clipping RC < W1

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai)

    (Copyrights Reserved)

  • ACE Communications Postal Coaching Solutions. 5

    33. Ans: (c) Sol: τ = 5 µsec

    f = 5

    1010511 6

    6 =×=

    τ −

    55

    10251010

    ×=×

    =

    = 200k = 0.2M 34. Ans: (b) Sol: An Envelope detector is a diode half wave

    rectifier followed by an RC-low pass detector. The output of the detector represents the envelope of the incoming high frequency signal. It is used for FSK signals.

    Envelope detector also called as non synchronous detector

    35. Ans: (d) 36. Ans: (c) Sol: Given Pc = 400 W and R = 50 Ω µ = 0.8 The power developed across the load is

    µ+=

    21PP

    2

    Ct

    ( )

    +=

    28.01400

    2

    [ ] W52832.1400 ==

    01. Ans: (a) Sol: µ =1, at 100% modulation in spectrum

    analyzer the amplitude of upper and lower frequencies are each equal to one half the

    amplitude of carrier

    2AC (or) 6 dB

    power 6 dB means (3dB + 3dB) =

    21.

    21 =

    21 (half of carrier amplitude)

    02. Ans (b) Sol: S(t) = 10cos2π106t + 8cos2π5×103tcos2π106t

    S(t) = 0.8 ×10cos2π106t + 0.5×8cos2π5000tcos2π106t

    = 8(1+ t50002cos84

    π )cos2π106t

    µ = 84 =

    21 = 0.5

    S(t) = 10cos2π106t+0.5×8cos2π5000tcos2π106t

    = 8(1+84 cos2π5000t)cos2π106t

    µ = 84 =

    21 = 0.5

    03. Sol: fC = 1 MHz = 1000 kHz The given m(t) is symmetrical square

    wave period T = 100 µ/sec

    fm = 0T

    1 =10 kHz

    LEVEL – 2 (Solutions)

    Tuned ckt

    Tuned ckt Carrier message

    = 1 MHz + 5 kHz Gain = 0.5

    Gain = 0.8

    Carrier = 1 MHz

    µ = ?

    0.5

    fC−fm fC fc+fm

    0.5

    0.8

    2AC =4

    4ACµ =0.5

    100µsec

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 6 Electronics & Communication Engg. ACE

    This frequencies 980k, 1020k are not present because the symmetrical square wave it consists of half wave symmetrices only odd harmonics are present, even harmonics are dismissed

    04. Sol: m(t) = sinC(200t)sinc2(1000t) = sinc(200t)sinc(1000t)sinc(1000t)

    BW = 2 × 1100 BW = 2200 Hz

    05. Ans: (a) Sol: P(t) = u(t) −u(t−1) ⇒

    g(t) = P(t) *P(t) =

    =

    X(t) = 100(P(t) +0.5g(t))cosωct = 100(1+0.5t)cosωct = Ac(1+Kam(t))cosωct Ka = 0.5, m(t) = t µ = ka[m(t)]max µ = 0.5 ×1 = 0.5

    06. Ans (c) Sol: m(t) = 2cos(2πfmt) C(t) = Accos(2πfct)

    AM signal without over modulation? a) X(t) = ACm(t)cos2πfct (not AM

    signal) b) X(t) AC[1+ m(t)]cos2πfct (µ = 1 × 2 µ = 2 Over modulation)

    c) X(t) = Ac[1 + 41 m(t)]cos2πfct, ka =

    41 ,

    µ = 42 = 0.5

    d) Not an AM signal 07. Ans: (c) Sol: m(t) = −0.2 + 0.6sinω1t, ka = 1, Ac = 100 S(t) = Ac[1−0.2 + 0.6sinω1t]cosωct = 100[0.8 + 0.6sinω1t]cosωct Vmax = Ac[1 + µ] = 100[0.8 + 0.6] = 140 Vmin = Ac[1−µ] = 100[0.8 −0.6] = 20 = 20V to 140 V 08. Ans: (a) Sol: m(t) = 2cos2πf1t +cos2πf2t C(t) = Accos2πfct S(t) = [Ac + m(t)]cos2πfct

    S(t) = Ac[1 + CA

    1 m(t)]cos2πfct

    Ka = cA

    1

    Am1 = 2, Am2 = 1

    µ1 = KaAm1 = CA

    2 , µ2 = KaAm2 = CA

    1

    µ = 2221 µ+µ ⇒ 0.5 = 2

    c2c A

    1A4

    +

    ⇒ AC = 20

    09. Ans: (d) Sol: Amax = 10V Amin = 5V µ = 0.1 V

    fc−3fm =970K

    fc−2fm =980K

    fc−fm =990K

    fc =1000K

    fc+fm 1010K

    fc+2fm =1020K

    fc+3fm =1030K

    500 −500 0 500 0 −500 100 0 −100

    −1100 0 1100 =

    P(t) 1

    0 1

    1

    0 1

    1

    0 1

    0 1 2

    g(t)

    *

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communications Postal Coaching Solutions. 7

    µ = minmax

    minmax

    AAAA

    +−

    = 31 = 0.33

    AC =2

    AA minmax + = 2

    510 + = 7.5 V

    Amplitude deviation ACµ = 7.5× 31

    = 2.5 V

    µ2 = 0.1 ⇒ Ac2µ2 = 2.5 Ac2 = 25 V Which must be added to attain = 17.5 Ans = 17.5

    10. Ans: (a) Sol: The given signal can be AM-DSB-SC or

    AM – DSB – Full carrier. If it is an AM – DSB – SC, demodulation requires a local signal of frequency 400 KHz. If it is AM – DSB – FC, It can be demodulated by using envelope detector.

    11. Ans: (c)

    12. Ans (d) Sol: m(t) = (Ac + Am cosωmt)cosωct.

    = Ac(1 + AcAm cosωmt)cosωct.

    Given Ac = 2Am

    = Ac(1 + 21 cosωmt)cosωct.

    =

    +=

    2AP

    2μ1

    2AP

    22c

    s

    22c

    T

    1689

    161

    811

    4

    21

    2

    2

    ×=+

    =+

    µ

    s

    TPP

    13. Ans (b)

    Output of filter = Accos(2πfct + 900) = A sin (2π106t)

    Envelope detector detects only DC component (A)

    PT = 18 Ps

    A m(t)=0

    AC(1+µ)=AC+Acµ ⇒10V = 7.5 + 2.5

    AC(1-µ)=AC - ACµ 5V = 7.5 −2.5

    1

    999K 1000k 1001K

    900

    ED

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 01. Ans: (b) Sol: sinc2 (1000t) cos 2π fct 2× 1000 = 2000 = 2kHz 02. Ans: (a)

    Sol: 2fm = cf1002

    2 × 10k = cf1002

    ⇒ fc = 1MHz 03. Ans: (a) Sol:

    2×10k = 20k 04. Ans: (b) Sol: Band width = 2fm (max frequency)

    = 2(2ω 1) = 4ω 1

    4

    ]21[14

    ]AA[A 22 2m2

    1m2c +=

    += Power

    W25.145==

    05. Ans: (c) Sol: XAM(t)=10[1+0.5sin2πfmt]cos (2πfct)

    Average side band power = 2

    P 2Cµ

    PC = 2)10( 2 = 50 W

    ∴ PSB = W25.62)5.0(50 2=

    ×

    06. Ans: (c)

    Sol: % Power saving = 100powertotalsavedPower

    ×

    = 100

    21P

    P2

    C

    C ×

    µ+

    =

    28.01

    12

    +× 100

    = 75.76% 07. Ans: (c) Sol: The required frequency components are fc

    (= 1 MHz) ± fm V0 = a0 [Ac 1 cos 2πf 1c t + m(t)]

    +a1 [A1c cos 2π f1c t + m(t)]

    3

    = a0 [Ac 1 cos 2πf 1c t + m(t)]

    +a1 [ (Ac1)3cos32π fc 1t + m3(t) + 3Ac1m2(t).cos 2π fc1t

    + 3(Ac1.cos2π fc t )2.m(t)]

    The AM – DSB – SC signal lies in a1.3m(t) . ( Ac1. cos2 π fc t)2

    = 3a1(Ac1)2.m(t) [1 + cos 2π (2f 1c )t ]

    The side band frequencies are 2f 1c ± fm, which can be filtered by a BPF.

    2 fc1 = 1 MHz, fc1 = 0.5 MHz 08. Ans: (b) Sol: e(t) = 50[1+0.89cos 5000t +0.3sin 9000t]

    cos (6 ×106)t ωc = 6 × 106 ; ω1 = 5000; ω2 = 9000 The corresponding sidebands are 6 × 106 ± 5000 = 6.005 × 106 and 5.995 ×

    106 6 × 106 ± 3000 = 6.003 × 106 and 5.997 × 106

    5 10

    Double Side Band Modulation 1

    2 LEVEL – 1 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions 9

    System

    system

    o/p m(t) k +

    +

    +

    + ∑

    V2

    V1

    bV22

    aV12

    A cos ωC

    1

    2

    09. Ans: (a) Sol: A Balanced modulator generates a DSB-

    SC signal, by multiplying the baseband signal and the carrier signal.

