+ All Categories
Home > Documents > 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Date post: 21-Dec-2015
Category:
View: 214 times
Download: 1 times
Share this document with a friend
55
20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy 2 () 4 4 e n o o qq Ze Vr r r + Kinetic Energy ˆ ˆ ˆ n e K K K R C 2 2 2 2 ˆ 2 2 R r K M m 2 2 ˆ () 2 r Kr m M m m
Transcript
Page 1: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_01fig_PChem.jpg

Hydrogen Atom

M

m

r

Potential Energy2

( )4 4

e n

o o

q q ZeV r

r r

+

Kinetic Energy

ˆ ˆ ˆn eK K K

R

C2 2

2 2ˆ2 2R rKM m

22ˆ ( )

2 rK rm

M m m

Page 2: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_01fig_PChem.jpg

Hydrogen Atom2 2

2ˆ ˆ ˆ( ) ( )2 4r

o

ZeH K r V r

m r

22 2

2 2 2 2 2

1 1 1sin

sin sinr

d d d d dr

r dr dr r d d r d

22 2

2 2

1 1ˆ sinsin sin

d d dL

d d d

2 2 22

2 2

ˆˆ

2 2 4 o

d d L ZeH r

mr dr dr mr r

Radial Angular Coulombic

Page 3: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_01fig_PChem.jpg

Hydrogen Atom( , , )r will be an eigenfunction of 2ˆ ˆ ˆ, & zH L L

.( , , ) ( ) ( , )n l mr R r Y Separable

ˆ ( , , ) ( , , )H r E r

2 2 22

. .2 2

ˆ( ) ( , ) ( ) ( , )

2 2 4 n l m n n l mo

d d L Zer R r Y E R r Y

mr dr dr mr r

2 22

. .2 2

( 1)( , ) ( ) ( , ) ( )

2 2l m n l m n

d d l lY r R r Y R r

mr dr dr mr

2

. .( , ) ( ) ( ) ( , )4l m n n n l m

o

ZeY R r E R r Y

r

2 2 22

2 2

( 1)( ) 0

2 2 4 n no

d d l l Zer E R r

mr dr dr mr r

Page 4: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_01fig_PChem.jpg

Hydrogen Atom

22

2 2 2 2

21 ( 1)( ) 0

2n

no

E md d l l Zmer R r

r dr dr r r

2 22 2

2 2 2 2

1 1 22

d d d d d dr r r

r dr dr r dr dr r dr dr

Recall

2

2

40.0529o

oa nmme

Bohr Radius

2

2 2 2

22 ( 1) 2( ) 0n

no

E md d l l ZR r

r dr dr r a r

Page 5: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_01fig_PChem.jpg

Hydrogen Atom

21

2 2 2

22 ( 1) 20r

o

E md d l l Ze

r dr dr r a r

Assume1( ) 0 asR r r

1( ) rR r e Let’s try

2 12 2

22 ( 1) 20r

o

E ml l Ze

r r a r

2 12 2

21 2 1( 1) 2 0

o

E mZl l

r a r

2 12

22( 1) 0; 2 0; & 0

o

E mZl l

a

It is a ground state as it has no nodes

Page 6: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_01fig_PChem.jpg

Hydrogen Atom

2 2

10; ; &2o

Zl E

a m

2 12

22( 1) 0; 2 0; & 0

o

E mZl l

a

22 2 2 2 2

1 2 202 2 4 o

Z Z meE

a m m

2 4

2 24 2o

Z me

0

1

0,( , , ) ( ) ( , ) ( )

Zr

aln l mr R r Y CR r Ce

The ground state as it has no nodes n=1, and since l=0 and m = 0, the wavefunction will have no angular dependence

2 2

1 202

ZE

a m

Page 7: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_01fig_PChem.jpg

Hydrogen Atom

In general:

Laguerre Polynomials

11

12

33

1 23

33

55

1 0 ( ) 1

2 0 ( ) (2!)(2 )

1 ( ) (3!)

