+ All Categories
Home > Documents > 1 Focus on Exam 1

1 Focus on Exam 1

Date post: 03-Jun-2018
Category:
Upload: hannah-teng
View: 216 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 8/12/2019 1 Focus on Exam 1

    1/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    CHAPTER 1 FUNCTIONS

    Focus on Exam 1

    1 (a) g(x) = 16x2

    Forg(x) to be defined, 16x20

    (4 +x)(4x) 0

    x

    4 4

    Hence, the domain ofg(x) is

    {x: 4 x4,xR}.

    (b)

    x

    y

    O 4

    4

    4

    16 x2y =

    The graph of g(x) is

    actually part of a circlewith the equation

    y2=16 x2x2+y2=42.

    (c) The range is {y: 0 y4,yR}.

    2 (a) f: x x29

    f (x) = x29

    Forf (x) to be defined,x29 0

    (x +3)(x 3) 0

    x

    3 3

    Hence, the domain off (x) is

    {x:x3 orx3,xR}.

    (b)

    xO

    y

    3 3

    x2 9y=

    (c) The range is {y:y0,yR}.

    3 First, consider onlyg(x) =12x 2. The graph ofg(x) is as shown below.

    x

    y

    4

    2

    2

    O

    1

    2y = x 2

    1

    2y = x + 2

    1

    2x+2, x

  • 8/12/2019 1 Focus on Exam 1

    2/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term2

    1

    2x 2, x

  • 8/12/2019 1 Focus on Exam 1

    3/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    Fully Worked Solution 3

    (ii) g(x) =x2 3

    x

    y

    O

    y = x233

    The domain ofg(x) is {x:xR}.

    The range ofg(x) is

    {y:y3,yR}.

    (b) gf exists because RfDg.

    gf =g[f(x)]

    =g x2

    = x22 3=x 5

    (c) Forfg to be defined, RgDf .

    Rg D

    f

    x2 3 2

    x2 5 0

    x+ 5x 50Hence, the required set of values of xis

    {x:x 5orx 5,xR}.

    6 (a) (i) f (x) = 25 x2

    x

    5

    5 5O

    y

    25 x2y=

    The domain off (x) is

    {x: 5 x 5,xR}.The range off (x) is

    {y: 0 y5,yR}.

    (ii) g (x) =x2 5

    x

    y

    O

    5

    y = x25

    { {

    The domain ofg(x) is {x:x R}.

    The range ofg(x) is

    {y:y 5,yR}.

    (b) fgdoes not exist because RgDf .

    (c) Forfgto be defined, RgDf .

    Df Rg Df

    5 x2 5 5

    0 x2 10

    Hence, the required set of values of xis

    {x: 10x 10,xR}.

    7 (a) (i) f (x) =1

    x 2

    x

    y

    O21

    2

    The domain off (x) is

    {x:xR,x 2}.

    The range off (x) is

    {y:yR,y 0}.

    (ii) g(x) =2

    x+4

    xO

    y

    1

    2

    4

    The domain ofg(x) is{x:xR,x 4}. (1)

    The range ofg(x) is

    {y:yR,y 0}.

    (b) fg=f [g(x)]

    =f 2x+4=

    1

    2x+4 2= x+4

    2 2(x+4)

    } } }

  • 8/12/2019 1 Focus on Exam 1

    4/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term4

    =x+4

    6 2x,x3 (2)

    Combining (1) and (2), the domain of

    fgis {x:xR,x 4,x 3}.

    8 (a) Let y=f 1(x)

    f (y)= x2 + y1= x

    y1= x 2

    y 1 =(x 2)2

    y 1 =x2 4x +4

    y=x2 4x +5

    f 1(x) =x2 4x+5

    The domain off 1is the same as the

    range off, i.e. {x:x2,xR}.

    The range off 1is the same as the

    domain off, i.e. {y:y1,yR}. (b) The graphs ofy=f (x) andy=f 1(x)

    are as shown below.

    x

    y

    O1 2 3 4 5

    1

    2

    3

    4

    5

    y =f1(x)

    y =f(x)

    y=

    x

    The graph of y= f1(x) is

    the reflectionof the graph of

    y= f(x) in the straight line y= x.

    The point of intersection of the graphs of

    y=f(x) andy=f 1(x) is the same as the

    point of intersection of the curvey=f1(x)

    =x2 4x+5 and the straight liney=x.

    y=x2 4x+5 (1)

    y=x (2)

    x2 4x+5 =xx2 5x+5 =0

    x=(5) (5)2 4(1)(5)

    2(1)

    x=5 5

    2x=1.38 or 3.62

    x=1.38 is not accepted

    x=3.62

    y=x =3.62

    Hence, the required point ofintersection is (3.62, 3.62).