    10. Ans (b) Sol: νo = a ν i + b ν i 3

    s(t) = m(t) + c(t) v0 = a [m(t) + c(t)] + b [ m(t) + c(t)]3 v0 = a[m(t) + c(t)] + b[m3(t) + c3(t)+

    3m(t) c2(t) + 3m2(t)c(t)]

    π+

    π=2

    tcf4cos1cAtmf2cosm3Ab

    t)cf2(2costmf2cos2

    mAcAbtmf2cos

    2

    mAcAb ππ+π=

    fc| = 2fc = 4 MHz 11. Ans (b) Sol: kHz15f

    1m=

    kHz10f2m=

    kHz20f3m=

    USB frequencies = f’c + fm 4010 kHz, 4015 kHz, 4020 kHz 01. Ans: (d) Sol: Given M(f) = 1 f1≤ f ≤f2 f1 = 1 kHz

    f2 = 10 kHz

    = 0 else where

    y(t) = m(t) cos2πfct

    y(f) = M(f)

    −++

    2)ff(S)ff(S cc

    2

    )ff(M)ff(M cc −++=

    f + fc = 1010kHz / f = 10kHz

    =1001 kHz /f = 1 kHz

    fc-f = 990kHz / f = 10 kHz

    = 999kHz / f = 1kHz

    ∴Range of frequencies for which y(t) has non zero spectral components is 990 kHz – 999 kHz and 1001 kHz to 1010 kHz

    02. Ans (c) Sol: V1 = k [m(t) + c(t)] V2 = [m(t) – c(t)] V0 = aV12-b V22

    = ak2[m(t)+c(t)]2-b[m(t)-c(t)]2 = ak2 [m2(t)+c2(t)+2m(t)c(t)]

    −b[m2(t)+c2(t)-2m(t)c(t)] = [ak2-b]m2(t)+[ak2 −b]c2(t)

    +2[ak2+b][m(t)c(t)]

    on verification if K = ab

    S(t) = 4bm(t)c(t)→DSBSC Signal 03. Ans (a) Sol: Given A = 10 m(t) = cos1000πt b =1 B.W=? and power = ? s(t) = 4b.A cos2πfct. cos2π (500)t = 40.cos2πfct. cos2π (500)t B.W = 2 fm = 2 (500) = 1 kHz

    f1 f2

    1

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 10 Electronics and Communication Engg. ACE

    Power = W4004

    116004AA 2m

    2C =

    ×=

    04. Ans: (c) Sol: Carrier = cos2π (100 × 106)t

    Modulating signal = cos(2π × 106)t o/p of Balanced modulator = 0.5[cos 2π (101 × 106)t + cos 2π(99×106)t]

    The o/p of HPF is 0.5 cos 2π(101 × 106)t o/p of the adder is

    = 0.5 cos 2π (101×106) t + sin 2π (100×106)t = 0.5 cos 2π[(100+1)106t]+ sin 2π(100×106)t = 0.5[cos 2π (100 ×106)t. cos 2π (106)t − sin 2π(100 × 106)t. sin 2π (106)t] + sin 2π(100 ×106)t]

    = 0.5 cos 2π (100 ×106)t. cos 2π (106)t + sin 2π(100×106)t [1−0.5 sin2π (106)t]

    Let 0.5 cos 2π (106)t = r(t) cos θ(t) 1−0.5 sin 2π (106)t = r(t).sin θ(t)

    The envelope is r(t) = [ 0.25 cos2 2π (106)t

    + {1− 0.5 sin 2π (106)t}2]1/2 = [1.25 − sin 2π(106)t]1/2

    = [45 − sin 2π (106)t]1/2

    05. Ans: (b)

    Sol: O/p of 1st balanced modulator is

    o/p of HPF is

    The o/p of 2nd balanced modulator is consisting of the following +ve frequencies.

    Thus, the spectral peaks occur at 2 kHz and 24 kHz

    06. Ans (d) Sol: Given SSB AM is used, LSB is transmitted )10f(f cLO +=

    t]ff[2cos2AA

    T/)t(S mcmc

    X −π=

    t)10cf(2cost)mfcf(2cos2

    mAcAXR/)t(S +π−π=

    ]t)f10cos(t)f10f2[cos(4AA

    mmcmc ++−+⇒

    i.e. from 310 Hz to 1010 Hz 07. Ans: (d) Sol: The given Circuit. is a ring modulator,

    which is also called double balanced modulator. The corresponding output will contain no base band and carrier frequencies.

    Given fc = 1 MHz, fm = 400 Hz The Output contains fc+fm = 1000.4 KHz fc − fm = 999.6 KHz.

    -13 -11 -10 -9 -7 7 9 11 13 10 f(kHz)

    -13 -11 -10 10 11 13 f(kHz)

    0 2 3 23 24 26 f(kHz) ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai)

    (Copyrights Reserved)

  • SSB and VSB 1 3

    01. Ans: (c) 02. Ans: (c) 03. Ans: (b) Sol: Balanced modulator is used to generate

    AM-DSB-SC. Remaining all the methods are used for generating AM-SSB-SC.

    04. Ans: (c)

    Sol: In FDM, AM-SSB-SC is used, since it occupies less Band width.

    05. Ans: (a) Sol: Ac = 10

    ( )tff2cos2AA

    mcmc +π

    52

    110,102

    210=

    ×=

    ×

    06. Ans: (b)

    Sol: tf2sin2

    )t(mAtf2cos2

    )t(mAccc

    c π±π

    20A102

    Ac

    c =⇒=

    After passing through envelope detector, the output is

    1004

    4004

    )t(mA2c ==

    07. Ans: (a)

    Sol: 2AA

    ,2AA 2mc1mc

    2

    2100,2

    1100 ××

    − → LSB. fc − fm1, fc − fm2

    08. Ans: (c) Sol: An AM-SSB Signal occupies a

    Bandwidth of 5KHz Thus the total bandwidth is 12×5 = 60 KHz. In addition between two adjacent multiplexed signals, there is guard band of 1KHz. i.e. total

    BW = 60+11 = 71 KHz. 09. Ans: (d) Sol: for VSB fmax < BW

  • 12 Electronics and Communication Engg. ACE

    )kHz1(10)kHz3(11kHz300fflostH mc

    ++=+⇒ = 343kHz

    kHz340

    kHz3kHz343fHc

    =

    −=

    03. Ans: (a) Sol: USB = Upper side band fc = 60kHz fc to fc + fm Lowest USB = 60K + 300Hz (ω = 300Hz) = 60.3 kHz Highest USB = 60K+3000Hz = 63 kHz (ω = 3000Hz) ∴The range of upper side band is

    60.3 to 63 kHz 04. Ans: (d) Sol: Output of synchronous detector with

    phase shift is φcos)t(m2

    A 2c

    When φ = 0 → Original signal retrieved φ = 90 → quadrature Null effect 0 < φ < 90 → Output cannot be detected

    properly 05. Ans: (b) Sol: Given, Amplitude (sidebands)

    41

    = Carrier amplitude

    41

    2A

    4A

    4A ccc ×=

    µ+

    µ

    2

    AA2 cc =µ

    41

    =µ⇒

    06. Ans (c)

    Sol: % power saved = ]

    21[

    2A

    ]4

    1[2

    A

    22c

    22c

    µ+

    µ+

    21

    41

    2

    2

    µ+

    µ+

    =

    = 0.9848 = 98.48 % ≈ 99% 07. Ans: (b) Sol: Given m(t) = cos 2πfmt fc = 200kHz m(t) is modulated by passing through

    DSB and SSB modulators.

    ?AA

    s

    d =⇒

    (DSB)avg power = (SSB)avg power if it is a DSBSC signal then,

    8

    A4

    A 22s22

    d µ=µ

    21

    AA

    2s

    2d =

    707.0AA

    s

    d =

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 01. Ans: (b) Sol: θi (t) = 10πt+2πt2

    [ ] t410)t(dtd

    i π+π=θ

    fi = ( ))t(dtd

    21

    iθπ=

    ππ+π

    2t410

    at t = 2.5 sec

    fi = ( ) 10

    25.2410

    =ππ+π

    02. Ans: (c) Sol: Instantaneous Angle is ψi(t) = cos(2×108πt+75 sin2×103πt)

    Instantaneous freq. dt

    td ii

    )(ψω =

    = 2×108+75(2×103π) cos(2×103)πt

    ∴Peak freq. deviation δω

    π××2

    10275 3⇒ δf = 75 kHz

    03. Ans: (c)

    Sol: fi = ( ))t(dtd

    21

    iθπ

    = [ ]3t200t200dtd

    21

    π+ππ

    ×π+π

    π= 2

    1

    t23200200

    21

    = [ ] Hz25050021

    =ππ

    04. Ans: (a) Sol: Am| = 2Am ∆f = kf Am ∆f | = 2 [ kf Am ] = 2 [∆f]

    05. Ans: (d) Sol: Given fm| = 2fm ∆f = kf Am ∆f is independent of fm ∴∆f remains same 06. Ans: (d) 07. Sol: 2 (∆f + fm) = 2(50 × 103 + 500) = 101 kHz 08. Ans:(b) Sol:

    )tωcos(2

    0.1A)tωcos(ω2

    0.1AtcosA)t(V mcmccAM −ω+++ω=

    2

    A0.1tcosA(t)v cFM +ω=

    ( ) ( )tωωcos2

    A0.1.tωωcos mcmc −−+

    =+ )t(v)t(v FMAM 2 A cos ωct

    + 0.1 A cos ( )tmc ω+ω ∴The resulting signal is SSB with carrier

    NBFM is similar to AM, except the phase of the lower side band 2

    09. Ans: (a) Sol: VFM(t) = Ac cos[ωc t + kf ∫m(t).dt]

    ∫ )t(m .dt = ∫ ω dt.tcosE mm = m

    mm tsin.Eω

    ω

    ∴ VFM(t) = AC. cos

    ω

    ωω tsin Ek+t m

    m

    mf c

    VFM(t) = AC. cos[ωct + mf.sinωmt] 10. Ans: (a)

    Sol: 4

    π210π

    21010fAKβ 4

    3

    m

    mf =××

    ==

    Frequency Modulation 1 4 LEVEL – 1 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 14 Electronics and Communication Engg. ACE 11. Ans: (c) Sol: S(t) = Ac cos [2π fct + 2π kf ∫ dt)t(m ]

    and β = m

    mf

    fAk

    0.4 = 5.0A5A.4

    mm =⇒

    cossin =∫ = 0.5 cos10πt

    12. Ans: (a)

    Sol: A squaring circuit acts as a frequency doubler and doubles the frequency deviation.

