+ All Categories
Home > Documents > 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab...

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab...

Date post: 04-Jan-2016
Category:
Upload: kenneth-shanon-mills
View: 213 times
Download: 0 times
Share this document with a friend
43
2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Zacatenco 1
Transcript
Page 1: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Studies of Machine protection for a Crab Cavity in the LHC

Bruce Yee Rendón

Departamento de FísicaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Zacatenco

1

Page 2: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Scheme

Introduction.Machine protection studies.Results.Future work.

2

Page 3: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Introduction

3

Page 4: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

LHC

4

Page 5: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

In Table 1 shown relevant optics parameter for the Nominal and Upgrade scheme in the LHC.

Table 1. Optics parameters for the Nominal and Upgrade (ATS scheme [1]) under study.

5

Parameter Symbol Nominal Scheme Upgrade Scheme

Energy E [TeV] 7 7

Protons per bunch Nb[1011] 1.15 1.7

rms bunch length σz[cm] 7.55 7.55

Beta function at IP5/IP1

β*[cm] 50 15

Emittance ε[10-6 mrad] 3.75 3.75

Full crossing angle θ[μrad] 285 580

LHC parameters

Page 6: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Luminosity

6

The Luminosity in the nominal LHC is 1034 cm-2 s-1.

2

21

21

1

4

x

syx

bfNNNL

Figure 1: The Crossing angle scheme.

Page 7: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Crab Cavities

A device called “crab cavity” (CC) applies a tiny sideways kick to each particle bunch, in order to changed its dynamics to achieve a head-on collision at the IP.

For the HL-LHC the luminosity will increase by factor of 5 (with respect to the nominal) [2].

7

IP5

Left CCs Right CCs Figure 3: The CC´s effect in the beam at collision point in the LCC scheme.

Figure 2 : The CC scheme at IP5 for the Upgrade.

Page 8: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Machine protection studies

8

Page 9: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

LHC safe operation

• The Stored energy in the LHC beam at 7 TeV is 350 MJ [3].

• 5% of a single beam can quench the superconducting magnets [3].

• The safe beam extraction is in 3 turns [4].

• The CC ´s effect in the beam loss, when the CC presents or not a failure [5].

9

Page 10: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Collimation´s tools

• SixTrack simulates the track of large numbers of particles, taking in account the interaction of beam with the collimators [6].

• Local Loss Maps shows the particles losses (in the collimators, cold and warm magnets) around the lattice [7].

• Absorbed particles in the collimators.

• Lost particles around the ring (not in the collimators).

10

Page 11: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Beam distribution

• In general, halos distributions are using to made collimation studies.

• A double and triple Gaussian distributions were used in order to simulate a more realistic beam profile [8,9,10].

11

Figure 4 : The typical beam distribution using for machine protection studies.

Page 12: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Double Gaussian distribution

12

Tails. Core.

Around 2 millions of particles generated.

Figure 5 : The beam profile obtained by using the CMS measurements. The sigma of the tails is 1.8 times than the core [8].

101

10-1

10-2

10-3

10-4

10-5

Page 13: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Triple Gaussian distribution

13

Figure 6 : The beam profile obtained by apply Abel transformation to the scrapping measurements of collimation team at injection energy at LHC [9,10].

Core.A1=0.53σ1=0.66

Tails.Around 1 millions of particles generated.

A2=0.16σ2=1.32

A3=0.005σ3=1.996

Page 14: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Simulation cases

14

Page 15: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Free turns

15

Turns

Voltage

Phase

Figure 7 : Here we show the way that the amplitude of voltage and phase are change as a function of the number of the turns. In the Free turns (FT) the voltage and phase of the CC remain zero.

V

0

t1

T1

ϕinicial

Page 16: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Normal operation

16

Turns

Turns

Voltage

Adiabatic Ramping up

Phase

Figure 8 : In the Normal operation (NO) represent the ideal performance of the CC.

Page 17: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Voltage failure

17

Turns

Turns

Voltage

Adiabatic Ramping up

Phase

establish “steady-state”conditions with crab cavity and collimator before simulating a crab-cavity failure

Figure 9 : In the Voltage failure (VF) just the voltage drops to zero, in contrast the phase remains like in the normal operation scheme [5, 9,10].