    9 (a) The graph ofy=f (x) =x2 3xis as

    shown below.

    x

    y

    O 3

    12(

    14

    ,2 )1

    y =f(x) = x2 3x

    f 1does not exist because fis not a

    one-to-one function.

    (b) In order forf1to exist, the domain off

    must be restricted to only

    x :x112,xR.Let y=f

    1

    (x)f (y) =x

    y2 3y=x

    y2 3y x=0

    y=(3) + (3)

    2 4(1)(x)

    2(1)

    y=3 + 9 + 4x

    2

    f1(x)=3+ 9 + 4x

    2

    The domain off1

    is the same as the

    range off, i.e. x :x214,xR.10 Since (x 2) is a factor of

    P(x) =qx3 rx2+x 2,

    P(2) =0

    q(2)3 r(2)2+2 2 =0

    8q 4r=0

    2q r=0 (1)

    P(x) has a remainder of 12 when it is

    divided by (x+1). P(1) =12

    q(1)3 r(1)2 1 2 =0

    q r=3 (2)

    (1) (2):

    2q r=0

    q r=3

    3q =3

    q =1

    From (1), 2(1) r=0

    r=2P(x) =x3+2x2+x 2

  • 8/12/2019 1 Focus on Exam 1

    5/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    Fully Worked Solution 5

    x2+1

    x 2 x3+2x2+x 2x3+2x2

    x 2

    x 2

    0

    P(x) =(x 2)(x2+1)=(x 2)(1 +x)(1 x)

    Hence, the zeroes ofP(x) are 2, 1and 1.

    11 Since Q(x) is divisible byx2+x 6 =

    (x2)(x+3), then it is also divisible by

    (x 2) and (x+3).

    Q(2) =0

    m(2)3 5(2)2+k(2) +54 =0

    8m +2k=34

    4m +k=17 (1)Q(3) =0

    m(3)3 5(3)2+k(3) +54 =0

    27m 3k=9

    9m +k=3 (2)

    (2) (1): 5m=20 m=4

    From (1), 4(4) +k=17 k=33

    12 Since (x+2) is a factor ofP(x), then

    P(2) =0

    (2)3+4(2)2h(2) +k=0

    2h+k=8

    k=2h 8 (1)

    WhenP(x) is divided by (x h), the

    remainder is h3.

    P(h) =h3

    h3+4h2 h2+k=h3

    3h2+k=0 (2)

    Substituting (1) into (2),

    3h2 2h 8 =0

    (3h+4)(h 2) =0

    h=43

    or 2

    When h=4

    3, k=2 43 8 =

    16

    3

    When h=2, k=2(2) 8 =12

    13 When a polynomialP(x) of degree n2

    is divided by 2x2+3x 2 =(2x 1)(x+2),

    the remainder is an expression in the

    form ax+b, where aand bareconstants. i.e.

    P(x) =(2x 1)(x+2) Q(x) +(ax+b)

    WhenP(x) is divided by (2x 1), the

    remainder is3

    2.

    P12

    =(0)12

    +2Q(x) + 12

    a+b=3

    2a+2b=3 (1)

    WhenP(x) is divided by (x+2), the

    remainder is 1.

    P(2) =[2 (2) 1](0) Q(x)

    +(2a+b) =1

    2a+b=1 (2)

    Solving (1) and (2), a=1, b=1

    Hence, the remainder whenP(x) is divided

    by 2x2+3x 2 is ax+b=x+1.

    14 6x4 25x3 12x2+25x+6 =0

    Dividing throughout byx2,

    6x2 25x 12 +25

    x+

    6

    x2=0

    6x2+ 1x2 25x+1

    x 12 =0 (1)

    Consideringz2=x 1x2

    ,

    z

    2

    =x

    2

    2 +

    1

    x2

    x2+1

    x2=z2+2

    From (1), 6(z2+2) 25z 12 =0

    6z2+12 25z 12 =0

    6z2 25z=0

    z(6z 25) =0

    z=0 orz=25

    6 Whenz=0, x

    1

    x=0

    x2 1 =0x=1

    Whenz=25

    6,x

    1

    x=

    25

    66x2 6 =25x

    6x2 25x 6 =0

    x=25 (25)2 4(6)(6)

    2(6)

    x=25 769

    12x=0.228or 4.39

  • 8/12/2019 1 Focus on Exam 1

    6/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term6

    15 x3+x 2

    x2 4 x5 3x3 2x2 4x+8x5 4x3

    x3 2x2 4x+8

    x3 4x

    2x2 +8

    2x2 +80

    The remainder is 0.

    Since the remainder is 0, (x2 4) is a factor

    ofP(x).

    P(x) =(x2 4)(x3+x 2)

    Let Q(x) =x3+x 2.

