+ All Categories
Home > Documents > 11 Open Channel

11 Open Channel

Date post: 07-Jul-2018
Category:
Upload: sssshekhar
View: 229 times
Download: 0 times
Share this document with a friend

of 62

Transcript
  • 8/18/2019 11 Open Channel

    1/62

     

    Monroe L. Weber-Shirk  School of Civil and

     Environmental Engineering

    Open Channel Flow

    http://ceeserver.cee.cornell.edu/mw24/Default.htmhttp://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/faculty/info.cfm?abbrev=faculty&shorttitle=bio&netid=mw24http://www.cornell.edu/http://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/index.cfmhttp://www.cee.cornell.edu/index.cfmhttp://ceeserver.cee.cornell.edu/mw24/Default.htm

  • 8/18/2019 11 Open Channel

    2/62

     

    Open Channel Flow

    Liqid !water" flow with a #### ########

    !interface between water and air"

    relevant for 

    natral channel$% river$& $tream$

    engineered channel$% canal$& $ewer

    line$ or clvert$ !partiall' fll"& $torm drain$

    of intere$t to h'dralic engineer$ location of free $rface

    velocit' di$tribtion

    di$charge - $tage !######" relation$hip$

    optimal channel de$ign

    free surface

    depth

    http://e/CEE%20331/Lectures/Viscous%20Flow%20open%20channel.ppt

  • 8/18/2019 11 Open Channel

    3/62

     

    (opic$ in Open Channel Flow

    )niform Flow *i$charge-*epth relation$hip$

    Channel tran$ition$ Control $trctre$ !$lice gate$& weir$+" ,apid change$ in bottom elevation or cro$$ $ection

    Critical& Sbcritical and Spercritical Flow

    'dralic mp /radall' 0aried Flow

    Cla$$ification of flow$

    Srface profile$

    normal depth

  • 8/18/2019 11 Open Channel

    4/62

     

    Cla$$ification of Flow$

    Stead' and )n$tead'

    Stead'% velocit' at a given point doe$ not change with

    time

    )niform& /radall' 0aried& and 1onniform )niform% velocit' at a given time doe$ not change

    within a given length of a channel

    /radall' varied% gradal change$ in velocit' with

    di$tance

    Laminar and (rblent

    Laminar% flow appear$ to be a$ a movement of thin

    la'er$ on top of each other 

    (rblent% packet$ of liqid move in irreglar path$

    ( Temporal)

    (Spatial)

  • 8/18/2019 11 Open Channel

    5/62

     

    Momentm and Energ'

    Eqation$

    Con$ervation of Energ'

    2lo$$e$3 de to conver$ion of trblence to heat

    $efl when energ' lo$$e$ are known or $mall ############ 

    M$t accont for lo$$e$ if applied over long di$tance$ ############################################### 

    Con$ervation of Momentm 2lo$$e$3 de to $hear at the bondarie$

    $efl when energ' lo$$e$ are nknown ############ 

    Contractions

    Expansion

    We need an equation for losses

  • 8/18/2019 11 Open Channel

    6/62

     

    /iven a long channel ofcon$tant $lope and cro$$$ection find the relation$hip

     between di$charge and depth 4$$me

    Stead' )niform Flow - ### ############# 

     pri$matic channel !no change in ######### with di$tance"

    )$e Energ' and Momentm& Empirical or *imen$ional4nal'$i$5

    What control$ depth given a di$charge5

    Wh' doe$n6t the flow accelerate5

    Open Channel Flow%

    *i$charge7*epth ,elation$hip

    8

    no accelerationgeometr'

    Force balance

    4

  • 8/18/2019 11 Open Channel

    7/62

     

    Stead'-)niform Flow% Force

    9alance

    θ

    W

    θ

    W sin θ

    ∆x

    a

    b

    c

    d

    Shear force

    Energy grade line

    Hydraulic grade lin

     Shear force :######## 

    ;$in   =∆−∆   x P  x A oτ θ γ   ;$in   =∆−∆   x P  x A oτ θ γ  

    θ γ  τ  $in

     P 

     Ao   =   θ γ  τ  $in

     P 

     Ao   =

    h, :

     P 

     Ah

    , :

