+ All Categories
Home > Documents > 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N....

1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N....

Date post: 30-Dec-2015
Category:
Upload: richard-patrick
View: 215 times
Download: 2 times
Share this document with a friend
18
1 V. Antonelli , G. Battistoni, P. Ferrario 1 , S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard Model tests with high intensity neutrino beams NOW 2006 Neutrino Oscillation Workshop
Transcript
Page 1: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

1

V. Antonelli, G. Battistoni, P. Ferrario1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia)

Standard Model tests with high intensity

neutrino beams

NOW 2006 – Neutrino Oscillation Workshop

Page 2: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

Standard Model and neutrino roleStandard Model and neutrino role• ’60s and ’70s: 1st experimental confirmations

• Since ’80s: precision tests: LEP and SLC

• LEP: high energies e.w. and strong measurements

• Neutrino relevance: Neutrino relevance:

• Neutrino beams at Gargamelle 1973

Neutral currents discovery

• Interact only weakly

possibility to measure Weinberg angle

Page 3: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

3

WEINBERG ANGLEWEINBERG ANGLE

Theory of electroweak unification Glashow-Weinberg-Salam (1967)

SU(2) x U(1) simmetry invariance weak and e.m. forces mixed

coupling

SU(2) g

U(1) g’

Page 4: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

4

Neutrino physics: present statussee for instance: PRD 67 (2003) 013006; PRD 69 (2004)013005; NPB (Proc. Suppl.)143 (2005)483; Progr. Part. Nucl. Phys. 57(2006)742 and 71; hep-ph/0606060

• Neutrino () known since many years, but many of its properties are still poorly known

• Last years very relevant results:

massive and oscillating particles. Proofs from: solar (mainly SuperKamiokande and

SNO), atmospheric (SK) and reactor (KamLAND) neutrinos; accelerators (K2K,

LSND?)

- At least m2 , hence 3 mass eigenstates:

m212

: = m22 - m1

2 = 7±1∙10-5 eV2 : solar and from reactor (LMA solution)

m223: = |m3

2- m22| = 2.0±0.4 ∙10-3 eV2 : atmosferic and K2K

- Maximal Mixing in the sector 2-3 : tan223

=1 ;

combining KL and solar data: tan212

= 0.45±0.08

- Upper limits (from CHOOZ and Palo Verde) on mixing 1-3: 13

< 14°....however

Page 5: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

5

Open Problems in Neutrino Physics • Despite the relevant recent results,

Still many open problems

- Nature of neutrino (Dirac o Majorana)

- Absolute value and hierarchy of masses (direct,

inverse or quasi-degenere)

- Exact determination of mixing parameters:

13=0 or 13 ≠ 0

- Search for CP violation

Page 6: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

6

Future of neutrino physics (from accelerators) •1st phase: Very long baselines (MINOS, Cern/G.Sasso) and Double Chooz

partial improvement of 13 ;

No leptonic CP violation (important for matter-antimatter asimmetry)

• Superbeams (T2K, NOA);

•beam luminosity increase: 13 precise measurement and/or CP violation search

-T2K (Japan, 2009): beam from JParc to SuperK (L=295 Km)

-NoA (USA): use the beam of NuMI at FNAL, detector at about 1000 Km

•Neutrino factories and/or beta beamsNeutrino factories: from the decay of muons in accumulation rings( )

Beta beams: beams from decays Example: ; and 18Ne for beams

Page 7: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

7

T2K• Neutrino beam from protosinchrotron of 50 GeV, 7 MW

• Off-axis beam to SuperKamiokande (L = 295 Km) .

Begins spring 2009

• Main goals:

- sin2 13 measurement with sensitivity 20 times better than Chooz

- Measurement of m232 and sin2 23 (atmosferic parameters) at 1-2%

(disappearance)

- searchfor sterile (weak currents disappearance)

- Tests of Standard Model parameters: low energy measurements, different from LEP; eventual possibility of signals of new physics

Page 8: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

8

Page 9: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

9

• Analysis already available for neutrino factories

• proposed for neutrino physics, but useful also to study Standard Model ?