3 0 ( ) (3!) 3 3 0.5

1 ( ) (4!)(4 )

2 ( ) (5!)

n l L x

n l L x x

l L x

n l L x x x

l L x x

l L x

0

2Zrx

na

0

32 1

4 3 30 0 0

4 ( 1)! 2 2( )

[( )]

l Zr

nal ln n l

Z n l Zr ZrR r e L

n a n l na na

2 1

0

2ln l

ZrL

na

1S- 0 nodes

2S- 1 node

3S-2 nodes

Page 8: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Energies of the Hydrogen Atom

In general:

4 2

2 2 2

1

24n

o

me ZE

n

2 2

20

1

24 o

e Z

a n

2

22

Z

n

2

0

27.24H

o

eE eV

a

Hartrees

kJ/mol

627.51 / 2625.5 /kcal mol kJ mol

Page 9: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Wave functions of the Hydrogen Atom

In general:

0

32 1

4 3 30 0 0

4 ( 1)! 2 2( )

[( )]

l Zr

nal ln n l

Z n l Zr ZrR r e L

n a n l na na

,

1( , ) (cos( ))

2mm im

l m l lY C P e

,( , , ) ( ) ( , )ln l mr R r Y

Z=1, n = 1, l = 0, and m = 0:

00 (cos( )) 1P 0

0

1

2C

11

0

21

rL

a

01 0,0( , , ) ( ) ( , )r R r Y

001 3

0

2( )

r

aR r ea

0,0

1( , )

2Y

0 0

3 30 0

2 1 1

2

r r

a ae ea a

Page 10: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Z=1, n = 2, l = 0, and m = 0:

12

0 0

2! 2r r

La a

0,0

1( , )

2Y

02

300

122 2

r

ae r

aa

0202 3

00

1( ) 1

22

r

a rR r e

aa

02 0,0( , , ) ( ) ( , )r R r Y

Wave functions of the Hydrogen Atom

Page 11: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Hydrogen AtomZ=1, n = 2, l = 1

022,1,0 3

0 0

1 2( , , ) cos

8

r

arr e

a a

m = 0: m = +1/-1:

022,1, 1 3

0 0

1 1( , , ) sin

8

r

arr e e

a a

022,1, 2,1, 1 2,1, 1 3

0 0

1 1 1( , , ) ( , , ) ( , , ) sin cos

2 8

r

ax

rr r r e

a a

022,1, 2,1, 1 2,1, 1 3

0 0

1 1 1( , , ) ( , , ) ( , , ) sin sin

2 8

r

ay

rr r r e

i a a

+

_

-+-+

+-

-+

+- -

+

Page 12: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_06fig_PChem.jpg

* 2, , , ,( ) ( , , ) ( , , ) sinn l m n l mP R r r r drd d

* * 2, ,( ) ( , ) ( ) ( , ) sinl l

n l m n l mR r Y R r Y r drd d * 2 *

, ,( ) ( ) ( , ) ( , )sinl ln n l m l mR r R r r dr Y Y d d

For radial distribution functions we integrate over all angles only

2* 2 *

, ,

0 0

( ) ( ) ( ) ( , ) ( , )sinl ln n l m l mP r R r R r r Y Y d d

* 2( ) ( )l ln nR r R r r Prob. density as a function of r.

Radial Distribution Functions

Page 13: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_09fig_PChem.jpg

Radial Distribution Functions0

22

30

4r

are

a

0* 0 21,0,0 1 1( ) ( ) ( )P r R r R r r00

1 30

2( )