    Ifx=1, Q(x) =13+1 2 =0

    (x 1) is a factor of Q(x).

    P(x) =(x

    2

    4)(x 1)(x

    2

    +x+2) WhenP(x) =0,

    x2 4 = 0 or x 1 = 0 or x2+x+2 =0

    x=2, x=1,

    No real solutions because

    b2 4ac=12 4(1)(2) =7 (< 0)

    The zeroes ofP(x) are 2and 1.

    16x2 1 =(x 1)(x+1)

    P(1) =12n (m+2)(1)2+m+1

    =1 m 2 +m+1 =0

    Thus, (x 1) is a factor ofP(x).

    P(1) =(1)2n (m+2)(1)2+m+1

    =1 m 2 +m+1 =0

    Thus, (x+1) is a factor ofP(x).

    Since (x 1) and (x+1) are factors ofP(x),

    then (x 1)(x+1) =x2 1 is a factor ofP(x).

    When m=8, P(x) =x2n (8 +2)x2+8 +1

    =x2n 10x2+9

    Since (x 3) is a factor, then

    P(3) =0

    32n 10(3)2+9 =032n=81

    32n=34

    2n=4

    n=2

    Hence,P(x) =x4 10x2+9 =(x2 9)(x2 1)

    =(x+3)(x 3)(x+1)(x 1)

    17 Let2x+1

    (x2+x)2=

    2x+1

    x2(x +1)2

    Ax +Bx2+ Cx+1+ D(x+1)2

    2x+1 Ax(x+1)2+B(x+1)2

    +Cx2(x+1) +Dx2

    Lettingx=1, 1 =D(1)2D=1

    Lettingx=0, B=1

    Lettingx=1, 3 =4A+4B+2C+D

    3 =4A+4(1) +2C 1

    4A+2C=0 (1)Lettingx=2, 5 =18A+9B+12C+4D

    5 =18A+9(1) +12C+4(1)

    18A+12C=0

    3A+2C=0 (2)

    (1) (2): A=0

    From (2), 3(0) +2C=0 C=0

    Hence,2x+1

    (x2+x)2=

    1

    x2

    1

    (x+1)2

    18 4x2

    x+3x3 1

    = 4x2

    x+3(x 1)(x2 +x+1)

    A

    x 1+

    Bx +C

    x2 +x+1

    4x2x+3 A(x2+x+1) +(Bx+C)(x 1)

    Lettingx=1, 6 =3A A=2

    Lettingx=0, 3 =A +C(1)

    3 =2 C

    C=1

    Lettingx=1, 8 =A+(B+C)(2)

    8 =2 +(B 1)(2)8 =2 +2B+2

    2B=4

    B=2

    4x2x+3

    x3 1=

    2

    x 1+

    2x 1

    x2+x+1

    19P(x) =x3+x2+px+q

    P(x) =3x2+2x+p

    Since (x 1) is a factor ofP(x),

    P(1) =0. 13+12+p(1) +q=0

    p+q=2 (1)

    Since (x 1) is a factor ofP(x),

    P(1) =0.

    3(13) +2(1) +p=0

    p=5

    From (1): 5 +q=2 q=3

    P(x) =x3+x2 5x+3

    Since (x 1) is a factor ofP(x) andP(x),

    thus (x 1)

    2

    [orx

    2

    2x+1] is a factorofP(x).

  • 8/12/2019 1 Focus on Exam 1

    7/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    Fully Worked Solution 7

    x+3

    x2 2x +1x3+x2 5x+3x3 2x2+x

    3x2 6x+3

    3x2 6x +3

    0

    P(x) =(x 1)2(x+3)20 4x

    P(x)=

    20 4x

    (x 1)2(x+3)

    A

    x 1+

    B

    (x 1)2+

    C

    x+3

    20 4xA(x 1)(x+3) +B(x+3)

    +C(x 1)2

    Lettingx=3, 32 =16CC=2

    Lettingx=1, 16 =4BB=4

    Lettingx=0, 20 =3A+3B+C

    20 =3A+3(4) +23A=6

    A=2

    20 4x

    (x 1)2(x+3)=

    2

    x 1+

    4

    (x 1)2+

    2

    x+3

    20 Since the remainders whenP(x) is divided

    by (x+1) is 0,P(1) =0.

    P(1) =0

    (1)3+m(1)2+15(1) +k=0

    1 +m 15 +k=0m+k=16 (1)

    Since the remainders whenP(x) is divided

    by (x+2) is ( 4),P(2) = 4.