Beta-BeamsBeta-Beams

• Only 1 flavor in the beam • Well known and determined energy (kinematics well known and nucleon recoil negligible)• Beams well collimated and with value of (/ECM) higher than

factories

PRO

Interesting to extend it to beta-beams

Proposals:

- Cern- Frejus (L about 130 Km; ‘‘low’’ beam E)

- Higher E beams and longer baselines (Cern-G.Sasso/Canarie)

Page 10: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

10

•Differential cross sectionsDifferential cross sectionsWeak interaction Lagrangian

• Neutral current

• Charged current

Page 11: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

11

Neutral current scattering amplitudes

FORM FACTORS introduction

Page 12: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

12

Weinberg angle determinationWeinberg angle determination•6 cross sections: neutrino (antineutrino) current on proton (neutron) and neutrino (antineutrino) charged currents

•Fixing the value of electric form factors there are 6 parameters left: Weinberg angle and 5 form factors

(Gp

M, Gn

M , GS

M , GA , GS

A)

•Analitical study:- search for cross section combinations (-asymmetries, etc.) to isolate Weinberg angle dependance;- ‘‘forward’’ approximation of form factors

We cannot ignore ‘‘strange’’ terms and the forward approximation is not enough

Page 13: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

13

Direct analytical solutionDirect analytical solution

•The equation for Weinberg angle can be solved analitically in terms of measurable quantities

SYSTEM of 6 equations coupled 2 by 2

A,B,C,D,E,F: cross section combinations;

y =EP/E kinematical variable of elastic scattering

Page 14: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

14

Numerical studyNumerical study•From data analysis simultaneous fit of the values of Weinberg angle and hadronic form factors

•In the experimental situation not possible to distinguish the neutral current on neutron

from 6 to 4 cross sections loss of information.

•Example of analysis: fix all the other form factors to their

central value and determine simultaneously sin2W ; GS

A (Q2)

GSA known with very bad accuracy (about 30% error),

but cross sections weekly dependent on GSA.

Weinberg angle determination still possible

Page 15: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

Experimental requirementsExperimental requirements

•It is fundamental to select QE scattering from other reactions: low energy

•Neutral currents must be identified: only recoiling proton can me measured: no NC on neutron...

•Different Q2 bins should be investigated: kinematic reconstruction

Main Obstacles:

•reinteractions and Fermi motions in the nucleus: reactions different from QE can mimick QE, kinematics is in general modified, additional low energy protons are produced in the nucleus

Page 16: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

16

A few examples

• Nevents = ∫ d/dy Nscatt dy

with: y = Ep/E/(cm2 yr)

Nscatt= n° protons (neutrons) in the detector 6 1032/kton

• Elastic and quasi elastic cross sections: optimal region

around 1 GeV (ex. T2K)

• Geometric factor: flux increase from far to near detector

Page 17: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

Detector alternativesDetector alternatives1) Water Cherenkov: Pro: there is the possibility of assembling a very large

mass (some MTon)Con: the Cherenkov threshold prevents the detection of

recoiling protons with p<1 GeV.

2) Liquid Argon TPC

Pro: in principle p down to 50 MeV can be identified.

Con: Difficult to assemble a large mass; nuclear reinteractions in Ar are more important than in water

For p > 300 MeV Q2 > 0.1 GeV2 , about 75% of the events surviving. Measurements at near detector already competive with detector below kton ( 500 ton to reach per mille accuracy)

Interesting possibility mainly for superbeams

Page 18: 1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.

18

CONCLUSIONSCONCLUSIONS• Standard Model: theory tested with high accuracy and working very

well up to the electroweak scale• Useful to improve parameters knowledge at medium-low energies. • Role of neutrino physics and future experiments with high intensity

beams• Neutrino (antineutrino) nucleon interaction: dependence from

Weinberg angle and hadronic form factors• Analitical study of the problem and estimate of the accuracy in sin2W

determination• Numerical analysis of the problem• Examples: beams and superbeams potentiality Measurements realistic with present Icarus technology • Measurament at energies low with respect to LEP is interesting toverify theory consistency and/or eventual signals of physics beyond S.M.


Recommended