     P 

     Aθ 

    θ 

    θ $in

    co$

    $in≅=S    θ 

    θ 

    θ $in

    co$

    $in≅=S 

    W cos θ

     g 

    <

    <

     g 

    <

    <

    Wetted perimeter : ## 

    /ravitational force : ######## 

    Hydraulic radius

    Relationship beteen shear and !elocity" ############## 

    τo8 ∆ =

    8

    γ 4 ∆= $inθ

     Turbulence

  • 8/18/2019 11 Open Channel

    8/62

     

    $eometric parameters ################### 

     ###################  ################### 

    Write the functional relationship

    %oes &r a'ect shear" ######### 

     P 

     A Rh  =

     P 

     A Rh  ='dralic radi$ ! Rh"

    Channel length !l "

    ,oghne$$ !ε"

    Open Condit$%

    *imen$ional 4nal'$i$

    f & &,e& ph h

    l C r 

     R R

    e * +- .

    F ,M, Wf & &,e& ph h

    l C r 

     R R

    e * +- .

    F ,M, W

    V  Fr 

     yg 

    * 1o>

  • 8/18/2019 11 Open Channel

    9/62

     

    8re$$re Coefficient for Open

    Channel Flow5

    <

    <C

     p p

     ρ 

    ∆−=

    <

    <C

     p p

     ρ 

    ∆−=

    <

    <C

     ghl hl =

    <

    <C

     ghl hl =

    <

    <C

     f  

     f  

     gS l 

    V *

    <

    <C

     f  

     f  

     gS l 

    V *

    l f  h S l *l f  h S l *

    l h p   γ  =∆−   l h p   γ  =∆−8re$$re Coefficient

    ead lo$$ coefficient

    Friction $lope coefficient

    !Energ' Lo$$ Coefficient"

    Friction $lope

    Slope of E/L

  • 8/18/2019 11 Open Channel

    10/62

     

    *imen$ional 4nal'$i$

    f & & ,e f  S 

    h h

    l C 

     R R

    e * +- .

    f & &,e f  S 

    h h

    l C 

     R R

    e * +- .

     f  

    h

     RC 

    l l*

     f  

    hS 

     RC 

    l l*

    <

    <  f     h gS l  R

    V l 

    l*<<  f     h gS l  R

    V l 

    l*<  f h gS R

    V l

    *<  f h gS R

    V l

    *<

     f h

     g V S R

    l*

    < f h

     g V S R

    l*

    f &,e f  S 

    h h

    l C  R R

    e * +- .f & ,e

     f  S 

    h h

    l C  R R

    e * +- .Head loss ∝ length of channel

    f & ,e f  

    h

    S h

     RC 

    l R

    el

    * *

    + ,- .f &,e

     f  

    h

    S h

     RC 

    l R

    el

    * *

    + ,- .

    <

    <

     f  

     f  

     gS l C 

    V *

    <

    <

     f  

     f  

     gS l C 

    V *

    (li/e f in %arcy0Weisbach)

  • 8/18/2019 11 Open Channel

    11/62

     

    Che?' eqation !@AB"

    Dntrodced b' the French engineer 4ntoine

    Che?' in @AB while de$igning a canal for

    the water-$ppl' $'$tem of 8ari$

    h f  V C R S  *   h f  V C R S  *

     @;FCFB; s

    m

     s

    m @;FCFB;

     s

    m

     s

    mhere C * Che1y coe2cient

    here 34 is for rough and 564 is for smooth

    also a function of R (li/e f  in %arcy0Weisbach)

    < f h

     g V S R

    l*

    < f h

     g V S R

    l*compare

  • 8/18/2019 11 Open Channel

    12/62

     

    *arc'-Wei$bach eqation !@G;"

    here d78 * roc/ si1e larger than

    789 of the roc/s in a random

    &or roc/0bedded streams

    f * %arcy0Weisbach friction factor

    <

    G

    @

    @.< + ,- .? @

    <

    G

    @

    @.< + ,- .? @

    G

    G

    8

     

    <

     A Rh   =

       

      

     

    ==π 

    π 

    G

    G

    8

     

    <

     A Rh   =

       

      

     