r

aR r ea

0202 3

00

1( ) 1

22

r

a rR r e

aa

0* 0 22,0,0 2 2( ) ( ) ( )P r R r R r r

0 3 42

30 0 02 4

r

ae r rr

a a a

Page 14: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_08fig_PChem.jpg

* 2, , , ,( , , ) ( , , ) ( , , ) sinn l m n l mP r r r r

* 2 *, , , ,( ) ( ) ( , ) ( , )sinl l

n n l m l mR r R r r Y Y

, ,( ) ( , )n l l mP r P

X

Y

Z

Probability Distributions

0

42

2,1 1,0 50

( ) ( , ) cos sin32

r

arP r P e

a

, ( )n lP r, ( , )l mY

Page 15: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

20_12fig_PChem.jpg

Atomic Units

Set:2

2

41 . .o

oa a ume

2 4 2

2 22 2 24 2n

o

Z me ZE

nn

2 2 22

2 2

ˆˆ

2 2 4e e o

d d L ZeH r

m r dr dr m r r

2

0

1, 1, & 14

e

em

Hartrees

22

2 2

ˆ1

2 2

d d L Zr

r dr dr r r

2

2

Z

r

a.u.

Much simpler forms.

0

3 3

1 30

Zr

a Zrs

Z Ze e

a

023 3 2

2 300

1 12 22 22 2

r ra

s

Z e r Z e r

aa

Page 16: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

AtomsPotential Energy

2

( )4 4

e nen i

o i o i

q q ZeV r

r r

Kinetic Energy2 2

2 2ˆ2 2 iR r

i e

KM m

22ˆ ( )

2 ii ri i e

K rm

C

me

me

2

( )4 4

i jee

o ij o ij

q q eV r

r r

=r12

M

2

2i

i

i

Z

r

1

ijr

1

1( ) ( )en i ee ij

i i j i iji ij

ZV V r V r

r r

Page 17: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Helium Atom

C

me

me

=r12

M

2 1ˆ ˆ ˆ2i

i i j ii ij

ZH K V

r r

2 1

2i

i i ji ij

Z

r r

,

1ˆi

i i i j ij

Hr

1 212

1ˆ ˆH Hr

Cannot be separated!!!

2

2i

ii

ZH

r

Hydrogen like 1 e’ Hamiltonian

i.e. r12 cannot be expressed as a function of just r1 or just r2

What kind of approximations can be made?

Page 18: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Ground State Energy of Helium Atom

Eo

E1

E2

I1 = 24.587 ev

Eo

E1

E2

I2 = 54.416 ev

Ionization Energy of He

EFree

Eo=- 24.587 - 54.416 ev

=- 79.003 ev =- 2.9033 Hartrees

Perturbation Theory1 2

12

1ˆ ˆ ˆH H Hr

01 2

ˆ ˆ ˆH H H 1

12

1H

r 0 0 0

1 2 1 2( , ) ( ) ( )r r r r

0 0 01 1 1 1 1 1

ˆ ( ) ( )H r E r 101

1(1 ) rs e

1

20 11

12r Z

Hr

2 20 11 2 2

1

22

2 2 1

ZE

n

Page 19: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Ground State Energy of Helium Atom0

1 2ˆ ˆ ˆH H H 0 0 0

1 2 1 2( , ) ( ) ( )r r r r

0 0 0 01 2 1 2 1 2

ˆ ˆ ˆ( , ) ( ) ( )H r r H H r r 0 0 0 0

1 1 2 2 1 2ˆ ˆ( ) ( ) ( ) ( )H r r H r r

0 0 0 02 1 1 1 2 1

ˆ ˆ( ) ( ) ( ) ( )r H r r H r

0 0 0 02 1 1 1 2 1( ) ( ) ( ) ( )r E r r E r

1 2 0 00 0 2 1( ) ( )E E r r

0 01 2( , )E r r

0 0 01 2 2 2 4E E E H

20 011 22

1

22

ZE E

n

Not even close.Off by 1.1 H, or3000 kJ/mol

Therefore e’-e’ correlation, Vee, is very significant

Page 20: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Ground State Energy of Helium Atom