Page 18: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Phase failure

18

Turns

Voltage

Adiabatic Ramping up

PhaseTurns

establish “steady-state”conditions with crab cavity and collimator before simulating a crab-cavity failure

Figure 10 : In analogy with the VF case, in the Phase failure (PF) case just the phase change 90 degrees with respect to its initial phase [5, 11,12].

Page 19: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Results

19

Page 20: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Distribution of the turns in the simulation

20

Case Free turns Ramping upturns

Plateau turns

Ramping down turns

Final valuevoltage

Final valuephase

FT 200 0 0 0 Remains equals

Remains equals

NO 1 10 189 0 Remains equals

Remains equals

VF 1 10 169 1,3 or 5 0 Remains equals

PF 1 10 169 1,3 or 5 Remainsequals

π/2

The numbers of turns for the tracking are 200 turns. The collimators are turn on in since the first turn.

Table 2. This Table illustrates the distribution of the turns for the different case and shows the finals value of voltage and phase.

Page 21: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Nominal

21

Page 22: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

LLM for the Nominal LHC

22

Figure 11 : The LLM for a phase failure of 90° in 5 turns, for a simple and double Gaussian distribution increase the beam size by factor of three to overpopulated the tails.

Page 23: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Absorbed particle in the Nominal LHC

23

Figure 12 : The percentage of the particle absorbed for the failures in voltage and phase using a double Gaussian (beam size increase by a factor of 1.5).

( 1x106 particles, double Gaussian with 1.5 σx,y)

Page 24: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

24

Lost particle in the PF case at Nominal LHC

( 1x106 particles, double Gaussian with 1.5 σx,y)

Figure 13 : The percentage of the particle total for the failures in phase using a double Gaussian (beam size increase by a factor of 1.5).

Page 25: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

ATS

25

Page 26: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Results with out CC in the ATS scheme

Here is presents the percentage of lost and absorbed particles using a Double Gaussian (Table 3).

Table 3. The percentage of particles lost, absorbed and impact real for the ATS lattice, without CC. The total of particles generated around 1 million.

26

Distribution Lost particles [%] Absorbed Particles [%]

Double Gaussian ( 1.0 σx,y) 0.17 1.81

Double Gaussian ( 1.5 σx,y) 1.1 13.66

Page 27: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

CC voltage correctors

27

The equation of the CC left voltage:

(1)

The equation of the right CC voltage: (2)

where δ is the kick of the correctors, Es is the beam energy, q charge of particle, c is the speed of the light, ω is the frequency of the CC, σt is the rms bunch length and ncc the number of CC.

ccz

srightCCkickrightCC

nq

EcV

ccz

sleftCCkickleftCC

nq

EcV

Page 28: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

CC voltage analytic formula

28

The equation of the CC left voltage:

(3)

The equation of the right CC voltage [12]:

(4)

(5.1) with (5.2)

where β* is the beta function at IP, βleft/right cc is the beta function in the left/right cc, Θ crossing angel, Δφleft/right is the difference of phase advance between the IP and the CCleft/right, Δφcc is the difference of phase advance between the left and right CC and R2,2 is the element (2,2) of the transport matrix from left and right CC.

ccleftleftCC

sleftCC

nq

EcV

)sin(

)tan(*

2

ccoleftCC

sleftCC

nq

EcV

)sin(

)tan(*

2

leftCCrightCC VRV 22 )( CCrightCC

leftCC CosR

22

Page 29: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Voltage

Here is presents the value of voltage using de formulas (1) to (5.2).

Table 4. The value of voltage for a CC of 400 MHz for the ATS lattice.

29

Voltage of Corrector (MeV) Analytic Voltage (MeV)

VleftCC=9.3465 VleftCC=10.129

VrightCC=10.867 a) VrightCC=11.782*

b) VrightCC= 11.778**

*Equation (4).**Equations (5.1) & (5.2).

Page 30: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

X Orbit

30

Figure 14 : The superposition of the Orbit X, using the voltage of the orbit corrector and the two initial formula in the region from S.DS.L5.B1/E.DS.R5.B1. .

6E-5

4E-5

2E-5

0.0

-2E-5

-4E-5

-6E-5

X(m

)

X Orbit

IP5

3CCs

6117 6317 6517 6717 6917 7117

Ct(m)

Page 31: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

X orbit

31

Figure 15 : The Orbit X using the voltage calculate by formulas 3 and 4 from S.DS.L5.B1/E.DS.R5.B1.