    ∴ ∆f2 = 2. ∆f1 = 180 kHz. B.W = 2(∆f2 + fm) = 2(180 + 5) = 370 kHz

    13. Ans: (b)

    Sol: LSB signal is of frequency (1000−10) KHz = 990 KHz Considering this as Base band signal frequency, the B.W of the o/p of NBFM is 1.98×106 Hz

    ≅ 2 MHz

    14. Ans: (a)

    Sol: v(t) = 10 cos[2π ×105 t +5 sin (2π ×1500t)

    + 7.5 sin (2π ×1000t)]

    Instantaneous Angle ψi(t) = 2π×105 t + 5 sin (2π×1500t)

    +7.5sin (2π×1000t)

    Instantaneous frequency ωi = ψdtd

    i(t)

    ωi = 2π×105 + 5 [2π×1500 cos (2π×1500t)]

    + 7.5[2π×1000 cos (2π×1000t)]

    ∴∆ω = 2π(7500) + 2π (5000)

    ∴∆f = 12500 Hz.

    fm = 1000 (Maximum of the two)

    ∴Modulation Index = 5.12f

    f

    m

    =∆

    15. Ans: (c) Sol: x(t) = cosωct + 0.5 cosωct.sinωct

    Let 1 = r(t).cosθ(t) 0.5cos ωt = r(t).sinθ(t) ∴x(t) = r(t). cos [ωct − θ(t)]

    = 2)tcos5.0(1 ω+

    × cos [ωct− tan-1 (0.5 cos ωt)] Hence x(t) is both AM and FM 16. Ans: (d) 17. Ans: (c) 18. Ans: (b) 19. Ans: (d) 20. Ans: (c) Sol: From the given FM signal, modulation

    index is 15. As per Carson’s rule BW = 2(mf + 1)fm = 2 × 16 × 100 = 3.2 KHz. 21. Ans: (c) Sol: Ac [1+ µ cos 2 π fmt] cos 2π fct a) fm = 104 ⇒ BW = 2 ×104 = 20 k b) fm = 2×104⇒ BW = 2 ×2×104 = 40k c) fm = 103 ⇒ BW = 2×103 = 2k d) 2fm = 10,000 fm = 5,000 ⇒ BW = 2fm = 10k 22. Ans: (c)

    Sol: Power = 2

    A2c

    a) 2

    102 = =2

    100 50

    b) 2

    32 = 29 = 4.5

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions 15

    c) 5.24249

    272

    ==

    d) 22

    22=

    a > c > b > d 50 > 24.5 > 4.5 > 2

    23. Ans: (d) 24. Sol: P. 10 cos [2πfct + 5 sin 2π×103t] B.W = 2 (β+1) fm = 2 (5+1)×103 Hz

    B.W = 12 kHz Q. 10 cos 2πfct-7sin2πfct sin4π×103t → Narrow Band FM Ac β = 7 ⇒ β = 0.7 < 1 B.W = 2fm = 2 (2kHz) = 4kHz R. [1+0.6sin2π104t] cos2πfct

    → AM signal B.W = 2fm = 2 (104Hz) = 20kHz S. (cos4π×103t+cos 8π×103t)cos2πfctB.W

    = 2 (fmHighest) = 2 × 4 kHz = 8 kHz None of the option is correct 25. Ans: (c)

    Sol: β = β=φ∆∆ ,f

    f

    m

    = 8

    8 = 500

    f∆

    ∆f = 4000 26. Ans: (b) Sol: The spectrum of AM signal / FM signal

    with modulation index < 0.5 consists of the carrier component and the first order side band pair.

    27. Ans: (c) 28. Ans: (c) Sol: Given S(t) = 100 cos[2π 107t + 4sin 2000πt] R = 50Ω Am = 1V, fm 1 kHz ∆f = β × fm = 4 kHz 29. Ans: (a)

    Sol: WR

    AP ctotal 100502

    1001002

    2

    =××

    ==

    30. Ans: (b) Sol: % of total power at 10 kHz? Jo(4) = -0.4

    )(JR2

    AP 2o

    2c

    c β=⇒

    )(JPP 2

    oT

    c β=

    = (-0.4)2

    16.0PP

    T

    c =

    %16PP

    T

    c =

    Pc = 16% (PT) 31. Ans: (c) 32. Ans: (c) Sol: Given

    fc = 5KHz. and m(t) = 100 cos 2000πt. 2fm = 2000 ⇒ fm = 1k fc fc − fm fc + fm fc − 2fm = 3k fc + 2fm = 7k 33. Ans: (b) Sol: c(t) = 10 cos ωct m(t) = cos 20 πt kf = 50Hz/V ∆f = kf Am

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 16 Electronics and Communication Engg. ACE = 50 × 1 = 50

    β = 51050

    fmf ==

    ∴The harmonics that contains 99% of the total power is = 2(β+1) +1

    = 2(5+1) +1 = 2(5+1) +1 = 13 harmonics None of the option is correct 34. Ans: (b) Sol: c(t) = 10 cos (2π×10×103)t m(t) = cos (20πt) kf = 40 πHz/v Am = 1

    ∆ω = 2πkf Am = 40π ∆f = 20 Highest frequency fmax = fc+∆f = 10×103+20 = 10.02 kHz 35. Ans: (b) Sol: Given m(t) = ),t10x12x2cos(.2 3π fc = 100×106Hz , Ac = 10V 2πkf = 2π(12)×103Hz/V kf = 12×103Hz/V ∆f = kf Am = 24×103Hz

    210121024

    ff

    3

    3

    m

    =××

    =∆

    Wide Band FM signal is represented as

    S(f) = Ac t)nff(2cos)(J mcn

    n +πβ∑∞

    −∞=

    Amplitude and lowest frequency of the resulting FM signal is 10J3(2) ( from the given options)

    36. Ans: (d) Sol: A Frequency Tripler increases the

    modulation index by 3 37. Ans: (a)

    Sol: In an FM signal, adjacent spectral components will get separated by fm = 5 kHz Since BW = 2(∆f + fm) = 1MHz

    =1000 × 103 ∆f + fm = 500 kHz, ∆f = 495 kHz The nth order non-linearity makes the carrier frequency and frequency deviation increased by n-fold, with the base-band signal frequency (fm) left unchanged since n = 3, ∴ (∆f)New = 1485 kHz & (fc)New = 300 MHz New BW = 2(1485 + 5) ×103

    = 2.98 MHz = 3 MHz 38. Ans: (d) 39. Ans: (a) Sol: FM Generation: 1) Direct method 2) Indirect method 1. Direct method: In reactance modulator, varactor diode

    and FET can be used as a voltage variable capacitor.

    01. Ans: (a) Sol: s(f) = 10 cos (20πt+πt2)

    )t(dtd

    21fi π

    =

    ]t220[21

    π+ππ

    =

    fi(t) = 10+t

    1)t(fdtd

    i =

    VCO FM m(t)

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions 17 02. Ans: (d)

    Sol: S(t) = Ac ∑ β∞

    −∞−nn )(J cos(2πfc +βsint)

    ∆f = 3(2fm) = 12kHz

    β = mff∆ = 6

    ∴S(t) = ∑∞

    −∞=

    +n

    cn tfJ )sin2cos()6(.5 βπ

    fc = 1000kHz, fm = 2 kHz = cos(2π(1008 ×103)t = cos(2π(1000 +4×2)×103t] i.e n = 4 The required coefficient is 5.J4(6) 03. Ans: (c) Sol: 2πfm = 4π 103 ⇒ fm = 2k J0 (β) = 0 at β = 2.4

    β = m

    mf

    fAk

    2.4 = k2

    2k f ×

    kf = 2.4 KHz /v at β = 5.5

    mf

    2k4.25.5 ×= ⇒ 872.72

    04. Ans (c) Sol: β = 6

    J0(6) = 0.1506 ; J3(6) = 0.1148 J1(6) = 0.2767 ; J4(6) = 0.3576 J2(6) = 0.2429 ;

    ?P

    P

    T

    cf mf4 =±

    PT =

    R2A 2c

    β+β+β+β+β=± )(

    24J)(

    23J)(

    22J)(

    21J)(2

    2oJ

    R

    2cA

    mc f4fP

    β+β+β+β=

    ±)(J)(J)(J)(

    2J

    RA

    P 242

    22

    1

    2o

    2c

    f4f mc

    5759.02

    12879.0

    PP

    T

    f mf4c ==±

    = 57.6 % 05. Ans: (c) Sol: m(t) = 10cos20πt fm = 10 Hz inserting correct signal and frequency

    β = 10

    105×=

    m

    mf

    fAk

    = 5

    From fc to fc + 4sin pass through ideal

    BPF Powers in these frequency components

    )(22JR2

    2CA2)(21JR2

    2CA2)(20JR2

    2CAP β+β+β=

    ( )β+β+ 24JR1

    2CA223JR2

    2CA2

    ++

    +−+−=

    22

    2222C

    )391.0(2)365.0(2)049.0(2)328.0(2)178.0(

    R2A

    = 41.17 watts 06. Ans: (d)

    Sol: Pt = R2A2C (R = 1Ω)

    = 2

    100 = 50 W

    2)(JA 3C β−

    2)(JA 2C β−

    2)(JA 1C β−

    2)(JA 0C β

    2)(JA 1C β

    2)(JA 2C β

    2)(JA 3C β

    fC-3fm fC-2fm fC-fm fC fC+fm fC+2fm fC+3fm

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 18 Electronics and Communication Engg. ACE

    % Power = powertotal

    componentsinPower× 100

    = 10050

    17.41×

    = 82.35% 07. Ans: (b) Sol: x(t) = Ac cos ωct − Am cos(ωc – ωm)t +

    Am cos(ωc + ωm)t is an NBFM signal, Under Tone Modulation. It should be demodulated by a discriminator

    08. Ans (d)

    09. Ans (a) Sol: 6410200f 3e| i ××= = 128×105

    65c

    | 109.1010128f ×−×=

    = 19×105

    MHz

    fpc

    2.91

    481019 5

    =

    ××=

    ∆fi = 25 ∆fi = 25×64 ∆fN = 25×64×48

    = 76.8kHz

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 01. Ans: (d) Sol: [ ]t150cos40t15030sint102π2(t)ψ 6i ++×= ∴ ∆φ = 2π(30 sin 150t + 40 cos 150 t)

    Let 30 = r sin α ; 40 = r cos α ∴ ∆ φ = 2 π r cos (150 t -α),

    where r = 50)40()30( 22 =+

    ∴ ∆ φ = 100 π cos (150 t - α) ∴ Maximum phase deviation = 100 π

    ∴ωL = dt

    (t)Ψd i

    [ ]150tsin(150)(40)150tos(30)(150)c1022 6 −+×= π( )( )[ ]t150sin(150)(40)t150cos15030π2ω −=∆∴

    = 3000 π [ ]tt 150sin4150cos3 − Let 3 = r. cos α & 4 = r. sin α ∴ ∆ω = 3000 π . r . cos (150 t + α)

    where r = 22 )4()3( + = 5

    ∴ ∆ ω = 15000 π . cos (150 t + α) Maximum frequency deviation,

    ∆ω = 15000 π

    ∆f =π2ω∆ = 7.5 kHz

    02. Ans: (d)

    Sol: Under Tone Modulation, frequency deviation in PM is ∆ω = Kp Em ωm

    where phase deviation = Kp Em Since, phase deviation remains unchanged, ∆ω α ωm

    New deviation ∆ω2 = 2. ∆ω1 ∆f2 = 2. ∆f1 = 20 kHz B.W = 2(∆f2 + fm2) = 2(20 + 2) = 44 kHz