    ==π 

    π 

    <

    <l 

    l V h f  

    d g 

    *<

    <l 

    l V h f  

    d g 

    *<

    G <l 

    h

    l V h f  

     R g 

    *<

    G <

    h

    l V h f  

     R g 

    *

    <

    G < f  

    h

    l V S l f  

     R g *

    <

    G < f  

    h

    l V S l f  

     R g *

    <

     f h

    V S R f  

     g *

    <

     f h

    V S R f  

     g *

       f h

     g V S R

     f  *

       f h

     g V S R

     f  *

  • 8/18/2019 11 Open Channel

    13/62

     

    Manning Eqation !@I@"

    Aost popular in BS for open channels

    (English system)

    @7<

    o

  • 8/18/2019 11 Open Channel

    14/62

     

    0ale$ of Manning n

    Lined Canals n

    Cement plaster 0.011Untreated gunite 0.016Wood, planed 0.012Wood, unplaned 0.013Concrete, trowled 0.012

    Concrete, wood forms, unfinished 0.015Rubble in cement 0.020Asphalt, smooth 0.013Asphalt, rough 0.016

    Natural Channels

    Gravel beds, straight 0.025Gravel beds plus large boulders 0.040

    Earth, straight, with some grass 0.026Earth, winding, no vegetation 0.030Earth , winding with vegetation 0.050

    Lined Canals n

    Cement plaster 0.011Untreated gunite 0.016Wood, planed 0.012Wood, unplaned 0.013Concrete, trowled 0.012

    Concrete, wood forms, unfinished 0.015Rubble in cement 0.020Asphalt, smooth 0.013Asphalt, rough 0.016

    Natural Channels

    Gravel beds, straight 0.025Gravel beds plus large boulders 0.040

    Earth, straight, with some grass 0.026Earth, winding, no vegetation 0.030Earth , winding with vegetation 0.050

    d * median si1e of bed

    material

    n *f(surface

    roughnessLchannelirregularityLstage)

    B7@

    ;H.;   d n   =  B7@

    ;H.;   d n   =

    B7@;H@.;   d n   =   B7@;H@.;   d n   = d in

    ftd in m

  • 8/18/2019 11 Open Channel

    15/62

     

    (rape?oidal Channel

    *erive 8 : f!'" and 4 : f!'" for a

    trape?oidal channel

    ow wold 'o obtain ' : f!J"5

    15

    b

    y z  y yb A

     

  • 8/18/2019 11 Open Channel

    16/62

     

    Flow in ,ond Condit$

       

      

       −=r 

     yr arcco$θ    

     

      

       −=r 

     yr arcco$θ 

    ( )θ θ θ    co$$in< −= r  A   ( )θ θ θ    co$$in< −= r  A

    θ $in

  • 8/18/2019 11 Open Channel

    17/62

     

    Open Channel Flow% Energ'

    ,elation$

  • 8/18/2019 11 Open Channel

    18/62

     

    Energ' relation$hip$

    < <

    @ @ < <@ @ < <

    < <  L

     p V p V  z z h

     g g a a

    g g< < * < < <

    < <

    @ <@ <

    < <o f  

    V V  y S x y S x

     g g 

    < % < * < < % Turbulent Oo (α ≅ 5)

    1 0 measuredfrom hori1ontal

    datum

    y 0 depth of Oo

    Pipe Oo

    Energy Equation for Gpen Channel &lo

    < <

    @ <@ <

    < <

    o f  

    V V  y S x y S x

     g g 

    < < % * < < %

    &rom diagram on pre!iousslide

  • 8/18/2019 11 Open Channel

    19/62

     

    Specific Energ'

    (he $m of the depth of flow and the

    velocit' head i$ the $pecific energ'%

     g 

    V  y E 

    <

    <

    +=

    Qf channel bottom is hori1ontal and nohead loss

  • 8/18/2019 11 Open Channel

    20/62

     

    Specific Energ'

    Qn a channel ith constant dischargeL

  • 8/18/2019 11 Open Channel

    21/62

     

    ;

    @

    <

    H

    G

    B

    A

    C

    I

    @;

    ; @ < H G B A C I @;

    E

         '

    Specific Energ'% Slice /ate

    <

    <

  • 8/18/2019 11 Open Channel

    22/62

     

    ;

    @

    <

    H

    G

    ; @ < H G

    E

         '

    Specific Energ'% ,ai$e the Slice

    /ate

    <

    <

  • 8/18/2019 11 Open Channel

    23/62

     