    P(2) = 4

    (2)3+m(2)2+15(2) +k= 4

    8 +4m 30 +k= 4

    4m+k=34 (2)

    (2) (1): 3m=18 m=6

    From (1): 6 +k=16 k=10

    P(x) =x3

    +6x2

    +15x+10Since the remainders whenP(x) is divided

    by (x+1) is 0, (x+1) is a factor ofP(x).

    x2+5x+10

    x +1x3+6x2+15x+10x3+x2

    5x2+15x

    5x2+5x

    10x+10

    10x+10

    0P(x) =(x+1)(x2+5x+10)

    x+7

    P(x)=

    x+7

    (x+1)(x2+5x +10)

    A

    x+1+

    Bx +C

    x2+5x+10

    x+7 A(x2+5x+10) +(Bx+C)(x+1)

    Lettingx=1, 6 =6AA=1Lettingx=0, 7 =10A+C

    7 =10(1) +C

    C=3

    Lettingx=1, 8 =16A+2B+2C

    8 =16(1) +2B+2(3)

    2B=2

    B=1

    x+7

    (x+1)(x2+5x +10)=

    1

    x+1+

    x 3

    x2+5x+10

    = 1x+1 x+3x2+5x+10

    21 12 x2 7x10

    The first inequality is

    12 x2 7x

    x2 7x+12 0

    (x 3)(x 4) 0

    x4 0

    x3 0

    +

    ++

    x

    3+ +

    4

    Therefore, (x 3)(x 4) 0 ifx3 or

    x 4.

    The second inequality is

    x2 7x10

    x2 7x+10 0

    (x 2)(x 5) 0

    x5 0

    x2 0

    +

    ++

    x

    2+ +

    5

    Therefore, (x 2)(x 5) 0 if 2 x5.

    3 4x

    52

    2 x5

    x3 or x4

    The required set of values ofxis{x:2x3 or 4x5}.

  • 8/12/2019 1 Focus on Exam 1

    8/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term8

    22 16 x3 4x2+4x 16 0

    When 16 x3 4x2+4x 16,

    x3 4x2+4x0

    x(x2 4x+4) 0

    x(x 2)20

    Since (x 2)20,

    in order thatx(x 2)20, thenx0 (1) Whenx3 4x2+4x 16 0,

    we letf (x) =x3 4x2+4x 16.

    f (4) =43 4(4)2+4(4) 16 =0

    Thus, (x 4) is a factor off (x).

    x2+4

    x 4x3 4x2+4x 16x3 4x2

    4x 16

    4x 16

    0 x3 4x2+4x 16 0

    (x 4)(x2+4) 0

    Sincex2+4 > 0,

    in order that (x 4)(x2+4) 0, then

    x 4 0 x4 (2)

    Combining (1) and (2),

    the required set of values ofxis

    {x: 0x 4}.

    233x 5

    xx 3

    3x 5

    xx+3 0

    3x 5 x2+3x

    x0

    x2+6x 5

    x0

    x2 6x+5

    x0

    (x 1)(x 5)

    x0

    x1 0

    x5 0

    x 0

    +

    +

    +

    +

    +

    +

    +

    +

    x

    0 1 5

    The required set of values ofxis

    {x:x

  • 8/12/2019 1 Focus on Exam 1

    9/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    Fully Worked Solution 9

    25 The graphs ofy=|x+2| andy=1

    x+1is as

    shown below.

    x

    y

    O2

    2

    1

    y = 1x + 1

    y =x +2

    y = x 2

    A

    y=x+2 (1)

    y=1

    x+1 (2)

    Substituting (1) into (2),

    x+2 = 1x+1 x2+3x+2 =1

    x2+3x+1 =0

    x=3 32 4(1)(1)

    2(1)

    x=3 5

    2

    Thex-coordinate of pointAis

    x=3 + 5

    2

    .

    Based on the graphs, the solution set ofx

    for which |x+2| >1

    x+1is

    x3 + 52 .

    This is the set of values ofxwhere the

    graph ofy=|x+2| is above the graph of

    y=1

    x+1.

    26

    xO11

    1

    1 3

    y = x 1

    y

    Ay = x 1 x +1y=

    To determine thex-coordinate of pointA, solve

    y=x 1 (1)

    y= x+ 1 (2)

    Substituting (1) into (2),

    x 1 = x+ 1(x 1)2=x+1

    x2 2x+1 =x+1

    x2 3x=0x(x 3) =0

    Thus, thex-coordinate of pointAis x=3.

    The part of thex-axis where the graph of

    y= x+ 1is above the graph ofy=|x| 1

    is 1 x3.

    Hence, the required set of values ofxis

    {x: 1x3}.

    27P(x) =2x3+hx2+kx+36

    Since (x 3) is a factor, then

    P(3) =0

    2(3)3+h(3)2+k(3) +36 =0

    9h+3k=90

    3h+k=30 (1)

    P(x) =(x+2)f (x) 30 means that the

    remainder whenP(x) is divided by (x+2)

    is 30.