    03. Ans: (c) Sol: A PM signal is given as

    ( ))t(mktcosA pc +ω .The instantaneous angle )t(mkt)t( pci ×+ω=ψ . Instantaneous frequency

    dt

    )t(dmkdt

    )t(dpc

    ii ⋅+ω=

    ψ=ω

    ∴Frequency deviation

    ( )tmdtdk f∝δω

    If dt

    )t(md is large, m(t) is said to be of

    larger frequency. Hence, mωδω ∝

    Consider m(t) = Em⋅Sin ωmt.

    tcosE)t(mdtd

    mmm ω⋅ω=∴

    mmmE ω∝δω⇒ω=δω⇒ 04. Ans: (a) Sol: ∆ φ = kp Am

    kp = 22/1

    1=

    05. Ans: (c) Sol: given fc = 1MHz fmax = fc + kf Am kp = 2π kf

    kf = π

    π=

    π 22k p

    = 21

    =

    ×+ 56 10

    2110

    ( )56 105.010 ×+= ( )46 10510 ×+= = ( ) 33 105010 + = (103 + 50) k

    Phase Modulation 1 5 LEVEL – 1 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 20 Electronics and Communication Engg. ACE = 1050 kHz. fmin = fc −kf Am

    =

    ×− 56 10

    2110

    ( )56 105.010 ×−= ( )46 10510 ×−= = ( ) 33 105010 − = (103−50) k = 950 kHz 01. Ans: (d)

    Sol: mff∆

    ∆φ = mff∆

    ∆f = ∆φ fm = kp Am fm 02. Ans: (d) Sol: θi (t) = 2πfc t + kp m(t) 13000t = 10, 000t + kp m(t) 3000t = kp m(t)

    m(t) = t31000

    t3000=

    03. Ans: (c) Sol: Given

    fc = 100 × 103 Hz kf = 10×103Hz m(t) / max = +1 , m(t) / min =-1 fi = fc ± ∆f = fc ± kf Am = 100×103 ± 10×103 (m(t)) = 110 kHz & 90 kHz

    04. Ans (c) Sol: S(t) = Ac cos (2πfct+kpm(t)) θi(t)

    )t(dtd

    21f ii θπ

    =

    = π21 (2πfct + kpm(t))

    = fc + )t(mdtdk

    21

    π+=

    410

    12k

    ff3

    pcmax

    3pc 1042k

    f ××π

    +=

    31042

    kHz100 ××π

    π+=

    =102 kHz

    −=

    410

    1kff3pcmin

    = fc - 2 kHz fmin = 98kHz 05. Ans: (c) Sol: Given, S(t) = Ac cos (θi(t)) = Ac cos (ωct +φ(t) ) m(t) = cos (ωmt) fi(t) = fc+2πk(fm)2 cos ωmt

    dt

    )t(d21f ii

    θπ

    =

    θi(t) = ∫ 2π fi(t)dt

    dt]tcos)f(k2f[2)t( m2

    mci ωπ+π= θ ∫

    θi(t) = 2πfct + (2πfm)2 k ttcos

    m

    m

    ωω

    θi(t)= ωct+ωmk sin ωmt 06. Ans (d) Sol: If m(t) is other then cos (ωmt) then s(t) = Ac cos (ωct + kf ∫ m(t) dt) (or) Ac cos (ωct + kp m(t)dt)

    +1

    -1

    T=10-3sec

    T/4

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 01. Ans: (c) Sol: Given data: IF = 455 kHz fs = 1200 kHz Image frequency fsi = fs + 2×IF

    = 1200 + 2 × 455 = 2110 kHz 02. Ans (b) Sol: Given fsi = 2500kHz fs = 1600kHz IF =?

    kHz450

    Hz102

    16002500IF 3

    =

    ×

    −=

    03. Ans: (b) Sol: Image frequency (fsi) = fs + 2IF = 500 + 2 × 465 = 1430 kHz 04. Ans: (a) 05. Ans: (d) 06. Ans: (a)

    Sol: The super heterodyne receiver for AM signal shown in the figure.

    07. Ans: (b) Sol: The maximum frequency deviation for the

    FM broad cast system is 75 KHz. 08. Ans: (b) 09. Ans: (d)

    10. Ans: (c) 11. Ans: (a) 12. Ans: (a) Sol: Noise performance of FM is better than

    that of AM. 13. Ans: (d) Sol: If amplifier in a radio receiver is always

    tuned to a fixed frequency, called Intermediate different frequencies. A → 2

    Mixer is used to generate different frequencies. B → 4

    Detector detects the Modulating signals from the Modulated carrier. C → 1

    In AGC, the gain of the amplifying stages of the receiver, should be automatically controllable, depending on the strength of the incoming signal. D → 3

    14. Ans: (c) 15. Sol: Ring modulator - DSBSC Generator

    VCO - FM Generator Foster seely - demodulation of FM Discriminator Mixer - Frequency conversion

    16. Ans (a) 17. Ans (b) Sol: Given

    fs = 500 kHz IF = 46.5 kHz Q = 50 α(in dB) = ?

    fsi = fs + 2IF

    Mixer IF Amp

    AM detector

    AF Amp LS

    Local oscillator

    RFAmp

    Power Amp

    Receivers 1 6

    LEVEL – 1 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 22 Electronics and Communication Engg. ACE = 1.43 × 106

    si

    s

    s

    si

    ff

    ff

    −=ρ = 2.51

    22Q1 ρ+=α = 125.52

    20 log (α) = 42dB 18. Ans: (a) Sol: As Per FCC regulations, the B.W of each

    AM Broad casting channel is 10 kHz A → 1

    Telephone Channel B.W is 4 kHz, as the speech signal is band limited to 4 kHz. B → 2

    The B.W assigned for an FM Channel is 200 kHz C → 3

    Each TV Channel is of B.W 7 MHz D → 4

    01. Ans (d) Sol: Given fs = 4 to 10 MHz IF = 108 MHz fsi = ? fsi = fs + 2IF = 7.6 MHz to 13.6 MHz 02. Ans: (b) 03. Ans: (a) Sol: Image frequency fsi = fs + 2IF

    = 700 × 103 + 2( 450) = 1600 kHz Local oscillator frequency, fl = fs + IF (fl)max = (fs)max + IF = 1650 +450

    = 2100 kHz (fl)min = (fs)min + IF = 550 + 450

    = 1000 kHz

    R = 41.410002100

    ff

    CC 2

    2

    min

    max

    min

    max =

    =

    =

    l

    l

    04. Ans (a) Sol: fs(range) = 88-108MHz Given condition fIf < fLO, fsi>108 MHz fsi = fs + 2IF fsi > 108 MHz fs + 2IF > 108 MHz 88MHz+2IF > 108 MHz IF > 10MHz

    Among the given options IF = 10.7 MHz 05. Ans (a) Sol: Range of variation in local oscillator

    frequency is fL = fsmin + IF = 88 + 10.7 fL =98.7 MHz fLmax = fsmax + IF =108 +10.7 fLmax = 118.7 MHz

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 1 7

    01. Sol: n = 5 Rb = 50Mbps Maximum B.W of a message signal is Rb = fb = n.fs 50×106 = 5×fs fs = 10MHz ∴ maximum B.W of message signal

    = MHz52

    102fs ==

    02. Ans (d) Sol: Given L = 64 2n = 64 ⇒ n = 6

    2

    )Q( maxe∆

    =

    L

    VVWhere minmax

    −=∆

    642VV

    2minmax

    ×−

    =∆

    128

    VV)Q( minmaxmaxe

    −=

    03. Ans (b) Sol: n =10 Rb = 100 kbps Rb = nfs = 100×103 10 fs =100×103 fs = 10×103

    fs = 2fm ⇒ fm = kHz52fs =

    04. Ans (b)

    05. Ans (d) Sol: Given

    fs = 44.1kHz n = 16 Bit Rate = nfs

    =16×44.1kHz bits/sec Bit Rate = 16×44.1kHz×60.bits/minute

    For 50 minutes, No of bits in a piece of music is 50 × Bit rate = 2.1168 G.bits

    06. Refer above Ans: 07. Ans: (c) Sol: PWM is the method of transmitting a

    continuous and analog signal, using pulse train as a carrier.

    08. Ans (c) Sol: Given fm = 5kHz fs = 2fm = 10kHz s/sec L = 256 ⇒ 2n = 28 n = 8 Sampling rate in minute = fs = 600kHz s/minute For 10 minutes, Total No of samples taken = 6×106 Samples 09. Ans (c) Sol: Total No of bits generator

    = (6×106)×8 = 48 mega bits.

    Pulse Code Modulation LEVEL – 1 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 24 Electronics and Communication Engg. ACE 01.

    Sol: nminmax

    2VV −

    =∆

    n21α∆ ;

    1

    2

    n

    n

    2

    1

    22

    =∆∆

    n3n

    2 221.0 +

    =∆

    811.02 ×=∆

    0125.02 =∆ None of the option correct

    02. Ans: (3)

    Sol: (BW)PCM = 2f sn

    Where ‘n’ is the number of bits to encode the signal and L = 2n, where ‘L’ is the number of quantization levels.

    L1 = 4 ⇒ n1 = 2 L2 = 64 ⇒ n2 = 6

    326

    nn

    (BW)(BW)

    1

    2

    1

    2 ===

    ⇒ (BW)2 = 3 (BW)1 03. Ans: (b) Sol: The o/p of the quantizer will be in error if

    the channel noise Magnitude exceeds Half of the step size.

