+ All Categories
Home > Documents > 11-09-1232-00-00ad-Intra-cluster response model and parameter … · 2011. 6. 28. · doc.: IEEE...

11-09-1232-00-00ad-Intra-cluster response model and parameter … · 2011. 6. 28. · doc.: IEEE...

Date post: 13-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
24
doc.: IEEE 802.11-09/1232r0 November, 2009 [Intra-cluster response model and parameter for channel modeling at 60GHz (Part 2)] Date: 2009-11-19 Name Affiliations Address Phone email Authors: Hirokazu Sawada Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN +81-22-217-6112 [email protected] Shuzo Kato NICT/ Tohoku University 3-4, Hikarino-Oka, Yokosuka, Kanagawa 239-0847 Japan [email protected] Katsuyoshi Sato NICT 3-4, Hikarino-Oka, Yokosuka, Kanagawa 239-0847 Japan [email protected] Submission Hirokazu Sawada, Tohoku University Slide 1
Transcript
  • doc.: IEEE 802.11-09/1232r0November, 2009

    [Intra-cluster response model and parameter for channel modeling at 60GHz (Part 2)]

    Date: 2009-11-19

    Name Affiliations Address Phone emailAuthors:

    Hirokazu Sawada Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN

    +81-22-217-6112 [email protected]

    Shuzo Kato NICT/ Tohoku University

    3-4, Hikarino-Oka, Yokosuka, Kanagawa 239-0847 Japan

    [email protected]

    pKatsuyoshi Sato NICT 3-4, Hikarino-Oka,

    Yokosuka, Kanagawa 239-0847 Japan

    [email protected]

    Submission Hirokazu Sawada, Tohoku UniversitySlide 1

  • doc.: IEEE 802.11-09/1232r0

    AbstractNovember, 2009

    Abstract This document updates proposed intra-cluster channel models for

    TGad channel modeling On top of channel modeling presented in the last meeting in Hawaii

    which focused on Living room, Vertical polarization, LOS environments with variable HPBW antenna this paper shows the restenvironments with variable HPBW antenna, this paper shows the rest for TGad channel modeling - intra-cluster channel modeling :1. Environments: extended to conference room,1. Environments: extended to conference room, 2. Polarization: extended to circular and horizontal from vertical

    polarization, 3. Antenna HPBW: extended to 5, 15, 30, 60, 90 degrees,4. LOS: extended to NLOS in Living room.

    By integrating the extracted intra-cluster parameters from the measured data shown in this paper and the inter-cluster channel modeling given by ref (Doc 09/334r4) the channel models for

    Submission Hirokazu Sawada, Tohoku UniversitySlide 2

    modeling given by ref (Doc.09/334r4), the channel models for “conference room and living room environments” will be completed.

  • doc.: IEEE 802.11-09/1232r0

    Progress of intra cluster channel modelingNovember, 2009

    Progress of intra-cluster channel modelingEnvironments LOS/NLOS Polarization Antenna HPBW [deg]

    V 5 15 30 60 90

    Conference

    LOS H 5 15 30 60 90

    C 5 15 30 60 90

    NLOS

    V 5 15 30 60 90

    H 5 15 30 60 90NLOS H 5 15 30 60 90

    C 5 15 30 60 90

    LOS

    V 5 15 30 60 90

    H 5 15 30 60 90

    Working status

    Previous workDoc 09/721r1

    Living

    LOS H 5 15 30 60 90

    C 5 15 30 60 90

    NLOS

    V: 5 15 30 60 90

    H 5 15 30 60 90

    Doc 09/721r1Doc 09/874r1Doc 09/936r1

    This contributionNLOS H 5 15 30 60 90C 5 15 30 60 90

    LOS

    V 5 15 30 60 90

    H 5 15 30 60 90

    This contribution

    CubicleC 5 15 30 60 90

    NLOS

    V 5 15 30 60 90

    H 5 15 30 60 90

    Submission Slide 3

    5 5 30 60 90

    C 5 15 30 60 90

    Hirokazu Sawada, Tohoku University

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Measurement system

    I t t V t t k lInstrument: Vector network analyzerAntenna: Conical horn antenna

    Submission Hirokazu Sawada, Tohoku UniversitySlide 4

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Measurement set up in living room