    P(2) =30

    2(2)3+h(2)2+k(2) +36 =30

    4h 2k=50

    2h k=25 (2) (1) +(2): 5h=55 h=11

    From (1): 3(11) +k=30

    k=3

    Therefore,P(x) =2x3 11x2+3x+36.

    2x2 5x 12

    x 3 2x3 11x2+3x+362x3 6x2

    5x2+3x

    5x2+15x

    12x+3612x+36

    0

    Therefore,P(x) =(x 3)(2x2 5x 12)

    =(x 3)(2x+3)(x 4)

    3 4

    x

    3

    2

    The sets of values ofxsuch thatP(x) 0

    is x: 32x 3 orx 4.

  • 8/12/2019 1 Focus on Exam 1

    10/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term10

    28P(x) =2x3+px2+qx+6

    Since (2x+1) is a factor ofP(x), then

    P 12=0

    2 123

    +p 122

    +q 12+6 =0

    1

    4+

    1

    4p

    1

    2q+6 =0

    1 +p 2q+24 =0

    p 2q=23 (1)

    WhenP(x) is divided by (x+3), the

    remainder is 15.

    P(3) =15

    2(3)3+p(3)2+q(3) +6 =15

    9p 3q=33

    3p q=11 (2)

    p 2q=23 (1) 6p 2q=22 (2) 2

    5p = 45

    p =9

    From (1): 9 2q=23 q=16

    P(x) =2x3+9x2+16x+6

    x2+4x +6

    2x+1 2x3+9x2+16x+62x3+x2

    8x2+16x8x2+4x

    12x +6

    12x+6

    0

    Let Q(x) =x2+4x+6

    =x2+4x+422

    422

    +6

    =(x+2)2+2 [> 0] [Shown]

    P(x) =(2x+1)(x2+4x+6)

    Sincex2+4x+6 is positive for all real

    values ofx, thenP(x) < 0 only if

    2x+1 < 0 x< 1

    2.

    Hence, the solution set is x:x

  • 8/12/2019 1 Focus on Exam 1

    11/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    Fully Worked Solution 11

    When u=5

    2, When u=3,

    x

    1

    2=5

    2 x

    1

    2=3

    x1=522

    1x

    =254

    x=4

    25

    33 8x+6(8x) =5

    8x+6

    8x=5

    Let 8x=u

    u+6

    u

    =5

    u2+6 =5u

    u2 5u+6 =0

    (u 2)(u 3) =0

    u=2 or u=3

    8x=2 8x=3

    23x=21 xlg 8 =lg 3

    3x=1 x =lg 3

    lg 8

    x=1

    3 x =0.528

    34 log2x log

    x8 +2log2h+hlogx4 =0

    log2x

    log28

    log2x

    +h+hlog

    24

    log2x=0

    ylog

    223

    y+h+h

    log222

    y =0

    y3

    y+h+h2y=0

    y23 +hy+2h=0

    y2+hy+2h 3 =0[Shown]

    When h=1

    4,y2

    1

    4y+2 14 3 =0

    4y2 y 14 =0

    (4y+7)(y 2) =0

    y=7

    4or 2

    Giveny=log2x, thenx=2y.

    Wheny=7

    4

    ,x=2

    7

    4=0.297.

    Wheny=2, x=22=4.

    [Not possible because

    x

    1

    2> 0 for all real

    values ofx.]

    35 2 logcx 3 log

    xc=5

    2 logcx 3

    logcc

    logcx=5

    2 logcx 3 1log

    cx=5

    Let logcx=u

    2u 31u=52u2 3 =5u

    2u2 5u 3 =0

    (2u+1)(u 3) =0

    u=1

    2 or u=3

    logcx=

    1

    2 log

    cx=3

    x=c

    1

    2

    =

    1

    c x =c3

    36 xlog432 ylog

    82 =4

    xlog

    232

    log24

    ylog

    22

    log28

    =4

    xlog

    225

    log222

    ylog

    22

    log223

    =4

    5x2

    y

    3=4

    15x 2y=24 (1)

    log2x+

    1

    5log

    2y5=2 log46

    log2x +

    1

    5(5 log

    2y) =2

    log26

    log24

    log2x+log2y=log26

    log2xy=log26

    xy=6

    y=6

    x (2)

    Substituting (2) into (1),

    15x 26x=2415x2 12 =24x

    5x2 8x 4 =0

    (x 2)(5x+2) =0

    x=2 or 2

    5

    x=2

    5is not accepted

    x=2

    Whenx=2, y=62

    =3

  • 8/12/2019 1 Focus on Exam 1

    12/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term12

    37 (a) The graph ofy= f (x) = ln (x+ 1) is as

    shownbelow.