    04. Ans (c) Sol: Given Vmax = + 1, Vmin = -1 Quantization bits = n fm = 5kHz nmin = ? (Qe)max < 5mV

    (Qe)max = 2∆

    m52<

    ∆ < 10 m

    m102

    VVn

    minmax <−

    m1022

    n <

    2n-1 >100 n > 7.64 05. Ans: (d) Sol: Bit rate = nfs = 8×(2×5k) = 80kbps 06. Ans (c) Sol: Given,

    Two signals are sampled with fs = 44100s/sec & each sample contains ‘16’ bits Due to additional bit there is a 100% overhead. Out put bit rate =?

    |s

    |b fnR =

    |s|

    s f2f = = 2 [44100]

    )eouslytansimulsampledsignalstwo( n| = 2n ( )bitsadditionalbyoverheadtodue Rb = 4 (nfs)

    = 2.822Mbps 07. Ans (c) Sol: No, of bits recorded over an hour

    = Rb × 3600 = 10.16G bits 08. Ans (b) Sol: Given Variation of Input = (0-4) volts No, of quantization levels = 2 L = 2 2n = 2 ⇒ n = 1

    We know that,

    2

    Q2 e

    ∆≤≤

    ∆−

    In the step 0−2 error varies from -1 to 1

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communications Postal Coaching Solutions. 25 In the step 2−3.5 error varies from -1.5 to

    + 0.5 So minimum error is -1.5V and maximum error is 0.5V 09. Ans: (c)

    Sol: )tW16(1tWπ4

    t)Wπ(4sinp(t) 22−=

    At W41t = ;

    00

    W41P =

    Use L-Hospital Rule

    )t(3Wπ64Wπ4

    t)Wπ(4cosWπ4Ltp(t)Lt 23W41t

    W41t −

    =→→

    −=

    23

    W1613Wπ64Wπ4

    1)(Wπ4

    0.5Wπ8Wπ4

    =−−

    =

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 01. Ans: (c) Sol: ‘fS’ from the TDM system is = 2400 + 1200 + 1200 = 4800 samples/sec. n = 12 bits ∴ Bit rate = n fS = 12 × 4800 = 57.6 kbps 02. Ans (b) Sol: Given kHz2.7fkHz6.3f

    11 sm=⇒=

    kHz4.2ffkHz2.1ff3232 ssmm==⇒==

    3sss ffff 21 ++=

    = 12kHz No. of Levels used = 1024

    ⇒ n = 10bits ∴ Bit rate = nfs =10 × 12 kHz =120 kbps None of the option is true If there is another signal m4(t) = 12 kHz Then Rb = 144 kbps 03. Ans (c) 04. Ans: (c) Sol: (fs)min for each signal = 10 kHz Existing fs = 2 ×10 kHz = 20 kHz. No. of samples/sec from the TDM system

    = 4 × 20 = 80 kHz.

    (BW)min = 21 (sampling rate)

    = 40 KHz. 05. Ans (b) Sol: Given m = 20

    n = 7 fs = 8ks/s Each sample contains 7 bits + synchronization bit = 8 bits ∴ Bit rate Rb = 20×8×8000 = 1280 kbps

    06. Ans (b) 07. Ans (b) Sol: m = 96 fs = 8kHz n = 8 1 frame = [n×m+1] Rb = (96×8+1)8×103 = 6.152Mbps 01. Ans: (a) Sol: (fs)min = ( 1sf )min+ ( 2sf )min

    + (3s

    f )min + ( 4sf )min

    = 200 + 200 + 400 + 800 = 1600 Hz 02. Ans: (d) Sol: (BW)min = W + W +2W + 3W = 7 W 03. Ans: (a) Sol: Peak amplitude → Am Peak to peak amplitude Am

    2∆− ≤ qe ≤

    2∆

    PCM maximum tolerable 2∆ = 0.2% Am

    ∆ = L

    peaktoPeak ⇒ L2

    m/A2 = 100

    2.0 Am

    (∆ = LAm2 )

    ⇒ L = 500

    Time Division Multiplexing 8 LEVEL – 1 (Solutions)

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 27 2n = 500 n = 9 rb = n(fS)TDM + 9 fS = RN + 20%RN = RN + 0.2RN fS = 1.2RN = 1.2 ×2×ω fS = 2.4 K samples/sec (fS)TDM = 5(fS) = 5 × 2.4 K = 12 K sample/sec rb = (nfS) + 0.5%(nfS)

    = (9 ×12k) + 100

    5.0 (9×12k)

    = 108540 bPS 04. Sol: No. of patients = 10 ECG signal B.W = 100Hz (Qe)max ≤ (0.25) %Vmax

    maxnmax V

    10025.0

    22V2

    ≤×

    2n ≥ 400 n ≥ 8.64 n = 9

    Bit rate of transmitted data = 10×9×200 = 18kbps 05. Ans (c) Sol:

    Minimum B.W of

    TDM is ∑=

    ωN

    1ii

    06. Sol: Given

    L = 256 ⇒ n = 8 kHz5f

    1m=

    kHz10f1m=

    kHz5f3m=

    fs = 2 [5kHz + 10kHz+5kHz] = 40 kHz n = 8 bits

    Bit rate = nfs = 8×40 kHz = 320kbps

    i) Bit duration = sec125.3R1

    b

    µ=

    ii) Minimum channel B.W = 2

    R b

    kHz320= iii) Commutator speed = fs revolution/sec

    = 40K×60 RPM = 240K RPM iv) No. of Levels used = 512 ⇒ n = 9 360kHzB.W =⇒

    Increase in channel B.W = 40 kHz 07. Sol: n = 8, B.W = 2 kHz

    Am%12=

    ∆ (∆ = 2A2 m )

    L2

    A2 m = 100

    1 Am

    ⇒ L = 100 ⇒ n = 7 fS = RN + 25%RN fS = 1.25 RN = 1.25 ×2 ×2K = 5 K (fS)TDM = nfS

    = 8 ×(5K) = 40 K samples/sec rb = n(RS)TDM = 7 ×(40K) = 280

    k.bits/sec rb = 280 kbits/sec

    BT = )1(2rb α+ (α = 0.2)

    BT = ( )2.01K2

    280+

    BT = 168 kHz 08. Sol: IES Conventional Refer any standard Text

    book

    C1 C2……….CN

    ωi T

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 01. Ans (a) Sol: Maximum slope that a stair case can track

    = 50V/sec 02. Ans (c) Sol: Rb = 5kbps

    sec2001051

    R1TT 3

    bbs µ=×

    ===

    03. Ans (d) Sol: m(t) = cos2π (800)t

    ∆ = 0.1V To avoid slope overload error

    )(tmdtd

    Ts≥

    0.1(fs) ≥ 2 π 800 fs ≥ 2 π(8000) fs ≥ 50.265kHz 04. Ans (b) Sol: Granular noise occur when step size is

    larger than the slope of message signal 05. Ans: (d) Sol: To reduce slope over loading step size is

    to be increased 06. Sol: m(t) = 0.01 t fs = 20Hz Optimum value of step size = slope of

    message signal

    )t(mdtdfs =∆⇒

    ∆ (20) = 0.01 ∆ = 500×10-6V 07. Ans (d) Sol: m(t) = cos2π(800)t ∆ = 0.1V fs = ?

    To avoid distortion ∆fs = )t(mdtd

    1.08002fs

    ×π=

    = 2 π×8000 08. Ans (c) Sol: Granular noise occurs when

    )t(mdd

    Ts>

    ∆ > (10) Ts )givent10)t(m( = 09. Ans: (b) Sol: To avoid slope over loading, rate of rise

    of the o/p of the Integrator and rate of rise of the Base band signal should be the same.

    ∴∆fs = slope of base band signal ∆× 32 × 103 = 125 ∆ = 2−8 Volts. 10. Ans (d) 01. Ans: (b) Sol: x(t) = Emsin2πsint

    ST∆ <

    dttdm )( → slope overload distortion

    takes place

    W

    H

    Delta Modulation 9 LEVEL – 1 (Solutions)

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 29 ∆fS < Em2πfm

    ⇒ π2

    Sf∆ < EmRm (∆ = 0.628)

    ⇒ π×

    2K40628.0 < Emfm

    fS = 40 kHz ⇒ 4 kHz < EmRm Check for options (a) Em × fm = 0.3 × 8 K = 2.4 kHz (4K

  • bk

    Tb

    PSK Modulator

    DPSK dk Logic function

    01. Ans: (c) Sol: (BW)BPSK = 2fb = 20 kHz (BW)QPSK = fb = 10 kHz 02. Ans:(c) Sol: In DPSK,

    0 → is represented with a carrier has phase ‘π’ 1 → is represented with a carrier has phase ‘0’

    dk = 0 → output carrier phase of DPSK modulation is ‘π’

    dk = 1 → output carrier phase of DPSK modulation is ‘0’

    Logic function may EX-OR or EX-NOR. We have to find out logic function from the given information

    dk = bk ⊕ dk − 1 (or) dk = bk ⊙ dk − 1 bk = 1, dk = 0, dk − 1 = 0 0 = 1 ⊕ 0 it is wrong

    0 = 1 ⊙ 0 it is correct Logic function is EX-NOR operation

    The remaining carrier phase 0 π π π 03. Ans: Quadrature Phase Shift Keying 04. Ans: (a) & (c) 05. Ans (c)

    Sol: Baud rate = mlog

    R

    2

    b

    Mbps174log

    34

    2

    ==

    06. Ans (b) Sol: Given

    Bit stream 110 111001 Reference bit = 1 07. Ans (b)

    1 1 0 1 1 1 0 0 1 1

    1 1 0 0 0 0 1 0 0

    0 0 π π π π 0 π π

    b|(t) = b(t) Q(t)

    b(t) b|(t)

    Q(t)

    Message bits bk 1 1 0 0 1 1

    0 0

    π π dk

    First two reception bits

    Logic function

    1 1 0 0 1 1

    0 0

    π π

    1 0 0 0

    ⊙ ⊙ ⊙

    π π π 0

    Band Pass Data Transmission 10 LEVEL – 1 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 31 01. Sol: fC1 = 25 kHz, fC2 = 10 kHz To take non cohenent ∆f = rb

    fC2 −fc1 = bT

    1

    ⇒ Tb = fn∆

    Let n = 1 Tb = 12

    1

    CC ff − =

    K151

    = 66.6 sec

    Let n = 2 Tb = K15

    2 = 133.3 µsec

    n = 3 Tb = K153 = 200 µsec

    02. Ans: (b)

    Sol: fH = 25 kHz ; fL = 10 kHz

    ∴ Center frequency

    =

    +

    21025 kHz = 17.5 kHz

    ∴ Frequency offset, Ω = 2π (25 − 17.5) × 103

    = 2π (7.5) × 103

    = 15 × 103π rad/sec.

    The two possible FSK signals are

    orthogonal, if 2ΩT = nπ

    ⇒ 2(15π) × 103 × T = nπ

    ⇒ 30 × 103 × T = n (integer)

    This is satisfied for, T = 200µsec.

    03. Ans (a) Sol: rb = 8 kbps Cohenent detection

    ∆f = 2

    nrb

    Best possible n = 1

    ∆f = 2K8 = 4K

    To verify the options ∆f = 4k i.e. fC2 −fC1 = 4K (a) 20 K - 16 K = 4 K (b) 32 K – 20 K = 12 K (c) 40 K – 20 K = 20 K (d) 40 K – 32 K = 8 K

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 0125.015.00025.005.015.0

    01. Ans: (d) Sol: Since all the 4 levels are equi-probable,

    Entropy H = 2 bits/sample. Since, two quantized samples are transmitted per sec, message rate r = 2. Thus, the information rate R = r.H = 4 bps.