    ;

    @

    <

    H

    G

    ; @ < H G

    E

         '

    Specific Energ'% Step )p

    ShortL smooth step ith rise ∆y in channel

    ∆y

    @

  • 8/18/2019 11 Open Channel

    24/62

     

    8

    4

    Critical Flow

     T

    dy

    y

     T*surfaceidth

    &ind critical depthL yc

    <

    <

  • 8/18/2019 11 Open Channel

    25/62

     

    Critical Flow%

    ,ectanglar channel

    yc

     T

    Mc

    H

    <

    @

    c

    c

     gA

    T Q=

    qT Q   =   T  y A cc   =

    H

    <

    HH

    H<

    @

    cc   gy

    q

    T  gy

    T q==

    H7@

    <

      

     

     

     

     = g 

    q yc

    H

    c gyq   =

    Gnly for rectangular channels

    cT T  =

    $i!en the depth e can nd the Oo

  • 8/18/2019 11 Open Channel

    26/62

     

    Critical Flow ,elation$hip$%

    ,ectanglar Channel$

    H7@<

      

     

     

     

     =

     g 

    q yc   cc

     yV q   =   

     

    = g 

     yV  y

      cc

    c

  • 8/18/2019 11 Open Channel

    27/62

     

    Critical Flow

    Characteri$tic$

    )n$table $rface

    Serie$ of $tanding wave$ Occrrence

    9road cre$ted weir !and other weir$"

    Channel Control$ !rapid change$ in cro$$-$ection"

    Over fall$

    Change$ in channel $lope from mild to $teep

    )$ed for flow mea$rement$

     ########################################### Bnique relationship beteen depth and discharge

    %i2cult to measure depth

    ;

    @

    <

    H

    ; @ < H G

    E

      '

  • 8/18/2019 11 Open Channel

    28/62

     

    9road-cre$ted Weir 

    H

    P

    yc

    E

    Hc gyq   =   HcQ b gy*

     E  ycH

    <=

    H7 <H7

  • 8/18/2019 11 Open Channel

    29/62

     

    9road-cre$ted Weir% E=ample

    Calclate the flow and the depth p$tream.

    (he channel i$ H m wide. D$ appro=imatel'

    eqal to E5

    46

    yc

    E

    Kroad0crestedeir

    yc*4J m

    Solution

    ow do 'o find flow5#################### 

    ow do 'o find 5###################### 

    Critical flow relation

    Energ' eqation

    http://www.eng.vt.edu/fluids/msc/gallery/waves/sinkb.htm

  • 8/18/2019 11 Open Channel

    30/62

     

    'dralic mp

    )$ed for energ' di$$ipation

    Occr$ when flow tran$ition$ from

    $percritical to $bcritical ba$e of $pillwa'

    We wold like to know depth of water

    down$tream from Kmp a$ well a$ thelocation of the Kmp

    Which eqation& Energ' or Momentm5

    http://www.eng.vt.edu/fluids/msc/gallery/waves/sinkb.htm

  • 8/18/2019 11 Open Channel

    31/62

     

    'dralic mp>

  • 8/18/2019 11 Open Channel

    32/62

     

    'dralic mp

    y5

    y

    I

    E$IhI

    Conser!ation ofAomentum

  • 8/18/2019 11 Open Channel

    33/62

     

    'dralic mp%

    ConKgate *epth$

    Auchalgebra

    &or a rectangular channel ma/e the folloingsubstitutions

     %y A   =   @@V  %yQ   =

    @@

    @

    V  Fr 

     gy* &roude number

    ( )

  • 8/18/2019 11 Open Channel

    34/62

     

    'dralic mp%

    Energ' Lo$$ and Length

    Fo general theoretical solution

    Experiments sho

  • 8/18/2019 11 Open Channel

    35/62

     

    /radall' 0aried Flow

    < <

    @ <@ <

    < <o f  

    V V  y S x y S x

     g g < < % * < < % Energy equation for

    non0uniformL steadyOo

    @<   y ydy   −=

    <

    <  f o

    V dy d S dx S dx

     g 

    ( )< < *+ ,- .