    1 O

    y

    x

    y= f(x) = ln (x + 1)

    f1exists becausefis a one-to-oneand

    an ontofunction.

    (b) Lety=f1(x)f (y) =x

    ln (y+1) =x

    y+1 =ex

    y=ex 1

    f1(x) =ex1

    The domain off1is the same as the

    range off, i.e. {x:xR}.

    The range off1is the same as the

    domain off, i.e. {y:y1,yR}.

    (c) gf1

    =g[f1

    (x)]=g(ex 1)

    = ex 1 + 1

    =e1

    2x

    The domain ofgf1is the same as the

    domain off1, i.e. {x:xR}.

    The range ofgf1is {y:y>0,yR}.

    x

    y

    y =e

    O

    1

    1

    2x

    38 (a) fg=f [g(x)]

    =f lnx 12 =1 +2e

    lnx 1

    2

    =1 +2

    x 1

    2 =x

    Since it is known thatf f 1(x) =x, by

    comparisonf 1(x) =g(x) = ln x 12 . (b) The domain off 1is the same as the

    range off, i.e. {x:x1,xR}.

    The range off

    1

    is the same as thedomain off, i.e. {y:yR}.

    (c) The graphs ofy=f (x) andy=f 1(x)

    are as shown below.

    1

    1

    O

    y

    x

    y= f(x) = 1+ 2ex

    3

    y=

    x

    3

    y= f1(x) = lnx 1

    2 )(

    39 (a) The graph ofy=|sinx| is as shownbelow.

    y

    x

    1

    O2pp

    2

    p 3p

    2

    y = sin x y = sin x

    In the non-modulus form,y=|sin x| is

    f(x) =sin x,

    sin x,

    0 xp,

    px2p.

    The graph ofy=sinxfor 0 x2p

    is as shown below.

    y

    x

    1

    1

    O2pp

    2

    p 3p

    2

  • 8/12/2019 1 Focus on Exam 1

    13/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    Fully Worked Solution 13

    Hence, the functionf (x) =|sinx| sinx

    in the non-modulus form is:

    f(x) ={sinx sinx, 0 x

  • 8/12/2019 1 Focus on Exam 1

    14/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term14

    =

    cosP (sinP cos Q+cosPsin Q)

    sinP(cosPcos Q sinPsin Q)cosPcos (P+Q)

    =

    cosP sinP cos Q+cos2Psin Q

    sinPcosPcos Q +sin2Psin Q

    cosPcos (P+Q)

    =cos2P sin Q +sin2Psin Q

    cosPcos (P+Q)

    =sin Q (cos2P +sin2P)

    cosPcos (P+Q)

    =sin Q (l)

    cosPcos (P+Q)

    =sin Q

    cosPcos (P+Q)

    =RHS

    tan (P+Q)tanP

    sinQ

    cosPcos (P+Q) [Proven]

    43 LHS =cosec 2q cot 2q

    =1

    sin 2q

    cos 2q

    sin 2q

    =1 cos 2q

    sin 2q

    =1 (1 2 sin2q)

    sin 2q

    =2 sin2q

    2 sin q cos q

    =sin q

    cos q=tan q

    =RHS

    cosec 2qcot 2qtan q [Proven]tan 22.5 =cosec 2(22.5) cot 2(22.5)

    =1

    sin 45

    1

    tan 45=

    11

    2

    1

    1

    = 2 1 [Shown]

    44 LHS =sin 3q

    sin q

    cos 3q

    cos q

    =3 sin q 4 sin3q

    sin q

    4 cos3

    q

    3 cosq

    cos q

    =3 4 sin2q 4 cos2q+3

    =6 4(sin2q +cos2q)=6 4(1)

    =2

    =RHS

    sin 3q

    sin q

    cos 3q

    cosq2 [Proven]

    45 LHS =

    cos5

    2A+cos

    3

    2A

    sin3

    2A+sin

    A

    2

    =

    2 cos1

    252A+

    3

    2Acos 12

    5

    2A

    3

    2A

    2 sin1

    232A+

    1

    2Acos 12

    3

    2A

    1

    2A

    =

    2 cos 2Acos1

    2A

    2 sinAcos1

    2A

    =cos 2A

    sinA

    =cos2A sin2A

    sinA

    =cos2A

    sinA

    sin2A

    sinA

    =cosA

    sinAcosA sinA

    =cotA cosA sinA

    =RHS

    cos5

    2A+cos

    3

    2A

    sin3

    2A+sin

    1

    2A

    cotA cosA sinA

    [Proven]