    Parameter ValueParameter ValueCenter frequency 62.5 GHz

    Band width 3 GHzBand width 3 GHzNumber of frequency points 801

    Frequency step 3.75 MHzq y pHPBW of antenna (Gain) 5, 15, 30, 60, 90 degree

    Polarization Vertical, Horizontal, CircularCalibration Direct port connection without

    antennas

    Submission Hirokazu Sawada, Tohoku UniversitySlide 5

  • doc.: IEEE 802.11-09/1232r0

    Antenna height:November, 2009

    Li i i t Antenna height: 1.5m (LoS scenario)1.0 m (NLoS scenario)

    Living room environment‘defined by TGad’

    D = 3m

    Submission Slide 6 Hirokazu Sawada, Tohoku University

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Conference room environment “defined by TGad”

    Submission Hirokazu Sawada, Tohoku UniversitySlide 7

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Proposed intra-cluster channel model

    Two-side exponential decay model-Ray decay parameter, and -Ray arrival rate, and are assumed as Poisson process

    Peak power ray in the cluster n

    h )(

    dB]

    te te Peak power ray in the cluster

    miith )(

    02 te

    t

    Pow

    er[d ee

    0

    02tete

    tii

    01 kP kk P

    0 1 n1m …… 0,11 keP kkkk 0,11 keP kkkk

    Submission Hirokazu Sawada, Tohoku UniversitySlide 8

    Relative time of arrival[ns] where k denotes the number of rays

  • doc.: IEEE 802.11-09/1232r0

    Intra cluster parameters for living room (LoS)November, 2009

    Intra cluster parameters for living room (LoS)Environment Pol. HPBW [ns] [ns] [ns] [ns]

    5 N/A N/A N/A N/A

    V

    15 4.76 N/A 0.902 N/A

    30 0.652 1.29 1.79 1.11

    60 0.469 0.510 0.466 0.616

    LoS90 0.795 0.672 1.26 0.690

    5 8.63 N/A 0.240 N/A

    15 2 52 9 89 1 63 0 228

    LivingRoom

    H

    15 2.52 9.89 1.63 0.228

    30 0.645 1.03 3.63 0.699

    60 0.543 0.773 0.720 0.842

    90 0 474 0 537 0 790 0 49490 0.474 0.537 0.790 0.494

    5 4.72 6.07 0.557 2.31

    15 4.38 0.993 0.541 1.44

    C 30 0.623 0.854 4.88 0.968

    60 0.427 0.491 0.691 0.733

    90 0.485 0.546 0.573 0.541

    Submission Hirokazu Sawada, Tohoku UniversitySlide 9

    are inversely proportional to HPBW ※N/A:Non-cluster

  • doc.: IEEE 802.11-09/1232r0

    Intra cluster parameters for living room (NLoS)November, 2009

    Intra cluster parameters for living room (NLoS)Environment Pol. HPBW [ns] [ns] [ns] [ns]

    5 4.84 7.69 0.541 1.21

    V

    15 2.48 1.11 0.633 1.57

    30 0.981 2.64 1.46 0.949

    60 1.45 0.626 0.834 0.573

    NLoS90 1.47 0.623 0.730 0.542

    5 7.94 3.57 3.41 0.541

    15 3 30 1 06 0 633 1 26

    LivingRoom

    H

    15 3.30 1.06 0.633 1.26

    30 2.66 2.14 0.424 0.984

    60 0.855 0.596 0.580 0.738

    90 0 722 0 732 0 828 0 85190 0.722 0.732 0.828 0.851

    5 7.18 4.13 0.361 0.832

    15 2.78 2.55 0.633 0.627

    C 30 0.891 1.78 0.722 1.28

    60 0.884 0.625 1.21 0.655

    90 0.867 0.670 1.43 0.706

    Submission Hirokazu Sawada, Tohoku UniversitySlide 10

  • doc.: IEEE 802.11-09/1232r0Intra cluster parameters for conference room (LoS)