0

12

1ˆ ˆH Hr

1

12

1H

r

0 0 01 2 1 2( , ) ( ) ( )r r r r

0 01 1 1 1 1 1

ˆ ( ) ( )H r E r

01 2

ˆ ˆ ˆH H H

0 1 0 0 0 1 01 2 1 2 1 2

ˆ, ,E E E E E r r H r r

1 2

0 1 0 0* 01 2 1 2 1 2 1 2 1 2

12

1ˆ, , , ,S S

r r H r r r r r r dV dVr

1 2 1 2ˆ ( , ) ( , )H r r E r r 0 1

1 2 1 2 1 2( , ) ( , ) ( , )r r r r r r

Page 21: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Ground State Energy of Helium Atom

30 (1 ) iZri

Zs e

1 2

1 0 1 0 0* 01 2 1 2 1 2 1 2 1 2

12

1ˆ, , , ,S S

E r r H r r r r r r dV dVr

1 2

0* 0* 0 01 2 1 2 1 2

12

1

S S

r r r r dV dVr

1 2 1 2

2 22 2

1 2 1 2 1 2 1 2 1 2120 0 0 0 0 0

2 2 2 2 1 2 2 2 2sin sinZr Zr Zr Zre e e e r r dr dr d d d d

r

12

1 5 51 (1)1 (2) 1 (1)1 (2)

8 4

Zs s s s

r

0 1 54 2.75H

4E E E Closer but still far off!!!

1

0

1.2531.5%

4

E

E

Perturbation is too large for PT to be accurate, much higher corrections would be required

Page 22: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method

exact exactH E

i ii

c i i iH E

The wavefunction can be optimized to the system to make it more suitable

Consider a trail wavefunction t and exact

Is the true wavefunction, where:

Then

0

ˆt t

t t

HE

The exact energy is a lower bound

,n exactis a complete set

Assume the trial function can be expressed in terms of the exact functions

0 0ˆ ˆ 0t t t t t tH E H E

We need to show that

texact

t

Page 23: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method

0 0ˆ ˆ

t t i i j ji j

H E c H E c

*0

ˆi j i j

i j

c c H E *

i j i j i ji j

c c H E *

0i j i ij iji j

c c E E

*0 0i i i

i

c c E E *

00 & 0i i ic c E E

Since

0

ˆt t

t t

HE

Variational Energy

var

ˆ( ) ( )( )

( ) ( )t t

t t

HE

E0

Evar()

var ( ) 0d

Ed

min

2

var2( ) 0

dE

d

Page 24: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom3

1,0,01 ( ) ( ) iZri

Zs i e

r

Let’s optimize the value of Z, since the presence of a second electrons shields the nucleus, effectively lowering its charge.

1 2 1 2var

1 2 1 2

ˆ( , ) ( , )

( , ) ( , )

HE

r r r r

r r r r

33

1,0,01 ( ) ( ) eff ieff Z r

i

Zs i e

r 1 2( , ) 1 (1)1 (2)s s r r

1 2 1 2( , ) ( , ) 1 (1) 1 (1) 1 (2) 1 (2) 1s s s s r r r r

var 1 212

1ˆ ˆ1 (1)1 (2) 1 (1)1 (2)E s s H H s sr

Page 25: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom

var 1 212

1ˆ ˆ1 (1)1 (2) 1 (1)1 (2)E s s H H s sr

1 2

12

ˆ ˆ1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2)

11 (1)1 (2) 1 (1)1 (2)

s s H s s s s H s s

s s s sr

1 2

12

ˆ ˆ1 (1) 1 (1) 1 (2) 1 (2) 1 (2) 1 (2) 1 (1) 1 (1)

11 (1)1 (2) 1 (1)1 (2)

s H s s s s H s s s

s s s sr

1 212

1ˆ ˆ1 (1) 1 (1) 1 (2) 1 (2) 1 (1)1 (2) 1 (1)1 (2)s H s s H s s s s sr

Page 26: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom

31

3

1 (1) effeff Z rZs e

var 1 212

1ˆ ˆ1 (1) 1 (1) 1 (2) 1 (2) 1 (1)1 (2) 1 (1)1 (2)E s H s s H s s s s sr

1 1 11 1 1 1

ˆ ˆ ˆ1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)eff effZ ZZ Zs H s s K s s K s

r r r r

11 1

1ˆ1 (1) 1 (1) 1 (1) 1 (1)effeff

Zs K s Z Z s s

r r

1 11

ˆ ˆ effZH K

r

2

1ˆ 1 (1) 1 (1)

