+ All Categories
Home > Documents > 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical...

1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical...

Date post: 17-Jan-2016
Category:
Upload: ferdinand-terry
View: 226 times
Download: 0 times
Share this document with a friend
31
1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo [email protected]ffalo.edu
Transcript
Page 1: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

1

CE 530 Molecular Simulation

Lecture 14

Molecular Models

David A. Kofke

Department of Chemical Engineering

SUNY Buffalo

[email protected]

Page 2: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

2

Review

Monte Carlo• ensemble averaging, no dynamics

• easy to select independent variables

• lots of flexibility to improve performance

Molecular dynamics• time averaging, yields dynamical properties

• extended Lagrangians permit extension to other ensembles

Models• atomic systems only

hard sphere, square well

Lennard-Jones

Page 3: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

3

Modeling Molecules

Quantitative calculations require more realistic treatment of molecular interactions

Quantum mechanical origins Intermolecular forces Intramolecular forces Effects of long-range interactions on properties Multibody interactions

Page 4: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

4

Quantum Mechanical Origins

Fundamental to everything is the Schrödinger equation•

• wave function

• H = Hamiltonian operator

• time independent form

Born-Oppenheimer approximation• electrons relax very quickly compared to nuclear motions

• nuclei move in presence of potential energy obtained by solving electron distribution for fixed nuclear configuration

it is still very difficult to solve for this energy routinely

• usually nuclei are heavy enough to treat classically

H it

( , , )R r t

Nuclear coordinates

Electronic coordinates

H E

22 im

H K U U

Page 5: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

5

Force Field Methods

Too expensive to solve QM electronic energy for every nuclear configuration

Instead define energy using simple empirical formulas• “force fields” or “molecular mechanics”

Decomposition of the total energy

Force fields usually written in terms of pairwise additive interatomic potentials• with some exceptions

(1) (2) (3)( ) ( ) ( , ) ( , , )Ni i j i j ki i j i i j i k j

U u u u r r r r r r r

Single-atom energy(external field)

Atom-pair contribution 3-atom contribution

Neglect 3- and higher-order terms

Page 6: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

6

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 7: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

7

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 8: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

8

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 9: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

9

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 10: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

10

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 11: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

11

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Page 12: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

12

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

Repulsion

Page 13: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

13

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

Repulsion

Page 14: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

14

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

- +- +

Repulsion

Attraction

Page 15: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

15

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

-+-+

Repulsion

Attraction

Page 16: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

16

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

-+-+

Repulsion

Attraction

-+

+- +

Page 17: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

17

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

-+-+

Repulsion

Attraction

+-+

+ -++-+

+-+

u(2)

+- +

u(2)

u(N)

Page 18: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

18

Contributions to Potential Energy

Total pair energy breaks into a sum of terms( )N

str bend tors cross vdW el polU U U U U U U U r

Intramolecular only

Ustr stretch

Ubend bend

Utors torsion

Ucross cross

UvdW van der Waals

Uel electrostatic

Upol polarization

Mixed terms

-+-+

Repulsion

Attraction

+-+

+ -+

+-

+-+

u(2)

+- +

u(2)

u(N)

Page 19: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

19

Stretch Energy

Expand energy about equilibrium position

Model fails in strained geometries• better model is the Morse potential

22

12 12 12 12 12 122( ) ( ) ( ) ( )

o o

o o o

r r r r

dU d UU r U r r r r r

dr dr

minimumdefine

212 12 12( ) ( )oU r k r r

(neglect)

harmonic

122

12( ) 1 rU r D e

dissociation energy force constant

250

200

150

100

50

0

Ene

rgy

(kca

l/mol

e)

0.80.60.40.20.0-0.2-0.4

Stretch (Angstroms)

Morse

Page 20: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

20

Bending Energy

Expand energy about equilibrium position

• improvements based on including higher-order terms

Out-of-plane bending

22

2( ) ( ) ( ) ( )

o o

o o odU d UU U

d d

minimumdefine

2( ) ( )oU k

(neglect)

harmonic

2( ) ( )oU k

u(4)

Page 21: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

21

Torsional Energy

Two new features• periodic

• weak (Taylor expansion in not appropriate)

Fourier series

• terms are included to capture appropriate minima/maximadepends on substituent atoms

– e.g., ethane has three mimum-energy conformations• n = 3, 6, 9, etc.

depends on type of bond– e.g. ethane vs. ethylene

• usually at most n = 1, 2, and/or 3 terms are included

1( ) cos( )nn

U U n

Page 22: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

22

Van der Waals Attraction

Correlation of electron fluctuations Stronger for larger, more polarizable molecules