    02. Ans: (b) Sol: Huffman encoder is the most efficient

    source encoder

    L = 1×0.5+2×0.25+2×0.25 = 1.5 bits/symbol

    Average bit rate = 3000 × 1.5 = 4500 bps 03. Ans: (a) Sol:

    max)x(H of a discrete source is nlog2

    bits/message. Thus H(x) increases as log n

    04. Sol: Given symbols = 64 Maximum entropy = log2M = log264 = 6 bits/symbol 05. Sol: Given,

    4 symbols with probabilities: 0.1, 0.2, 0.3 & 0.4

    ⇒ Average code word length = − (0.1log20.1+0.2log20.2+0.3log20.3+0.4log20.4) = 1.8464 06. Ans (d)

    07. Sol: Maximum entropy of a binary source: Mlog/)x(H 2max =

    2log/)x(H 2max =

    = 1 bit/symbol 08. Ans: (c) Sol: Assuming all the 64 levels are

    equiprobable, H= 64log2 = 6 bits/pixel

    Total No. of pixels = 625 × 400 × 400 = 100 M pixels /sec Data rate = 6 bits/pixel×100×106 pixel/sec

    = 600 Mbps 09. Sol: Average rate of information = 512×512×log2256×30 = 66.15Mbps 01. Sol:

    C = Blog2(1+NS )

    +×=

    →∝→∝ nBS1logB

    Sn

    nSLimCLim 2BB

    elognSCLim 2B =→∝

    Information Theory 11

    LEVEL – 1 (Solutions)

    LEVEL – 2 (Solutions)

    n/2

    Ideal AWGN

    n/2

    −B B

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 33

    (→∝n

    Lim xlog

    +

    Q11 = loge)

    nS44.1CLim

    B=

    →∝

    02. Ans: (b) Sol: Max. entropy = 512×512 × 8log2

    = 786432 bits 03. Ans: (b)

    Sol: C = B log (1+NS )

    Since NS >>1. 1+

    NS ≅

    NS

    ∴ C1 = B log NS

    C2 = B log (2. NS )

    = B log2 + B log (NS )

    = C1 +B

    04. Sol: Given B. W = 3 kHz SNR = 10dB

    ⇒ 10 log10 (SNR) = 10 SNR = 10| = 10 No of characters = 128

    Channel capacity = B log2

    +

    NS1

    = 3 × 103 log2(1 + 10) = 10378bps

    05. Sol: No of characteristics can be sent without

    any error cps.14827c

    Mlogc

    2

    ===

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • P{X = 4} = 0

    P{X = xi} = 0

    4 xi x

    PX(x)

    01. Ans: (a)

    Sol: p(x) = π2

    1 2x 2

    e−

    is the density of

    standardized Gaussian random variable. 02. Ans: (c) Sol: A continuous Random variable X takes

    every value in a certain range, the probability that X = x, is zero for every x in that range.

    Given 184)(x

    X

    2

    eπ23

    1(x)P−

    −= is a

    continuous Random variable therefore probability of the event {X = 4} is zero.

    03. Ans: (a) 04. Ans: (d) Sol: Var(−kx) = E[(−kx)2] − [E(−kx)]2 = k2.E(x2) − [−k.E(x)]2 = k2. Var(x) 05. Ans: (c)

    Sol: p(v) =

    4k v ; 0 ≤ v ≤ 4

    = 0 ; else where

    1/2k1dvv.4k4

    0

    =⇒=

    E(V2) = ∫∫ =4

    0

    34

    0

    2 .dvv81.p(v)dvv = 8

    06. Ans (c) Sol: Given f(x) = 0.5 e- x By observing figure Mean = 0 Standard

    deviation2

    x )mean(valuesquaremean −=σ

    valuesquaremean=

    ∫∞

    ∞−

    = dx)x(fxvaluesquaremean 2

    ∫∞

    ∞−

    −= )e5.0(x x2 dx

    ∫∞

    −×=0

    x2ex25.0 dx

    ∫∞

    −=0

    x2ex dx

    =∞

    −−

    −−

    − ∫

    0

    xx2

    1ex2

    xex

    ∞−−

    −−

    +−= ∫0

    xxx2

    1e2

    1ex2ex

    [ ]∞−−− −+−= 0xxx2 e2xe2ex = 0 + 2 = 2

    2x =σ∴ 07. Ans: (d) Sol: Z (t) = x(t) cos ( ω0t + θ) ;

    x (t) is a Random process with mean = 0 Variance = m2

    ‘θ’ is a random variable

    π

  • ACE Communication Postal Coaching Solutions. 35

    [ ]202 ))tcos()t(x(E)]t(z[E θ+ω= )]t([cosE)]t(x[E 0

    22 θ+ω×=

    [ ] θπ

    θ+ω=θ+ω ∫π

    d21).t(cos)t(cosE 0

    2

    0

    20

    2

    ∫π

    θ+ω+

    π=

    2

    0

    0

    2)t(2cos1

    21

    ∫ ∫π π

    θθ+ωπ

    +θπ

    =2

    0

    2

    00 d)t(2cos(2

    121d

    21.

    21

    0)2(21

    21

    +π××π

    =

    21

    =

    21.m)]t(z{E 22 =∴

    = 0.5 m2 Common Data Solutions for 08 & 09

    Given, y(t) = x (t) cos (2πfct + θ)

    π≤θ≤π

    =θ 2021)(f

    08. Ans: (a) Sol: ACF [Y(t)] = ?

    ACF [Y(t) ] = ACF [x(t) cos(2πfct +θ)] = ACF[x(t)]×ACF[cos(2πfct+θ)]

    ∫π

    θ θθθ+πθ+π=τ2

    0cc d)(f)]tf2cos()tf2(cos()(R

    ∫π

    θτπ+θ+τπ+ππ

    =2

    0ccc d)]f2cos()2f2tf4[cos(4

    1

    ∫ ∫π π

    θτππ

    +θθ+τ+ππ

    =2

    0

    2

    0cc d)f2cos(4

    1d))t(f2(2cos41

    π×τππ

    +=τθ 2)f2(cos410)(R c

    τπ=τθ cf2cos21)(R

    τπτ=τ cxy f2cos)(R5.0)(R

    09. Ans: (a) Sol: Ry (τ) = Rx 0.5 cos ωcτ

    We know that

    Applying Fourier Transform [ ])ft()ft(5.0)f(S)f(S ccxy +δ+−δ∗= )]ff(S)ff(S[5.0 cxcx ++−= 10. Ans: (b) Sol: Given, X & Y are two Random Variable Y = cosπx

    f(x) =1 21x

    21

    0) = 1.01011

    101

    ==×

    Ryx(τ) Sy (β) FT

    1/10

    1 -9 0

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 36 Electronics and Communication Engg. ACE 12. Ans: (d) 13. Ans: (c) Sol: A Gaussian pulse in time domain is also

    Gaussian in frequency domain 14. Ans: (c) 15. Ans: (d) Sol: Narrow band representation of noise is

    n(t) = nc(t)cosωct − ns(t)sinωct. Its envelope is R(t) = ,)t(n)t(n 2s

    2c + where

    nc(t) and ns(t) are two independent, zero mean Gaussian processes, with same variance. The resulting envelope is Rayleigh Random Variable.

    16. Ans: (c)

    Sol: H(f) = fRC2j1

    1π+

    = cf/f.j1

    1+

    |H(f)|2 = 2c

    2

    2c

    fff+

    o/p PSD = |H(f)|2 . i/p PSD

    = 2c

    2

    2c

    fff+

    . K

    o/p Noise Power = ∫∞

    ∞−

    dfPSD)(o/p

    = K ∫∞

    ∞− +2c

    2

    2c

    fff .df = K π fc

    (By substitution f = fc tan θ) 17. Ans: (d) 18. Ans: (a) Sol: Power of a signal, g(t) is the time average

    of Energy

    ∴ Pg = ∫−

    →∞

    2/T

    2/T

    2

    Tdt)]t(g[

    T1Lt

    If signal is a.g(t), its Power

    = ∫−

    ∞→=

    2/T

    2/Tg

    22

    TP.adt)]t(g.a[

    T1Lt

    PSD = Power /unit BW

    If PSD of g(t) is Sg(ω) = Pg/BW, PSD of ‘a g(t)’ , is

    a2 Pg/ BW = a2 Sg (ω)

    19. Ans: (b) Sol: Output PSD = |H(ω)|2 × i/p PSD

    = 2tj de2 ω− × N0

    = 4 N0 o/p Noise Power = o/p PSD × B.W

    = 4N0B 20. Ans: (a) Sol: Given, Differential equation of a system is

    )t(x)t(dtd)t(y)t(y

    dtd

    −×=+

    Applying Fourier transform, )1sf)(f()jf1)(f(y −×=+⇒

    jf1jf1

    )f(x)f(y

    ++−

    =

    → The transform function of system is a All pass filter

    ∴Sy(f) = Sx(f) 21. Ans: (a) Sol: Given,

    PSD of Noise =2

    T = 270 C ⇒ 300K Pη = K.T.B η0 = KT = 1.38×10-23300

    1501038.12

    PSD 230 ××=η

    =

    2310207

    =

    η0/2

    f(Hz)

    SN(f)

    PSD of Noise

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 37

    3dB

    Sn(f)

    0.5×103

    f(kHz) -2 0 2

    22. Sol: Pn = K.T.B

    21023001036.121 623 ×××

    ×××= −

    = 8.28×10-15W 23. 24. Ans: (a) Sol: S(ω) = |H(ω)|2 × i/p PSD = |H(ω)|2

    ∴ |H(ω)|2 = 21616ω+

    H(ω) = ω+ j4

    4

    The above can be the Transfer function of

    an R-L LPF given by LjR

    Rω+

    25. Ans: (a) Sol: R = 4Ω & L = 1H 26. Ans: (b)

    Sol: Sx(f) = 2δ(f) + 0.5

    10f

    1 ;f≤10Hz

    = 0 else where DC. Power is present when f = 0

    ∴ DC power = 2 W

    AC power =

    −∫

    − 10f

    15.010

    10

    = 5 W

    27. Ans: (a) Sol:

    Given,

    Hz/W102

    90 −=η

    Hz/W102 90−×=η

    RC21f0 π

    =

    RC21108 3π

    )108(2

    1RC 3×π=

    )108(24102

    RC4NoP 3

    9

    ×π××

    ==−

    = 25.2µW 28. Ans: (a) Sol: PSD of Narrow Band Noise is as shown

    in figure When fc = 10kHz the power of in phase component = ?