2effZ

H s s 2

22eff

n

ZE

n

2

11 1

1ˆ1 (1) 1 (1) 1 (1) 1 (1)2eff

eff

Zs H s Z Z s s

r

Page 27: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom2

11 1

1ˆ1 (1) 1 (1) 1 (1) 1 (1)2eff

eff

Zs H s Z Z s s

r

3 31 1

3 322

1 1 1 1 11 10 0 0

1 11 (1) 1 (1) sineff effeff effZ r Z rZ Zs s e e r drd d

r r

31

3 22

1 1 1 1 1

0 0 0

sineffZ reffZre dr d d

3123

1 1

0

4 effZ r

effZ re dr

200

1( 1)au auue du au e

a

23 0

2

14 2 1 2 0 1

2

effZ aeff eff eff

eff

Z Z e Z eZ

32

14 1

4eff effeff

Z ZZ

Page 28: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom2

11 1

1ˆ1 (1) 1 (1) 1 (1) 1 (1)2eff

eff

Zs H s Z Z s s

r

2

2eff

eff eff

ZZ Z Z

2

2ˆ1 (2) 1 (2)

2eff

eff eff

Zs H s Z Z Z

12

1 51 (1)2 (2) 1 (1)2 (2)

8 effs s s s Zr

Similarly

Recall from PT

var 1 212

1ˆ ˆ1 (1) 1 (1) 1 (2) 1 (2) 1 (1)1 (2) 1 (1)1 (2)E s H s s H s s s s sr

2 2

5

2 2 8eff eff

eff eff eff eff eff

Z ZZ Z Z Z Z Z Z

Page 29: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom

2 2var

52

8eff eff eff effE Z Z ZZ Z

2 52

8eff eff effZ ZZ Z

var

5 52 2 0

8 16eff effeff

dE Z Z Z Z

dZ

5 272

16 16effZ

2

var

27 27 5 272(2) 2.8479H

16 16 8 16E

Much closer to -2.9033 H

(E= 0.055 H = kJ/mol error)

Page 30: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom

271.69

16effZ 3 27

161 271 ( )

16

ir

s i e

1 2

3 27 27

16 161 2

1 27( , ) 1 (1)1 (2)

16

r rs s e e

r r

Optimized wavefunction

Page 31: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom

27

16effZ 3 27

161 271 ( )

16

ir

s i e

1 2

3 27 27

16 161 2

1 27( , ) 1 (1)1 (2)

16

r rs s e e

r r

Optimized wavefunction

1 2 1 2

3

2

1 2( , ) Z r Z r Z r Z rZ Ze e e e

r r

1.19 & 2.18Z Z var 2.8757HE

Other Trail Functions

(E= 0.027 H = kJ/mol error)

Optimizes both nuclear charges simultaneously

Page 32: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom

1 2( )1 2 12

1( , ) (1 )Z r re br

N r r

1.849 & 0.364Z b var 2.8920HE

Other Trail Functions

(E= 0.011 H = kJ/mol error)

Z’, b are optimized. Accounts for dependence on r12.

In M.O. calculations the wavefunction used are designed to give the most accurate energies for the least computational effort required.

The more accurate the energy the more parameters that must be optimizedthe more demanding the calculation.

Page 33: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Variational Method For He Atom

In M.O. calculations the wavefunction used are designed to give the most accurate energies for the least computational effort required.

The more accurate the energy the more parameters that must be optimizedthe more demanding the calculation.

-2.862879 H

-2.862871 H

-2.84885 H

Experimental -79.003 ev -2.9003 H

Page 34: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

The H2+ Molecule

2

( )4

i ine i

o i i

Z e ZV r

r r

2 2 2 22 2 2 2ˆ ˆ ˆ

2 2 2 2A B A Bnuclear electronic R R r rA B e e

K K KM M m m

One electron problem

Two nuclei

Define electron position, i..e. internal coordinates, w.r.t. nuclear positions.