    November, 2009Intra cluster parameters for conference room (LoS)

    Environment Pol. HPBW [ns] [ns] [ns] [ns]

    5 N/A N/A N/A N/A

    V

    15 2.39 N/A 0.615 N/A

    30 0.613 4.11 1.65 1.35

    60 N/A N/A N/A N/A

    L S

    90 N/A N/A N/A N/A

    5 N/A 9.91 N/A 2.99

    15 1.68 N/A 2.99 N/ALoSConference H

    30 0.510 0.779 2.70 1.92

    60 N/A N/A N/A N/A

    90 N/A N/A N/A N/A90 N/A N/A N/A N/A

    5 N/A 2.75 N/A 0.739

    15 0.682 0.632 1.28 0.924

    30 0 569 0 831 2 02 1 73C 30 0.569 0.831 2.02 1.73

    60 N/A N/A N/A N/A

    90 N/A N/A N/A N/A

    Submission Hirokazu Sawada, Tohoku UniversitySlide 11

    ※N/A: Reflection waves are as low as noise level

  • doc.: IEEE 802.11-09/1232r0Intra cluster parameter for conference room (NLoS)

    November, 2009Intra cluster parameter for conference room (NLoS)

    Environment Pol. HPBW [ns] [ns] [ns] [ns]

    5 13.1 0.891 0.341 1.75

    V

    15 2.39 1.31 0.615 0.841

    30 0.795 0.693 1.25 0.271

    60 N/A N/A N/A N/A

    NL S

    90 N/A N/A N/A N/A

    5 N/A 0.788 N/A 0.642

    15 1.68 0.896 2.99 1.68NLoSConference H

    30 0.798 0.853 2.44 1.82

    60 N/A N/A N/A N/A

    90 N/A N/A N/A N/A90 N/A N/A N/A N/A

    5 N/A 1.00 N/A 1.23

    15 0.686 0.640 1.18 1.26

    30 0 967 0 567 0 861 1 77C 30 0.967 0.567 0.861 1.77

    60 N/A N/A N/A N/A

    90 N/A N/A N/A N/A

    Submission Hirokazu Sawada, Tohoku UniversitySlide 12

    ※N/A: Reflection waves are as low as noise level

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Summary Proposed channel model was updated with variable

    HPBW antenna in living and conference room genvironments for TGad channel modeling

    By integrating the intra-cluster(Doc.09/334r4) and t d i t l t d l th h l d lpresented intra-cluster models, the channel models

    for “conference room and living room environments” will be completedwill be completed

    Submission Hirokazu Sawada, Tohoku UniversitySlide 13

  • doc.: IEEE 802.11-09/1232r0

    I i i f h biliNovember, 2009

    Investigation for human mobility (blockage) and reflection

    Two preliminary measurement results are introduced for human mobility

    Fading by human mobility (blockage)

    Reflection by human body

    Submission Hirokazu Sawada, Tohoku UniversitySlide 14

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Human mobility fadingAntenna height: 1.0 m

    Human mobility fading measurement in living room

    D = 3m

    Submission Slide 15 Hirokazu Sawada, Tohoku University

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Measurement set up in living room

    Parameter ValueParameter ValueFrequency (CW) 62.5 GHz

    HPBW of antenna (Gain) 30 degreeHPBW of antenna (Gain) 30 degreePolarization VerticalCalibration Direct port connection without p

    antennas

    Submission Hirokazu Sawada, Tohoku UniversitySlide 16

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Patterns of human moving/still positions③

    ①③

    ⑤Rx

    ②Rx

    Tx Tx

    Rx⑥⑦

    Route :①~⑤Rx⑥ Route :① ⑤Human Speed: Walking

    H b dSubmission Hirokazu Sawada, Tohoku UniversitySlide 17

    Tx : Human body

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Measurement result (Pattern1)-40

    -50

    40

    [dB

    ]