    Power of in phase component 33 105.0102

    212 −+ ××××× = 1 W

    29. Ans: (a) Sol: f0 f(Hz)

    20η

    PSD of Noise

    Sn(f)

    f(Hz)

    SN(f+10) 0.5×103

    f(kHz) 2 0 -12 20 SN (f-10)

    0.5×103

    f(kHz) 22 20 -2 0

    0.5×10-3

    f(kHz) 1 -1 -23 -21

    SN (f+11)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 38 Electronics and Communication Engg. ACE

    Power of inphase component = 0.5×10-3×2×103 = 1 W 30. Ans: (a) Sol: Given,

    h (t) = δ(t)-∝e-∝t u(t)

    )f(2j11)f(Hπ+α

    α−=

    ω+α

    α−=

    j1

    y(f) = s(t) * h(t)

    by)f(H)f(S)f(S 2Ny =

    222

    12

    Noω+α

    α−=

    ω+ααα

    −= 22y2.

    21

    2No)f(S

    Applying Inverse Fourier transform

    α−τδ=τ τα−e

    2)(

    2N

    )(R 0y

    31. Ans: (a) Sol: If X(t1) and X(t2) are two samples

    obtained from a random process X(t) at t1 and t2 instances. Then 1. E[Xk(t1) Xj(t2)] = E[Xk(t1)] E[Xj(t2)]

    X(t1), X(t2) are statistically independent, for all values of k and j where k and j are positive integers

    2. RXX(t1, t2) = E[X(t1) X(t2)] = 0 X(t1), X(t2) are orthogonal 3. Cov(t1, t2) = RXX(t1, t2)−E[X(t1)] E[X(t2)] = 0

    i.e., E[X(t1) X(t2)] = E[X(t1)] E[X(t2)]

    X(t1) X(t2) are uncorrelated Assume that the Random process at the input of the LPF is X(t), which is given zero mean white Gaussian Noise and output of the LPF is Y(t). The spectral densities relation as shown in Fig. below

    According to Wiener-Khinchin theorem

    S(f))R(τ F→←

    ACF and PSD form a F.T pair ∴ ACF of Y(t)

    RY(τ) = N0B Sinc(2B0τ) The mean value of Random process Y(t) µY(t) = µX(t) . H(0) [µY(t) = E[Y(t)], µX(t) = E[X(t)]] µY(t) = 0 . (1) = 0

    Y(t) is also zero mean Gaussian Random process.

    Let Y(ts), Y(2ts) are two consecutive samples obtained from Y(t) at ts and 2ts instances (uniform sampling) E[Y(ts)]=E[Y(2ts)] = 0 (E[Y(t)] = 0)

    RYY(ts) = RYY(t, 2ts) = E[Y(ts) Y(2ts)] (RYY(τ) = E[Y(t) Y(t + T)] ) E[Y(ts) Y(2ts)] = RYY(ts)

    = N0 B Sinc(2Bts) Given B = 10 KHz, fs = 0.03 ms RYY(ts) = N0×10×103 Sinc(2×10×103

    ×0.03 ×10−3)

    h(t) S(t) Y(t)

    0.5×10-3

    f(kHz) 1 -1 21

    SN(f-11)

    23

    0.5×10-3

    1 -1 f(kHz)

    SX(f)

    f

    H(f)

    f

    1

    −B B

    SY(f)

    f

    N0/2

    −B B

    Ideal LPF

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 39 = 104 N0 Sinc(0.6)

    =

    xπxπSin(x)Sinc

    ≠ 0 → Not orthogonal Cov (ts, 2ts) = RYY(ts)–E(Y(ts)] E(Y(2ts)

    = RYY(ts) – 0.(0) ≠ 0 → correlated 01. Ans: (b)

    Sol: E(X) = ∫− −

    =

    3

    1

    3

    1

    2

    2x

    41dx)x(p.x = 1

    E(X2) = 3

    1

    33

    1

    2

    3x

    41dx)x(px

    −−

    =∫ = 7/3

    Var(X) = E(X2) – [E(X)]2 =341

    37

    =−

    02. Sol: RXX(t1, t2) = E[X(t1)X(t2)] = E[Acosωt1Acosωt2) = cosωt1cosωt2E[A2] [ E [A2] = 1/3]

    = 31 cosωt1cosωt2

    σ2 = ( )121 2 → variance

    E[A2] = σ2 + [E[A]]2

    = 41

    121+

    E [A2] = 124 =

    31

    03. Sol: RXY (t1, t2) = E[X(t1)Y(t2)] Let t2 −t1 = τ E[(Acosωt1 + Bsinωt1)(Bcosωt2 −Asinωt2)] E[AB] = E[A] E[B] E[AB] = 0 E [BA] = 0 E[A2] = σ2

    E[B2] = σ2 [= cosωt1.cosω2E[AB]−sinωt1sinωt2

    E[BA] – E[A2] cosωt1sinωt2+E[B2] sinωt1 cosωt2]

    = 0-0 −σ2cosωt1sinωt2 +σ2sinωt1cosωt2 = −σ2(cosωt1sinωt2 + σ2sinωt1cosωt2) = -σ2sinω(t2−t1) (τ = (t2−t1) = −σ2sinτ 04. Sol: X(t) = +ve req E[X2(t)] and E[X(t)]

    E[X2(t)] = ∫∝

    ∝−

    ωωπ

    dS XX )(21

    = ( )

    ×+

    π62000

    214001

    = π

    6400

    E[X(t)] = 0 [ The given function is periodic

    function]

    Ans : π

    6400 , 0

    LEVEL – 2 (Solutions)

    fA(A)

    1/2 0 1

    SX(ω)

    400δ(ω−104)

    6

    0 9 10 11 ω(103)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 40 Electronics and Communication Engg. ACE 05. Sol:

    RX(τ) = 2πτ−e

    Y(t) = X(t)*h(t) |H(f)|2 = (4π2f2+1) RXX(T) →←FT SXX(f)

    22 fFT ee ππτ −− →←

    Normalised Gaussian function SYY(f) = |H(f)|2SXX(f)

    = (4π2f2 +1)2fe π−

    06. Sol:

    Y(t) = ( )dtt(X)t(Xdtd

    −+

    Y(f) = j2πf ( )dftie π21 −+ X(f) H(f) =

    )()(

    fXfY = j2πf( dftje π21 −+ )

    2)( fH = 4cos2πftd SYY(f) = |H(f)|2SXX(f) = 4π2f2(2cos(πftd))2SXX(f) At SYY(f) = 0

    πftd = (2n+1)dt2

    1

    f = ( ) 3105.0211n2 −××

    +

    f = (2n+1)103 f = (2n+1)R0 f0 = 1 kHz 07. Ans: (b) Sol:

    Uncorrelated ⇒ cov(τ) ⇒ RXX(τ) −µ2×(τ) cov(τ) = RXX(τ)

    ⇒0n

    R (τ) = 0 ⇒Nω0sin(2wτ) = 0, sinCx = 0; x is an

    integer 2wτ = m

    τ = w

    m2

    , integer m = 1, 2, 3 …….

    Common Data Solutions for Q. 08 & Q.09

    −= −

    88

    10

    f110)f(S 810f ≤

    0= 810f >

    ×−= −= 8

    68

    MHz49f 101049110)f(S

    = 0.51×10-8

    8

    8

    68

    MHz51f

    1049.0

    10105110)f(S

    −=

    ×=

    ×−=

    08. The verify the limits – 108 ≤ f ≤ 108

    H(f)=j2πf

    H(f)=j2πf−1)

    Y(t)

    No/2 H(f)

    −ω

    ω −ω

    ω

    No/2

    x(t)

    Delay 0.5ms

    + Y1(t)

    dtd

    Y(t) +

    +

    S(f)

    f

    f(MHz) +49 51 -51 -49

    10-8

    f(MHz) 49 51 -49 -51

    f(MHz) 51 49 49 -51

    Sy(x)

    .0.51×10-4 .0.49×10-8

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 41

    -1

    f

    09. Ans: (b) Sol: In phase component power =?

    Power (In phase) = 1×10-8×2×106 = 2×10-2 Common Data Solutions for 10 & 11 Sy(f) = sx(f)H(f)2

    Sy(f) = 2N 0 00 BfB ≤≤−

    = 0 else where 10. Ans: (b) Sol: We know that,

    Taking Inverse Fourier Transform

    [ ] dfe)t(S)t(SF f2jyy1 τπ∞

    ∞−

    − ∫=

    ∫=τ−

    τπ0

    0

    B

    B

    f2j0y dfe2

    N)(R

    0

    0

    B

    B

    t2j0

    f2je

    2N

    π

    π

    =

    −=

    τπ−τπ

    πτ j2ee

    2N 00 B2jB2j

    )(

    0

    )B2sin(2N

    00 τππτ

    =

    τπτπ

    =0

    000 B2

    )B2sin(BN

    )B2(csinBN)(R 000y τ=τ 11. Ans: (b) Sol:

    B21ofmultiplett 21 =−

    Sy(f-50)

    f(MHz) 101 -1 99 1

    0

    Sy(f+10)+Sy(f-10)

    1×10-8

    -1 1 f(MHz)

    1

    -B0 B0 f(mHz)

    N0/2 ?

    ACF Sx(f) F.T

    0B24−

    0B23−

    0B22−

    0B21−

    0B21

    0B22

    0B23

    0B24

    Rx(τ)

    N0B0

    t1 t2

    f(MHz) 0 -1

    Sy(f+50)

    -109 -101 10

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 01 Ans: (b) Sol: cos2(20) = 0.883 02. Ans: (c) Sol: XAM(t)=10[1+0.5sin2πfmt]cos (2πfct)

    Average side band power = 2

    P 2Cµ

    PC = 2)10( 2 = 50 W

    ∴ PSB = W25.62)5.0(50 2=

    ×

    03. Ans: (b)

    Sol: Noise Power = Area under PSD curve

    = 4

    ××

    2NB

    21 0 = N0. B

    ∴ BN4

    25BN

    25.6PowerNoise

    P

    00

    SB ==

    04. Ans: (d) Sol: The output of signal to Noise Ratio

    FM0

    0

    NS

    = 3(mf)2

    AM0

    0

    NS

    For improvement to be noticeable, 3(mf)2

    = 1 (or) mf = 3

    1

    05. Ans: (b)

    Sol: The loss of message at low prediction NS

    is called threshold effect. The name comes about because, there is

    some value of inputNS , above which

    signal distortion due to noise is negligible and below which the system performance deteriorates rapidly.