    46 LHS = cos 2A 2 cos 4A +cos 6Acos 2A +2 cos 4A +cos 6A

    =cos 6A+cos 2A2cos 4A

    cos 6A +cos 2A +2 cos 4A

    =

    2 cos 6A +2A2 cos 6A 2A

    2 2 cos 4A

    2 cos 6A +2A2 cos 6A 2A

    2 +2 cos 4A

    = 2 cos 4Acos 2A2cos 4A2 cos 4Acos 2A +2 cos 4A

  • 8/12/2019 1 Focus on Exam 1

    15/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    Fully Worked Solution 15

    =2 cos 4A(cos 2A 1)

    2 cos 4A (cos 2A+1)

    =cos 2A1

    cos 2A +1

    =1 2 sin2A1

    2 cos2A 1 +1

    =2sin2A2 cos2A

    =sin2A

    cos2A

    = tan2A

    =RHS

    cos 2A 2 cos 4A +cos 6A

    cos 2A +2 cos 4A +cos 6A tan2A

    [Proven]

    47 LHS =

    cosx+cos 2x cos 3x cos 4x

    sinx +sin 2x+sin 3x+sin 4x

    =cos 2x+cosx (cos 4x+cos 3x)

    sin 2x +sinx+(sin 4x+sin 3x)

    =

    2 cos2x +x2 cos2xx

    2 2 cos4x +3x2 cos

    4x 3x

    2

    2 sin2x +x2 cos 2xx

    2

    +2 sin

    4x +3x

    2 cos

    4x 3x

    2 =

    2 cos3x2cosx

    2 2 cos7x

    2cosx

    22 sin3x2cos

    x

    2+2 sin7x

    2cosx

    2

    / /

    / /

    =cos3x2 cos

    7x

    2sin 3x2+sin

    7x

    2

    =

    2 sin

    3x +7x

    4 sin

    3x 7x

    4 2 sin3x +7x4 cos

    3x 7x

    4 =

    sin (x)

    cos (x)

    =sinx

    cosx

    =tanx

    =RHS

    cosx +cos 2x cos 3x cos 4x

    sinx+sin 2x+sin 3x+sin 4x

    tanx

    [Proven]

    48 SinceA,Band Care angles of a triangle,

    thenA+B+C=180.

    (a) tanA+tanB+tan C

    =sinA

    cosA+

    sinB

    cosB+

    sin C

    cos C

    =sinAcosBcos C+sinBcosAcos C+sin CcosAcosB

    cosAcosBcos C

    =

    cos C(sinAcosB+sinBcosA)

    +sin CcosAcosB

    cosAcosBcos C

    =cos C[sin (A+B)]+sin CcosAcosB

    cosAcosBcos C

    =

    cos C[sin (180 C)]+sin CcosAcosB

    cosAcosBcos C

    =cos Csin C+sin CcosAcosB

    cosAcosBcos C

    =sin C(cos C+cosAcosB)

    cosAcosBcos C

    =

    sin C{cos [180 (A +B)]+cosAcosB}

    cosAcosBcos C

    = sin C{ cos (A +B) +cosAcosB}cosAcosBcos C

    =

    sin C(sinA sinB cosAcosB+cosAcosB)

    cosAcosBcos C

    =sinA sinBsin C

    cosAcosBcos C

    =tanAtanBtan C [Shown]

    (b) sin 2A+sin 2B+sin 2C

    =sin 2A

    +sin 2C

    +sin 2B

    =2 sin 2A +2C2 cos2A 2C

    2 +sin 2B=2 sin (A+C) cos (A C) +sin 2B

    =2 sin (180 B)cos (A C) +sin 2B

    =2 sinBcos (A C) +sin 2B

    =2 sinBcos (A C) +2 sinBcosB

    =2 sinB[cos (A C) +cosB]

    =2 sinB2 cosA C +B2

    cos A CB2

  • 8/12/2019 1 Focus on Exam 1

    16/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term16

    =2 sinB2 cos A +B C2 cos A (B+C)2

    =2 sinB2 cos 180 C C2 cos A (180 A)2

    =2 sinB2 cos 180 2C2 cos 2A 1802

    =4 sinB[cos (90 C)cos (A 90)]

    =4 sinB[sin CsinA]=4 sinAsinBsin C [Shown]

    49 (a) LHS =2 sin A+p

    4cos A+p

    4=sin 2 A+p4=sin 2A+p2=sin 2Acos

    p

    2+cos 2Asin

    p

    2

    =(sin 2A)(0) +(cos 2A)(1)

    =cos 2A

    =RHS

    2 sin A+p4cos A+p

    4cos 2A[Proven]

    (b) LHS =2 cos B+p4cos Bp

    4=cos B+p4+B

    p

    4+

    cos B+p4 Bp

    4

    =cos 2B+cos

    p

    2

    =cos 2B+ 0

    =cos 2B

    =RHS

    2 cos B+p4cos Bp

    4cos 2B[Proven]