    8

    4

     T

    dy

    y

    dy

    dxS 

    dy

    dxS 

     g 

    dy

    dy

    dyo f     =+ 

      

     

    +<

    <

    ( )

    < <

    < @< @< <

    o f  

    V V S dx y y S dx g g 

    ( )* 0 < 0

  • 8/18/2019 11 Open Channel

    36/62

     

    /radall' 0aried Flow

    <

    H

    <

    H

    <

    <

  • 8/18/2019 11 Open Channel

    37/62

     

    /radall' 0aried Flow

  • 8/18/2019 11 Open Channel

    38/62

     

    Srface 8rofile$

    Mild $lope !'n'c"

    in a long channel $bcritical flow will occr 

    Steep $lope !'n'c"

    in a long channel $percritical flow will occr 

    Critical $lope !'n:'c"

    in a long channel n$table flow will occr 

    Hori?ontal $lope !So:;" 'n ndefined

    Adver$e $lope !So;"

    'n ndefined

    Note: These slopes are f(Q)

  • 8/18/2019 11 Open Channel

    39/62

     

    Formal depth

    Steep slope (S)

    Hydraulic Zump

    Sluice gate

    Steep slope

    Gbstruction

    Srface 8rofile$

  • 8/18/2019 11 Open Channel

    40/62

     

    More Srface 8rofile$

    S4 0 Sf  5 0 &r dydx

    5 < < <

    < 0 0

    J 0 0 < ;

    @

    <

    H

    G

    ; @ < H G

    E

      '

    yn

    yc

  • 8/18/2019 11 Open Channel

    41/62

     

    *irect Step Method

     xS  g 

    V  y xS 

     g 

    V  y  f  o   ∆++=∆++

  • 8/18/2019 11 Open Channel

    42/62

     

    *irect Step Method

    Friction Slope

    < <

    G7H f  

    h

    n V S 

     R

    *

    < <

    G7H

  • 8/18/2019 11 Open Channel

    43/62

     

    *irect Step

    Limitation% channel m$t be ######### !$o thatvelocit' i$ a fnction of depth onl' and not a fnctionof ="

    Method identif' t'pe of profile !determine$ whether ∆' i$ or -"

    choo$e ∆' and th$ 'n@ calclate h'dralic radi$ and velocit' at 'n and 'n@ calclate friction $lope 'n and 'n@ 

    calclate average friction $lope

    calclate ∆=

    prismatic

  • 8/18/2019 11 Open Channel

    44/62

     

    *irect Step Method

    :!/@B-/@"7!!F@F@B"7

  • 8/18/2019 11 Open Channel

    45/62

     

    Standard Step

    /iven a depth at one location& determine the depth at a$econd location

    Step $i?e !∆=" m$t be $mall enogh $o that change$ in

    water depth aren6t ver' large. Otherwi$e e$timate$ of thefriction $lope and the velocit' head are inaccrate

    Can $olve in p$tream or down$tream direction p$tream for $bcritical

    down$tream for $percritical

    Find a depth that $ati$fie$ the energ' eqation

     xS  g 

    V  y xS 

     g 

    V  y

     f  o   ∆++=∆++

  • 8/18/2019 11 Open Channel

    46/62

     

    What crve$ are available5

    S

    S*

    +s there a cure 'etween yc an- yn that

    -ecreases in -epth in the upstrea -irection.

    ;.;

    ;.<

    ;.G

    ;.B

    ;.

    @.;

    @.<

    @.G

    ;@;@

  • 8/18/2019 11 Open Channel

    47/62

     

    Wave Celerit'

    <

    @

    <

    @ gy F    ρ =   ( ) 

  • 8/18/2019 11 Open Channel

    48/62

     

    Wave Celerit'%

    Momentm Con$ervation

    ( ) ( ) ( )[ ]&&&r    V V V V V V V  y F    −−−+−=   δ  ρ 

    ( )   V V V  y F  &r    δ  ρ    −=

    ( )[ ]   ( )   V V V  y y y y g  &  δ  ρ δ  ρ    −=+− 

  • 8/18/2019 11 Open Channel

    49/62

     

    Wave Celerit'

    ( ) ( ) ( )&&   V V V  y yV V  y   −++=−   δ δ 

    &&&   yV  yV V  yV  y yV  yV  yV  yV    δ δ δ δ δ    −−+++=−

    ( ) y

     yV V V  &δ δ    −−=

    ( )   V V V  y g  &  δ δ    −=−

    ( ) y

     yV V  y g  &

    δ δ 

     