    -60Number of times

    12e

    pow

    er [

    ①③-70

    2 3

    Rel

    ativ

    e

    Rx②

    0 5 10 15-80

    Ti [ ]

    Fading duration < 0.3s TxTime [s]

    Submission

    Max. attenuation: 30dBHirokazu Sawada, Tohoku UniversitySlide 18

  • doc.: IEEE 802.11-09/1232r0

    Measurement result (Pattern 2 and 3)November, 2009

    Measurement result (Pattern 2 and 3)

    -50

    -40

    B]-50

    -40

    B]

    -70

    -60

    ve p

    ower

    [dB

    -70

    -60

    ve p

    ower

    [dB

    Pattern ② Pattern ③-100

    -90

    -80Number of times

    1 2 3

    Rel

    ativ

    -100

    -90

    -80Number of times

    1 2 3

    Rel

    ativ

    Fading duration:0 3s①③

    0 5 10 15-100

    Time [s]0 5 10 15100

    Time [s]

    Fading duration:0.3sMax. attenuation: 35dB5 dB larger than pattern 1

    Rx②

    5 dB larger than pattern 1Tx

    Fading duration and depth depends on a blocking position

    Submission Hirokazu Sawada, Tohoku UniversitySlide 19

    g p p g pbetween Tx and Rx

  • doc.: IEEE 802.11-09/1232r0

    Measurement result (Pattern 4 and 5)November, 2009

    Measurement result (Pattern 4 and 5)

    -50

    -40

    B] -50

    -40

    B]

    -70

    -60

    ve p

    ower

    [dB

    -70

    -60

    ve p

    ower

    [dB

    Pattern④ Pattern⑤-100

    -90

    -80Number of times

    1 2 3

    Rel

    ativ

    -100

    -90

    -80Number of times

    1 2 3

    Rel

    ativ

    0 5 10 15-100

    Time [s]0 5 10 15-100

    Time [s]

    Fading duration: 1.3~1.7s Rx⑤

    gMax. attenuation: 35dB

    Tx

    Submission Hirokazu Sawada, Tohoku UniversitySlide 20

  • doc.: IEEE 802.11-09/1232r0

    Measurement result (Pateren 6 7 and 8)November, 2009

    Measurement result (Pateren 6, 7 and 8)

    50

    -40

    ]-60

    -50w

    er [d

    B]

    -80

    -70

    ativ

    e po

    w

    -100

    -90Shadowing point

    2 Tx side⑥ 1 Center⑦ 3 Rx side⑧

    Rel

    Attenuation depends on position Rx⑦⑧

    0 5 10 15-100

    Time [s]p p

    Attenuation difference is 9.7dBRx

    Position Rx side Tx side Center

    Submission

    Tx

    Hirokazu Sawada, Tohoku UniversitySlide 21

    Average attenuation 73.5 dB 65.2 dB 63.8 dB

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Reflection measurement of human body

    d

    Submission Hirokazu Sawada, Tohoku UniversitySlide 22

  • doc.: IEEE 802.11-09/1232r0November, 2009

    Reflection power in frequency domain

    -20

    -40

    20[d

    B] Tx

    -60

    e po

    wer

    [

    Rx Human body

    -80

    Rel

    ativ

    e

    Distanse=1m Metal wallHuman body

    61 62 63 64-100

    f [GH ]

    Human body Absorber wall

    Human body make reflection wave, not only absorption effectR fl i l l b 10dB ll h l ll

    f [GHz]

    Submission

    Reflection level became 10dB smaller than metal wallHirokazu Sawada, Tohoku UniversitySlide 23

  • doc.: IEEE 802.11-09/1232r0

    S f h bili f di dNovember, 2009

    Summary of human mobility fading and human reflection measurements

    Duration, decay and rising time modeling will be required for MAC design for beam switching timing

    Reflection a es from h man bod ma ha e an impact onReflection waves from human body may have an impact on propagation characteristics, however, how to model is a future workwork

    Submission Hirokazu Sawada, Tohoku UniversitySlide 24


Recommended