    50 cos 3x=cos2x

    4 cos3x 3 cosx=cos2x

    4 cos

    3

    x cos

    2

    x 3 cosx=0cosx(4 cos2x cosx 3)=0

    cosx(4 cosx+3)(cosx 1) =0

    cosx=0, 3

    4, 1

    When cosx=0,

    x=90, 270

    When cosx= 34,

    x=138.6, 221.4

    When cosx=1,

    x=0, 360

    x=0, 90, 138.6, 221.4, 270, 360

    51 sin 3q+sin2q=2

    sin 3q=3 sin q 4 sin3q

    (3 sin q 4 sin3

    q)+sin2

    q 2 =04 sin3q sin2q 3 sin q+2 =0

    (sin q+1)(4 sin2q 5 sin q+2) =0

    sin q+1 =0 or 4 sin2q 5 sin q+2 =0

    When sin q+1 =0

    sin q=1

    q=270

    For 4 sin2q 5 sin q+2 =0, there are no

    real roots because b2 4ac=(5)2 4(4)(2)

    =7 (

  • 8/12/2019 1 Focus on Exam 1

    17/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    Fully Worked Solution 17

    When cos 2x=1

    2,

    2x=60, 300

    x=30, 150

    x=0, 30, 60, 120, 150, 180

    x=0,

    1

    6p,

    1

    3p,

    2

    3p,

    5

    6p, p

    x =x180

    prad.

    53 (a) 3 sin1x+cos1x=p

    3 sin1x+p2 sin1x=p

    2 sin1x=pp

    2

    2 sin1x=p

    2

    sin1x=p

    4

    x=sinp

    4

    x=1

    2

    (b) cos1x+sin1x=sin132 x

    p2 sin1x+sin1x=sin132 x

    p

    2=sin132 x

    sinp

    2=

    3

    2 x

    1 =3

    2 x

    x=12

    54 tanx=

    2 tanx

    2

    1 tan2x

    2

    Letting t=tanx

    2,

    tanx=2t

    1 t2

    From the right-angled triangle above,

    x

    1 t2

    2t

    1 +t2

    cosx=1 t2

    1 +t2

    cotx=1

    tanx

    =1 t2

    2t

    cotx=cosx

    1 t2

    2t=

    1 t2

    1 +t2

    (1 t2)(1 +t2) =(1 t2)(2t)

    (1 t2)(1 +t2) (1 t2)(2t) =0

    (1 t2)(1 +t2 2t) =0

    (1 t2)(t2 2t+1) =0

    (1 t2)(t 1)2=0

    (1 +t)(1 t)(1 t)2=0

    (1 +t)(1 t)3=0 [Shown]

    1 +t= 0 or (1 t)3=0

    t=1 t=1

    When t=1, When t=1,

    tanx

    2=1 tan

    x

    2=1

    basic =45 basic=45

    x

    2=180 45

    x

    2=45

    x

    2

    =135 x=90

    x=270

    x=90, 270

    55

    q

    1 t2

    2t

    1 +t2

    (a) LHS =cosec q cot q=

    1 +t2

    2t

    1 t2

    2t

    =1 +t2 1 +t2

    2t

    =2t2

    2t

    =t

    =tanq

    2

    =RHS

    cosecq cot qtanq

    2

  • 8/12/2019 1 Focus on Exam 1

    18/26

    Oxford Fajar Sdn. Bhd. (008974-T) 2012

    ACE AHEADMathematics (T) First Term18

    (b) LHS =sec q tan q

    =1 +t2

    1 t2

    2t

    1 t2

    =1 +t2 2t

    1 t2

    =t2 2t+1

    1 t2

    =(t 1)2

    (1 +t)(1 t)

    =(1 t)2

    (1 +t)(1 t)

    =1 t

    1 +t

    =

    tanp

    4 tan

    q

    2

    1 +tanp

    4tanq

    2

    =tan p4q

    2=RHS

    sec q tan qtan p4q

    2cosec q cot q=sec q tan q

    tanq

    2=tan p4

    q

    2q

    2=p

    4 q

    2or q

    2=p+p4 q2

    q =p

    4 or q=

    5

    4p

    56

    q

    1 t2

    2t

    1 +t2

    1 +sin q+cos q

    1 +cos q

    =1 +cos q

    1 +cos q+

    sin q

    1 +cos q

    =1 +

    2t

    1 +t2

    1 +1 t2

    1 +t2

    =1 + 2t1 +t2+1 t2

    First quadrant.

    Third quadrant.

    =1 +2t

    2

    =1 +t

    =1 +tanq

    2

    0


Recommended