2

( )4

A B A Bnn AB

o AB AB

Z Z e Z ZV R

R R

2 2 2 21 1 1 1

2 2 2 2A B A BR R r rA BM M

Page 35: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

The H2+ Molecule

1 1 1

AB A BR r r

2 2 2 21 1 1 1

2 2 2 2A B A BR R r rA BM M

ˆ ˆ ˆH K V

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )N A N B e A e BK K R K R K r K r

ˆ ˆ ˆ ˆ( ) ( ) ( )nn AB en A en BV V R V r V r

Since ZA=1 and ZB=1

2 2 2 21 1 1 1 1 1 1ˆ2 2 2 2A B A BR R r r

A B AB A B

HM M R r r

Page 36: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

The H2+ Molecule

2 2 2 21 1 1 1 1 1 1ˆ2 2 2 2A B A BR R r r

A B AB A B

HM M R r r

Nuclear Electronic

( , ) ( ; ) ( )R r R r R

The nuclear positions determine the electronic wavefunction

Assume electronic motion is much faster than nuclear motion, implies that the nuclear positions are essentially static

ˆ ˆ ˆ( ) ( ; )N eH H H R R rThe electronic part is determined by the nuclear positions

Separable??

ˆ ( , ) ( , )H R r W R r W- Total Energy

Page 37: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

The H2+ Molecule

ˆ ˆ ˆ( , ) ( ) ( ; ) ( ; ) ( ) ( ; ) ( )N e TH R r H H R R E R R r r R r R

ˆ ˆ ˆ ˆ ( ; ) ( ) ( ; ) ( )N nn e ne TK V K V R E R r R r R

ˆ ˆ ( ) ( )N nn NK V E R R

ˆ ˆ ( ; ) ( ; )e ne eK V R E R r r

Potential energy surface.

Of primary interest

Nuclear

Electronic

ˆ ˆ ( ) ( )N nn e TK V E E R R

Page 38: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Linear Variational WFctns.

( ) ( )i ii

c r r

Suppose the trial wavefunction can be expressed in terms of an expansion of an appropriate set of functions, not necessarily othonormal

2 1ii

c 1

i j ijij

i jS

S i j

var

ˆ( ) ( )( )

( ) ( )

HE

r r

rr r

ˆ ˆi i j j i j i j

i j i j

i j i ji i j j i j

i j

c H c c c H

c cc c

i j iji j

i j iji j

c c H

c c S

Page 39: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Linear Variational WFctns.

var i j ij i j iji j i j

E c c S c c H

var 0i

dE

dc

2i i j ij i j ijj ji i

d dE c c S c c H

dc dc

2i i j ij i j ijj j

E c c S c c H

For each ci

Find the optimum coefficients, that minimize Evar.

ii j ij i i j ij i j ij

j j ji i i

dE d dc c S E c c S c c H

dc dc dc

0j ij j ij ij

c H c S E

1 1

Page 40: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Linear Variational WFctns.

11 12 12 1 1 1 1 1

21 21 22 2 2 2 2 2

1 1 2 2

1 1 2 2

i i j i j n i n i

i i j i j n i n i

j i j j i j jj i jn i jn ij

n i n n i n nj i nj nn i in

H E H E S H E S H E S c

H E S H E H E S H E S c

H E S H E S H E H E S c

H E S H E S H E S H E c

0

ˆ ˆi jH H

* * * *1 2

ˆ wherei i i i i i ij inH E c c c c

0j ij ij ij

c H S E 0i iE H S

1i j

ij

i j

S i j

S

Need to diagonalize matrix, to find eigenvalues and eigen vectors:

Page 41: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Linear Combination of Atomic Orbitals.Lets use the 1s Hydrogen like orbitals to be a basis for a trial function and apply variational theory to find the best approximate wavefunction

( ) 1 ( ) 1 ( )i iA A iB Bc s c s r r r

1 ( ) & 1 ( )A Bs sr rWhere are Hydrogen like wavefunction with n=1, l=0, centred in nucleus a and b, resp.