  • 8/18/2019 11 Open Channel

    50/62

     

    Wave 8ropagation

    Spercritical flow

    c0

    wave$ onl' propagate down$tream water doe$n6t 2know3 what i$ happening down$tream

     ######### control

    Critical flow

    c:0

    Sbcritical flow

    c0

    wave$ propagate both p$tream and down$tream

    upstream

    Mo$t Efficient 'dralic

  • 8/18/2019 11 Open Channel

    51/62

     

    Mo$t Efficient 'dralic

    Section$

    4 $ection that give$ ma=imm di$charge for a$pecified flow area Minimm perimeter per area

     1o frictional lo$$e$ on the free $rface

    4nalog' to pipe flow

    9e$t $hape$

     be$t be$t with < $ide$

     be$t with H $ide$

    Wh' i$n6t the mo$t efficient

  • 8/18/2019 11 Open Channel

    52/62

     

    Wh' i$n t the mo$t efficient

    h'dralic $ection the be$t de$ign5

    Ainimum area * least exca!ation only if topof channel is at grade

    Cost ofliner

    Complexity of form or/

    Erosion constraint 0 stability of sidealls

    Open Channel Flow *i$charge

  • 8/18/2019 11 Open Channel

    53/62

     

    Open Channel Flow *i$charge

    Mea$rement$

    *i$charge

    Weir  broad cre$ted

    $harp cre$ted

    trianglar 

    0entri Flme

    Spillwa'$

    Slice gate$

    0elocit'-4rea-Dntegration

  • 8/18/2019 11 Open Channel

    54/62

  • 8/18/2019 11 Open Channel

    55/62

     

    Smmar'

    4ll the complication$ of pipe flow pl$

    additional parameter... ################# 

    0ario$ de$cription$ of head lo$$ termChe?'& Manning& *arc'-Wei$bach

    Dmportance of Frode 1mber 

    Fr@ decrea$e in E give$ increa$e in '

    Fr@ decrea$e in E give$ decrea$e in '

    Fr:@ $tanding wave$ !al$o min E given J"

    Method$ of calclating location of free $rface

    free surface location

    ;

    @

    <

    H

    G

    ; @ < H G

    E

      '

  • 8/18/2019 11 Open Channel

    56/62

     

    9road-cre$ted Weir% Soltion

    46

    yc

    E

    Kroad0crested

    eir

    yc*4J m

    H

    c gyq   =

    ( )H< H.;"7.I!   m smq =

     smq   7@GG.;  

  • 8/18/2019 11 Open Channel

    57/62

     

    Slice /ate

    m

    54 cm

    S * ;.;;E

    Sluice gatereser!oir

  • 8/18/2019 11 Open Channel

    58/62

     

    Smmar'7Overview

    Energ' lo$$e$

    *imen$ional 4nal'$i$

    Empirical

     f h

     g V S R

     f  *

       f h

     g V S R

     f  *

    @7<

    o

  • 8/18/2019 11 Open Channel

    59/62

     

    Energ' Eqation

    Specific Energ'

    (wo depth$ with $ame energ'>

    ow do we know which depth

    i$ the right one5

    D$ the path to the new depth

     po$$ible5

    < <

    @ <@ <

    < <o f  

    V V  y S x y S x

     g g < < % * < < %

    <

  • 8/18/2019 11 Open Channel

    60/62

     

    ;

    @

    <

    H

    G

    ; @ < H G

    E

         '

    Specific Energ'% Step )p

    ShortL smooth step ith rise ∆y in channel

    ∆y

    @

  • 8/18/2019 11 Open Channel

    61/62

     

    Critical *epth

    Minimm energ' for qWhen

    When kinetic : potential>Fr:@

    Fr@ : Spercritical

    Fr@ : Sbcritical

    ;=

    dy

    dE 

    ;

    @

    <

    H

    G

    ; @ < H G

    E

         '

     g V  y cc

  • 8/18/2019 11 Open Channel

    62/62

    What ne=t5

    Water $rface profile$

    ,apidl' varied flow

    4 wa' to move from $percritical to $bcritical flow!'dralic mp"

    /radall' varied flow eqation$Srface profile$

    *irect $tep

    Standard $tep


Recommended