+ All Categories
Home > Documents > 2013.02.22-ECE595E-L19

2013.02.22-ECE595E-L19

Date post: 03-Apr-2018
Category:
Upload: ultrazord
View: 218 times
Download: 0 times
Share this document with a friend

of 22

Transcript
  • 7/29/2019 2013.02.22-ECE595E-L19

    1/22

    ECE 595, Section 10Numerical Simulations

    Lecture 19: FEM for Electronic

    Transport

    Prof. Peter Bermel

    February 22, 2013

  • 7/29/2019 2013.02.22-ECE595E-L19

    2/22

    Outline

    Recap from Wednesday

    Physics-based device modeling

    Electronic transport theory FEM electronic transport model

    Numerical results

    Error Analysis

    2/22/2013 ECE 595, Prof. Bermel

  • 7/29/2019 2013.02.22-ECE595E-L19

    3/22

    Recap from Wednesday

    Thermal transfer overview

    Convection

    Conduction

    Radiative transfer

    FEM Modeling Approach

    Numerical Results

    Error Evaluation

    2/22/2013 ECE 595, Prof. Bermel

  • 7/29/2019 2013.02.22-ECE595E-L19

    4/22

    Physics-Based Device Modeling

    2/22/2013

    D. Vasileska and S.M. Goodnick, Computational Electronics, published by Morgan &

    Claypool , 2006.

    ECE 595, Prof. Bermel

  • 7/29/2019 2013.02.22-ECE595E-L19

    5/22

    Electronic Transport Theory

    Will assume electronic bandstructures known,and take a semiclassical approach

    Electrostatics modeled via Poisssons equation:

    Charge conservation is required:

    2/22/2013 ECE 595, Prof. Bermel

    ( )D AV p n N N+

    = +

    1

    1

    J

    J

    n n

    p p

    nU

    t q

    pU

    t q

    = +

    = +

    S. Selberherr: "Analysis and Simulation of

    Semiconductor Devices, Springer, 1984.

  • 7/29/2019 2013.02.22-ECE595E-L19

    6/22

    Electronic Transport Theory

    Both p-type and n-type currents given by asum of two terms:

    Drift term, derived from Ohms law

    Diffusion term, derived from Second Law ofThermodynamics

    2/22/2013 ECE 595, Prof. Bermel

    ( ) ( )

    ( ) ( )

    n n n

    p p p

    dnJ qn x E x qD

    dx

    dnJ qp x E x qD

    dx

    = +

    =

    S. Selberherr: "Analysis and Simulation of

    Semiconductor Devices, Springer, 1984.

  • 7/29/2019 2013.02.22-ECE595E-L19

    7/22

    FEM Electronic Transport Model

    Much like in earlier work, will employ thefollowing strategy:

    Specify problem parameters, including bulk and

    boundary conditions Construct finite-element mesh over spatial

    domain

    Generate a linear algebra problem

    Solve for key field variables:

    2/22/2013 ECE 595, Prof. Bermel

    i (x,y,z,t)

    p(x,y,z,t)

    n (x,y,z,t)

  • 7/29/2019 2013.02.22-ECE595E-L19

    8/22

    FEM Electronic Transport Model

    2/22/2013 ECE 595, Prof. Bermel

    Regarding the grid set-up, there are several points that need to bemade:

    In critical device regions, where the charge density variesvery rapidly, the mesh spacing has to be smaller than theextrinsic Debye length determined from the maximum doping

    concentration in that location of the device

    Cartesian grid is preferred for particle-based simulations

    It is always necessary to minimize the number of node pointsto achieve faster convergence

    A regular grid (with small mesh aspect ratios) is needed forfaster convergence

    2

    maxeN

    TkL B

    D

    =

    D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

  • 7/29/2019 2013.02.22-ECE595E-L19

    9/22

    Poisson Solver

    2/22/2013 ECE 595, Prof. Bermel

    The 1D Poisson equation is of the form:

    ( )2

    2

    exp exp( / )

    exp exp( / )

    D A

    F ii i T

    B

    i Fi i T

    B

    d ep n N N

    dxE E

    n n n Vk T

    E Ep n n V

    k T

    = +

    = =

    = =

    D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

  • 7/29/2019 2013.02.22-ECE595E-L19

    10/22

    Poisson Solver

    Perturbing potential by yields:

    2/22/2013 ECE 595, Prof. Bermel

    ( )

    ( )

    ( ) ( )

    ( )

    2/ /

    2

    / /

    2/ / / /

    2

    / /

    /

    /

    T T

    T T

    T T T T

    T T

    V Vii

    V Vi

    V V V Vnewi ii

    V V oldi

    new old

    ende e C n

    dx

    ene e

    en ende e e e C n

    dx

    en e e

    = + +

    + +

    + = +

    +

    =

    D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

  • 7/29/2019 2013.02.22-ECE595E-L19

    11/22

    Poisson Solver

    Renormalized form

    2/22/2013 ECE 595, Prof. Bermel

    ( ) ( )