    06. Ans: (d) Sol: Given, fm = 5 kHz

    Ac = 2V µ = 0.5

    8102

    −=η

    η = 2×10-8 S0 = Ac2Ka2P

    = 222

    m2

    2 Ac21

    2AKaAc µ=

    ××××

    ××=

    − 38

    22

    1

    db0

    0

    1051022)5.0(4log10

    NS

    = 33.97dB ≈ 34dB 07. Ans: (d) Sol:

    ×××

    +=

    − )105102

    )25.01(

    22

    log10NS

    38

    22

    dBi

    i

    = 43.51 dB

    01. Ans: (d) Sol: Output of the multiplier

    = m(t). cosωot cos(ωot + θ)

    = [ ]θ+θ+ω cos)t2cos(2

    )t(mo

    Output of LPF V0(t) = θcos2)t(m

    m(t)θcos21

    =

    Power of o/p signal = ∫><

    ∞→T

    20T

    dt(t)vT1Lt

    dtm(t)θcos21

    T1Lt

    2

    TT ∫

    ><∞→

    =

    = ∫

    ><∞→

    T

    2

    T

    2 dt(t)mT1Ltθcos

    41

    m2 Pθcos

    41

    =

    Noise Analog Communications 13

    LEVEL – 1 (Solutions)

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 43 02. Ans: (a) Sol:

    ni = n0 ni = n0 ×W = 10−20 × 100 × 106

    Si = 4L

    t

    10mw1

    PP

    = = 1 × 10−7

    ni = 10−20 ×100 × 106

    i

    i

    nS = 12

    7

    1010

    = 105 = 50 dB

    i

    i

    nS = 50 dB

    Solutions for Common Data Questions 03 to 05

    Given,

    B.W of an audio signal = 10 kHz

    dB40NS

    0

    =

    40

    10NS

    =

    9102

    −=η

    9102 −×=η⇒ Power loss = 40dB (PL) = 104 ( ) ( ) dBLdBtdB )P(PP pi −=

    =

    L

    t

    PP

    Pp

    i

    03. Sol:

    04. Sol: For SSB modulation

    ⇒ 4i

    i

    0

    0 10NS

    NS

    ==

    (Only SSB modulation in one sided 2n )

    Pt = ?

    0

    0

    i

    i

    nS

    nS

    = = 104

    Si = 104 × 10 × 103 × 2 × 10−9 w/Hz Si = 20 × 10−2 (Si)dB = (Pt)dB −(Pt)dB (Pt)dB = (Si)dB +(PL)dB Pt = SiPL = 20 ×10−2×104 PL = 2 kW 05. Ans: (c) Sol: For AM

    FOM = )1if(31

    i

    i

    0

    0

    NS

    31

    NS

    =⇒

    i0

    0i NN

    S3S ×

    =

    kHz10102103 94 ××××= − = 0.6 Lit PSP ×=∴

    4106.0 ×= KW6= 06. Ans: (b) Sol: ∆f = 75 kHz fm = 15kHz

    40

    10dB40NS

    ==

    TX RX

    Video signal ω=100 MHz

    PL= 40 dB=104

    TX RX

    BW=10kHz PL= 40 dB=104

    DSB Pt = ? Audio

    0

    0

    nS

    =104 Rx0

    0

    nS

    =0

    FoM=1

    η2

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 44 Electronics and Communication Engg. ACE

    m

    2

    ff;

    23FOM ∆=ββ=

    2

    i

    i

    0

    0

    23

    NSNS

    β=

    ( ) 20

    i

    132

    NS

    NS

    β××

    ==

    ( ) dB24iNS dB =

    07.

    Sol: iN

    S

    = 10 dB

    FOM = 31

    0N

    S

    = 10

    31× = 3.33

    0N

    S

    = 3.3

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 1

    l

    l

    t −T

    l

    t

    T

    01. Ans: (c) 02. Ans: (c)

    Sol: The impulse response of the filter matched to S (t) is h(t) = s (T−t)

    s(−t) =

    h(t) = s(T−t) = 03. Ans: (c) Sol: For every 1 bit increase in data word

    length, S/Nq ratio improves by a factor of 4. For an increase of 2 bits , the improvement factor is 16.

    04. Ans: (c) Sol: ∫

    =V

    Vx

    22 dx(x)fx)E(Xpower,Signal

    3

    V3

    xV21 2

    V

    V

    3

    =

    =

    In uniform quantization,

    power,NoisenuantizatioQ12ΔN

    2

    q =

    LevelsofNumbervaluePeaktoPeaksize)(StepΔwhere =

    LV2Δ =

    L → Number of Quantization levels

    2

    2

    qL3

    VN,powerNoisenuantizatioQ =

    2

    2

    2

    2

    q

    L

    L3V3

    V

    NS

    ==

    05. Ans: (b) Sol: For tone modulation

    qNS = 1.8 + 6n

    = 1.8 + 48 = 49.8 dB 06. 07. Ans: (b) Sol: Bit rate R = n fS

    = 8 × 8 kHz = 64 kbps

    10 log qN

    S = 10 log 23 L2

    = 10 log ( )28223 = 49.9 dB

    08. Ans (c) 09. Ans (a) Sol: In a PCM,

    npp

    2

    2V

    ;12

    PowerNoise =∆∆=

    n21

    ∝∆

    )n(2)1n(2

    P

    P

    22

    NN

    2

    1+

    = ⇒ 4NN

    2

    1

    P

    P =

    dB6)N(N dBPP 12 −== Noise Power decrease by 6dB

    fx(x)

    V −V

    V21

    n

    Quantization Noise 14

    LEVEL – 1 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • 46 Electronics and Communication Engg. ACE 10. Ans (a) Sol: 44forAe)x(f x ≤≤−= − x = 0 elsewhere

    ∫∞

    ∞−

    − == 1Ae x

    ∫ ∫−

    −+ =+=0

    4

    4

    0

    xx 1AeAe

    11

    eA1eA

    4

    0

    x0

    4

    x

    =

    +

    [ ] 1.0]1e[Ae1A 44 =−+− −− [ ] 1e1A 4 =−= − 5093.0

    ]e1[21A 4 =−

    = −

    4x4e5093.0)x(f x ≤≤−= −

    By observing, Quantized values are -3,-1,1,3

    ∫−

    θ−=4

    4

    2q dx)x(f))x(x(N

    ∫ −+∫ −=−−

    4

    2

    x2x2

    0

    2 ]dxe5093.0)3x(dxe5096.0)1x(2

    = 0.3793 11. Ans (b) Sol: Vmax = 2 : Vmin = -2V

    No of Levels used = 4 ⇒ 2n = 4 ⇒ n = 2

    RMS value of quantization error = 12

    2∆

    12∆

    =

    14

    )2(2=

    −−=∆

    2886.0121

    12==

    ∆⇒

    ≈ 0.29 12. Ans (d) Sol: Given No. of bits increased from 5 to 8

    ⇒ (SQNR) α 22n

    2n21N2

    2

    1

    22

    )SQNR()SQNR(

    =

    8252

    2

    1

    22

    )SQNR()SQNR(

    ×

    ×

    =

    (SQNR)2 = 26 (SQNR)1 (SQNR)2 = 64 (SQNR)1 01. Ans: (a) Sol: For Bipolar pulses,

    PSD =b

    2

    T|)P(ω| . sin2

    2Tω b

    The zero magnitude occurs for f = n/Tb. ∴The width of the major lobe = 1/Tb

    = fb ∴(B W) min = fb Here, Data rate = nfs = 8(8 kHz) = 64 kbps ∴(B.W)min = 64 kHz 02. Ans: (c) Sol: Since the signal is uniformly distributed,

    f(x) = 101 for −5≤ x ≤5

    = 0 : else where.

    Signal Power = ∫−

    5

    5

    2x f(x)dx

    = 2volts325

    o/p

    i/p -1

    -3

    0 -1 -4

    3

    1

    2 4

    LEVEL – 2 (Solutions)

    ACE Engineering Publications (A unit of ACE Engg. Academy – Hyderabad, Vijayawada, Visakhapatnam, Tirupati, Delhi, Bhubaneswar, Bangalore, Pune &Chennai) (Copyrights Reserved)

  • ACE Communication Postal Coaching Solutions. 47

    Step size = V039.0210

    LV

    8pp ==−

    Nq = mW126.012

    2

    =∆

    Signal to noise ratio, SNR in dB is

    =

    powerNoisepowersignallog10SNR

    dB48100.126

    25/3log10 3 =

    ×

    = −

    03. Ans: (b) Sol: For every one bit increase in data word

    length, quantization Noise Power

    becomes 41 th of the original. Hence, Data

    word length n = 9 bits ∴L = 2n = 29 = 512

    [

    04. Sol: VP – P = −5V to 5V 20logL = 43.5 L = 102.175 = 149.6

    ⇒ ∆ = L

    VV LH − = 175.210)5(5 −−

    ∆ = 0.06683 05. Ans: (c) Sol:

    ∫−

    =

    5

    5

    22 dx101x]E[XpowerSignal

    )250(301

    3101

    5

    5

    3

    =

    =

    x W325

    =

    Quantization Noise power

    = E[[X- Q(X)]2]

    dx(x)fq(x)][x5

    5X

    2∫ −=−

    ∫−

    −−=4.9

    5

    2 dx1014.95)]([x

    times).....(50dx101]4.85)([x

    4.8

    4.9

    2 +−−+ ∫−

    ∫ −+05.0

    0

    2

    101)025.0( dxx

    times).....(100dx101])075.0[(x

    1.0

    05.0

    2 +−+ ∫

    ∫ ∫−

    −++=4.9

    5

    0.05

    0

    22 dx1010.025)(x100dx

    1014.95)(x50

    0.05

    0

    34.9

    5

    3

    30.025)(x10

    34.95)(x5

    −+

    +=

    ](0.025)[(0.025)3

    10](0.05)[(0.05)35 3333 +++=

    ](0.025)[(0.025)3

    10)1012510(12535 3366 ++×+×= −−

    )10(3.1253

    10)1012510(12535 566 −−− ×+×+×=

    66 103

    5.312103

    1250 −− ×+×=

    = 520.83333 × 10−6

    ××

    = −4dB 105.2325log10(SNR)

    dB42.04= ≈ 42 dB

    −5 −4.9 −4.8

    −4.95 −4.85

    0.05

    0.025

    0.1V

    0.05V

    fx(x)

    101

    x 0

    50 levels

    100 levels Rx(x)

    X

    20∆

    2

    3∆ 1 0


Recommended