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

X(σ

)

6117 6317 6517 6717 6917 7117

Ct(m)

X Orbit

IP5 3CCs

Page 32: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

X-Ct Voltage Failure

32

IP5Right CCLeft CC

IP5Free turns

Linear fit

Effect of the ramping up

Figure 16 : The effect of the CC in the X coordinate close to IP5 is shown for a tracking of one particle 200 turns. The plots consists in the superposition of the CC´s operation cases, failures in voltage, and a linear fit w.r.t. the normal operation case. The fit give us a slope of 274 μ rad, close to the half of the crossing angle.

.

Page 33: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

X-Ct Voltage Failure

33

IP5Right CCLeft CC

Free turns

Linear fit

Effect of the ramping up

Free turns

Normal operation

Failure starts

Figure 17: A close up when the failure starts of the Figure16. The effect of the voltage failure for the different cases are shown and compare between them.

Page 34: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

X-Ct Phase Failure

34

Figure 18: In analogy with the voltage failure (Figure 17) , the effect of the phase failure for the different cases are shown and compare between them.

Normal operation

Failure starts

Free turns

Failure starts

Free turns

Normal operation

Page 35: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

X-Ct Voltage and Phase Failure

35

Figure 19 : The superposition between the failures of voltage and phase in five turns, using the free turns and normal operation case like baseline. The effect produces for the phase change is larger than the voltage. The square of the voltage failure cover the circles of the phase failures before the failures appears.

Failure starts

Free turns

Normal operation

Page 36: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

36

Figure 20 : The LLM for a phase failure of 90° in 5 turns, for a double Gaussian distribution increase the beam size by factor of 1.5 to overpopulated the tails.

( 1 million particles)

LLM for the ATS LHC

Page 37: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

37

Figure 21 : The LLM for a phase failure of 90° in 5 turns, for a double Gaussian distribution increase the beam size by factor of 1.5 in the Nominal and ATS scheme..

( 1 million particles)

Comparisons

Page 38: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Future Work

38

Page 39: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Activities

• Implement the correct aperture model of the full ring and settings for the ATS lattice (Collimation team help).

• Consider different distributions which can describe better the tails (using a Triple Gaussian from halo scraping measurements)

• Study more realistic case of failure in voltage and phase (the way that voltage or phase change).

39

Page 40: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Acknowledgements

I want to say thank to A. Marsili, F. Burkart, R. de Maria, T. Baer, R. Tomas, J. Barranco, R. Calaga, F. Zimmermann, R. Lopez; US-LARP, CONACYT.

40

Page 41: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

References

41

[1] R. De Maria et al, “A proposal for the optics and layout of the HL-LHC with Crab-cavities”, IPAC´11, THPZ013, 2011.

[2] O. Brunning et al., “The Large Hadron Collider”, Progress in Particle and Nuclear Physics,2012.

[3] R. Schmidt et al., PAC07, 2007.

[4] J. Wenninger, “Machine Protection Specifications”, LHC-CC10, 2010.

[5] T. Baer et al, “Beam losses due to abrupt Crab Cavities failures in the LHC”, IPAC´11, TUPZ009, 2011.

[6] F. Schmidt. “SixTrack, User’s Reference Manual”. CERN SL/94-56 AP.�

Page 42: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

References

42

[7] LHC Collimation Project, http://lhc-collimation-project.web.cern.ch/lhc-collimation-project/code-tracking-2009.htm

[8] The CMS Collaboration, “Absolute Calibration of the CMS Luminosity”, CMS PAS EWK-11-001, 2011.

[9] F. Burkart et al, “Absolute Calibration of the CMS Luminosity”, IPAC´11, THPZ030, 2011.

[10] B. Yee Rendon, “Abel transformation report”, personal note, 2012.

[11] R. Calaga et al., “Beam Losses due to Abrupt Crab Cavity Failures in the LHC, PAC´11, MOODN4,2011.

[12] Y. Sun et al, “Beam Dynamics aspects of Crab Cavities in the CERN Large Hadron Collider”, Phys. Rev. ST Accel. Beams, vol 12, no.10, 2009.

Page 43: 2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón Studies of Machine protection for a Crab Cavity in the LHC Bruce Yee Rendón Departamento de Física.

2nd Hi-Lumi LHC-LARP Frascati 14/11/2012 B. Yee Rendón

Thanks for your attention

43


Recommended