2 21 1 1 1ˆ2 2A Br r

A B

Hr r

ˆi i iH E

( ) 1 ( ) 1 ( )i iA A iB Bc s c s r r r

Page 42: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Linear Combination of Atomic Orbitals.

2 21 1 1 1ˆ ˆ1 1 1 12 2A Bk l k r r l kl

A B

s H s s s Hr r

H

0i iE H S

* *i iA iBc c

11 1k l

lk

l ks s

S l k

S

0AA i AB i AB iA

BA i BA BB i iB

H E H E S c

H E S H E c

ˆ 1 1 1 1iA A iB B i iA A iB BH c s c s E c s c s

Page 43: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Linear Combination of Atomic Orbitals.

2 21 1 1 1ˆ1 1 1 1 12 2A Bkk k k k r r k

A B

H s H s s sr r

2

1 1 1 1 13

Rkl k l l k lk

RS s s s s S e R

0AA i AB i AB iA

AB i AB AA i iB

H E H E S c

H E S H E c

1ˆ ˆ1 1 1 1 12

Rkl k l kl l kH s H s S R e s H s

21 1 11

2Re

R R

AA BBH H

AB BAH H

AB BAS S

Page 44: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Linear Combination of Atomic Orbitals.

0AA i AB i AB

AB i AB AA i

H E H E S

H E S H E

2 2

0AA i AB i ABH E H E S

2 2 2 2(1 ) 2 ( ) 0i AB i AB AB AA AA ABE S E H S H H H

2 2 2 2

2

2( ) 4( ) 4(1 )

2(1 )

AA AB AB AA AB AB AB AA AB

AB

H H S H H S S H HE

S

2 2 22( ) 2 2

2(1 )(1 )AA AB AB AB AB AA AB AA AB

AB AB

H H S H H H S H S

S S

( ) ( )

(1 )(1 ) (1 )AA ABAA AB AB AB AA AB

AB AB AB

H HH H S H H S

S S S

Page 45: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Prediction of the Bond

(1 )AA AB

AB

H HE

S

2

2

1 ( 1) ( 1) 1

21 1

3

R R

g

R

R e R R eE

RR R e

Page 46: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

Bonding and Antibonding Orbitals of H2+

Page 47: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

23_09fig_PChem.jpg

Density Difference Between MO’s and 1s O’s

Page 48: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

23_11fig_PChem.jpg

Electron Densities of Sigma and Pi M.O’.s

1 1( ) 1 ( ) 1 ( )

2 2g A Bs s r r r* 1 1( ) 1 ( ) 1 ( )

2 2u A Bs s r r r

*, ,

1 1( ) 2 ( ) 2 ( )

2 2g x A x Bp p r r r , ,

1 1( ) 2 ( ) 2 ( )

2 2g x A x Bp p r r r

Bonding

BondingAntibonding

Antibonding

g=gerade (same) u=ungerade

(opposite)

Page 49: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

-13.6 e.v.

-19.6 e.v.

-18.6 e.v.

Electron population on F is larger, ie. bond in polarized to F, ie. shows the F is more electronegative.

(0.345)1 (0.840)2H zFs p

Other Types of M.O.’s

Page 50: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

23_13fig_PChem.jpg

MO’s for the Diatomics

Page 51: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

23_02tbl_PChem.jpg

Energy Level Diagram For the Diatomics

Electron Configuration for H2 &He2

Page 52: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

23_17fig_PChem.jpg

Electron Configuration of N2

Page 53: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

23_16fig_PChem.jpg

Electron Configuration of F2

Page 54: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

23_18fig_PChem.jpg

Electron Configurations of the Diatomics

Page 55: 20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy + Kinetic Energy R C.

23_20fig_PChem.jpg

Bonding in HF


Recommended