• CCl4 > CH4 ; Kr > Ar > He

Theoretical formula for long-range behavior

Only attraction present between nonpolar molecules• reason that Ar, He, CH4, etc. form liquid phases

a.k.a. “London” or “dispersion” forces

-+-+ - +- +

86

( )attvdW

CU O r

r

Page 23: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

23

Van der Waals Repulsion Overlap of electron clouds Theory provides little guidance on form of model Two popular treatments

inverse power exponential typically n ~ 9 - 12 two parameters

Combine with attraction term• Lennard-Jones model Exp-6

repvdW n

AU

r

rep BrvdWU Ae

12 6

A CU

r r 6

Br CU Ae

r

a.k.a. “Buckingham” or “Hill”

10

8

6

4

2

0

2.01.81.61.41.21.0

LJ Exp-6

Exp-6 repulsion is slightly softer

20

15

10

5

0

x103

8642

Beware of anomalous Exp-6 short-range attraction

Page 24: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

24

Electrostatics 1.

Interaction between charge inhomogeneities Modeling approaches

• point charges

• point multipoles

Point charges• assign Coulombic charges to several points in

the molecule

• total charge sums to charge on molecule (usually zero)

• Coulomb potential

very long ranged

0( )

4i jq q

U rr

1.5

1.0

0.5

0.0

-0.5

-1.0

4321

Lennard-Jones Coulomb

Page 25: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

25

Electrostatics 2. At larger separations, details of charge distribution are less important Multipole statistics capture basic features

• Dipole

• Quadrupole

• Octopole, etc.

Point multipole models based on long-range behavior• dipole-dipole

• dipole-quadrupole

• quadrupole-quadrupole

i iiq r

i i iiqQ rr

Vector

Tensor

0, 0Q

0, 0Q

Q

Q

1 21 2 1 23

ˆ ˆˆ ˆ ˆ ˆ3( )( ) ( )ddur

r r

21 21 2 1 2 24

3 ˆ ˆˆ ˆ ˆˆ ˆ ˆ( ) 5( ) 1 2( )( )2dQ

Qu Q Q

r

r r r

2 2 2 2 21 21 2 12 1 2 1 2 125

31 5 5 2 35 20

4QQQ Q

u c c c c c c c cr

Axially symmetric quadrupole

Page 26: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

26

Molecule , Debye Q, B , A3

He 0 0 0.206

Ar 0 0 1.642

O2 0 -0.4 1.48

N2 0 -1.4 1.7

Cl2 0 4.2 4.6

HF 1.8 2.6 0.8

CO2 0 -4.3 2.9

H2O 1.85 +1.97 (xx)-1.89 (yy)-0.08 (zz)

1.5 (xx)1.43 (yy)1.45 (zz)

CH4 0 0 2.6CCl4 0 0 11.2

C6H6 0 -9.5 10.6NH3 1.5 -2.3 2.22C2H6 0 -1.2 4.4

Electrostatics 3.Some Experimental/Theoretical Values

Page 27: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

27

Polarization

Charge redistribution due to influence of surrounding molecules• dipole moment in bulk different

from that in vacuum

Modeled with polarizable charges or multipoles Involves an iterative calculation

• evaluate electric field acting on each charge due to other charges

• adjust charges according to polarizability and electric field

• re-compute electric field and repeat to convergence

Re-iteration over all molecules required if even one is moved

+ -+

+-

+-+

+ -++-+

+-+

Page 28: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

28

Explicit Multibody Interactions

Axilrod-Teller• consider response of atoms 2 and 3 to fluctuation in dipole

moment of atom 1

• average over all fluctuations in 1

1 2 31 2 3 1 2 33 3 3

12 23 13

3( , , ) 3cos cos cos 1

2

Eu

r r r

r r r

1

23

1

u(3)

Page 29: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

29

Unlike-Atom Interactions

“Mixing rules” give the potential parameters for interactions of atoms that are not the same type• no ambiguity for Coulomb interaction

• for effective potentials (e.g., LJ) it is not clear what to do

Lorentz-Berthelot is a widely used choice

Treatment is a very weak link in quantitative applications of molecular simulation

0( )

4i jq q

U rr

112 1 22

12 1 2

( )

Page 30: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

30

Common Approximations in Molecular Models Rigid intramolecular degrees of freedom

• fast intramolecular motions slow down MD calculations

Ignore hydrogen atoms• united atom representation

Ignore polarization• expensive n-body effect

Ignore electrostatics Treat whole molecule as one big atom

• maybe anisotropic

Model vdW forces via discontinuous potentials Ignore all attraction Model space as a lattice

• especially useful for polymer molecules

Qualitative models

Page 31: 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu.

31

Summary

Intermolecular forces arise from quantum mechanics• too complex to include in lengthy simulations of bulk phases

Empirical forms give simple formulas to approximate behavior• intramolecular forms: bend, stretch, torsion

• intermolecular: van der Waals, electrostatics, polarization

Unlike-atom interactions weak link in quantitative work


Recommended