    ( ) ( ) ( )

    2

    2

    2

    2

    new old

    new old

    d

    p n C p ndx

    dp n p n C p n

    dx

    = + + +

    + = + +

    =

    D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

  • 7/29/2019 2013.02.22-ECE595E-L19

    12/22

    Poisson Solver

    2/22/2013 ECE 595, Prof. Bermel

    Initialize parameters:

    -Mesh size

    -Discretizationcoefficients-Doping density-Potential based on charge neutrality

    Solve for the updated potential

    given the forcing function using LU decomposition

    Update:- Central coefficient of the linearized Poisson Equation- Forcing function

    Test maximumabsolute error update

    Equilibrium solver

    > tolerance

    < tolerance

    D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

  • 7/29/2019 2013.02.22-ECE595E-L19

    13/22

    Current Discretization

    2/22/2013 ECE 595, Prof. Bermel

    The discretization of the continuity equation in conservative

    form requires the knowledge of the current densities

    on the mid-points of the mesh lines connecting neighboringgrid nodes. Since solutions are available only on the gridnodes, interpolation schemes are needed to determine thesolutions.

    There are two schemes that one can use:

    (a)Linearized scheme: V, n, p, and D vary linearlybetween neighboring mesh points

    (b) Scharfetter-Gummel scheme: electron and holedensities follow exponential variation between meshpoints

    peDExepxJneDExenxJ

    ppp

    nnn=

    +=)()(

    )()(

    D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

  • 7/29/2019 2013.02.22-ECE595E-L19

    14/22

    Nave Linearization Scheme

    2/22/2013 ECE 595, Prof. Bermel

    Within the linearized scheme, one has that

    This scheme can lead to substantial errors in regions ofhigh electric fields and highly doped devices.

    2/12/11

    2/12/12/1 +++

    +++ +

    = iii

    iiiii neD

    a

    VVenJ

    2

    1 ii nn ++i

    ii

    a

    nn +1

    +

    +

    =

    +++

    +++++

    ii

    iiiii

    i

    i

    i

    iiiii

    a

    eD

    a

    VVen

    a

    eD

    a

    VVenJ

    2/112/1

    2/112/112/1

    2

    2

    D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

  • 7/29/2019 2013.02.22-ECE595E-L19

    15/22

    Scharfetter-Gummel Scheme

    2/22/2013 ECE 595, Prof. Bermel

    One solves the electron current density equation

    for n(V), subject to the boundary conditions

    The solution of this first-order differential equation leads to

    x

    V

    V

    neD

    a

    VVen

    x

    neD

    a

    VVenJ

    ii

    iii

    ii

    iiii

    +

    =

    +

    =

    ++

    +

    ++

    ++

    2/11

    2/1

    2/11

    2/12/1

    11

    )(and)(++

    ==iiii

    nVnnVn

    [ ]

    =

    =+=

    +++

    ++

    ++

    Vt

    VVBn

    Vt

    VVBn

    a

    eDJ

    e

    eVgVgnVgnVn

    iii

    iii

    i

    ii

    VtVV

    VtVV

    iiii

    i

    111

    2/12/1

    /)(

    /)(

    1

    1

    1)(),()(1)(

    1

    1)(

    =

    xe

    xxB is the Bernouli function

    D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

  • 7/29/2019 2013.02.22-ECE595E-L19

    16/22

    ADEPT 2.0

    Available on nanoHUB from Prof. Grays team:https://nanohub.org/tools/adeptnpt

    2/22/2013 ECE 595, Prof. Bermel

    https://nanohub.org/tools/adeptnpthttps://nanohub.org/tools/adeptnpt
  • 7/29/2019 2013.02.22-ECE595E-L19

    17/22

    ADEPT 2.0

    Can customize all the calculation details:

    2/22/2013 ECE 595, Prof. Bermel

  • 7/29/2019 2013.02.22-ECE595E-L19

    18/22

    ADEPT 2.0

    Outputs include electrostatic (Poisson) solution:

    2/22/2013 ECE 595, Prof. Bermel

  • 7/29/2019 2013.02.22-ECE595E-L19

    19/22

    ADEPT 2.0

    Energy band diagram

    2/22/2013 ECE 595, Prof. Bermel

  • 7/29/2019 2013.02.22-ECE595E-L19

    20/22

    ADEPT 2.0

    Carrier concentrations:

    2/22/2013 ECE 595, Prof. Bermel

  • 7/29/2019 2013.02.22-ECE595E-L19

    21/22

    ADEPT 2.0

    And finally, realistic I-V curves:

    2/22/2013 ECE 595, Prof. Bermel

  • 7/29/2019 2013.02.22-ECE595E-L19

    22/22

    Next Class

    Is on Monday, Feb. 25

    Next time, we will cover electronicbandstructures

    2/22/2013 ECE 595, Prof. Bermel


Recommended