+ All Categories
Home > Documents > (3) Central a C Plants

(3) Central a C Plants

Date post: 02-Apr-2018
Category:
Upload: tulika-vasanti-raven
View: 215 times
Download: 0 times
Share this document with a friend

of 14

Transcript
  • 7/27/2019 (3) Central a C Plants

    1/14

    CentralAirConditioningPlants

    Inourdepartment,theseplants(Aircooledorwatercooled)arecommonlyavailableabove10TR

    upto100TR.ThesetypesofplantsaremoresuitableforlargeinstallationssuchasAIRRadioStudio/TV

    StudioBuildingsandHighPowerTransmitterBuildings. Inwatercooledplants,externalcoolingtowers/

    waterspraypondswithwatersofteningplantsare thecommon features.Theseare invariablyprovided

    withAHU

    (Air

    Handling

    Unit)

    and

    supply

    &

    return

    ducts

    for

    carrying

    air.

    Thecentralairconditioningplantsorthesystemsareusedwhenlargebuildings,hotels,theaters,airports,

    shoppingmallsetcaretobeairconditionedcompletely.Thewindowandsplitairconditionersareusedfor

    singleroomsorsmallofficespaces.Ifthewholebuildingistobecooleditisnoteconomicallyviabletoput

    windowor splitair conditioner ineachandevery room.Further, these smallunits cannot satisfactorily

    coolthelargehalls,auditoriums,receptionsareasetc.

    In the central air conditioning systems there is a plant room where large compressor, condenser,

    thermostaticexpansionvalveandtheevaporatorarekept inthe largeplantroom.Theyperformallthe

    functions

    as

    usual

    similar

    to

    a

    typical

    refrigeration

    system.

    However,

    all

    these

    parts

    are

    larger

    in

    size

    and

    havehighercapacities.Thecompressorisofopenreciprocatingtypewithmultiplecylindersandiscooled

    by thewaterjust like theautomobileengine.Thecompressorand thecondenserareof shelland tube

    type.Whileinthesmallairconditioningsystemcapillaryisusedastheexpansionvalve,inthecentralair

    conditioningsystemsthermostaticexpansionvalveisused.

    Thechilledispassedviatheductstoalltherooms,hallsandotherspacesthataretobeairconditioned.

    Thusinalltheroomsthereisonlytheductpassingthechilledairandtherearenoindividualcoolingcoils,

    andotherpartsoftherefrigerationsystemintherooms.Whatiswegetineachroomisthecompletely

    silent andhighlyeffective air conditions system in the room. Further, the amountof chilledair that is

    neededintheroomcanbecontrolledbytheopeningsdependingonthetotalheatloadinsidetheroom.

    Thecentralairconditioningsystemsarehighlysophisticatedapplicationsoftheairconditioningsystems

    andmanyatimestheytendtobecomplicated.Itisduetothisreasonthatthereareveryfewcompanies

    intheworldthatspecializeinthesesystems.Inthemoderneraofcomputerizationanumberofadditional

    electronicutilitieshavebeenaddedtothecentralconditioningsystems.

    Therearetwotypesofcentralairconditioningplantsorsystems:

    1)DirectexpansionorDXcentralairconditioningplant:

    In

    this

    system

    the

    huge

    compressor,

    and

    the

    condenser

    are

    housed

    in

    the

    plant

    room,

    while

    the

    expansion

    valveandtheevaporatororthecoolingcoilandtheairhandlingunitarehousedinseparateroom.The

    coolingcoilisfixedintheairhandlingunit,whichalsohaslargeblowerhousedinit.Theblowersucksthe

    hotreturnairfromtheroomviaductsandblowsitoverthecoolingcoil.Thecooledairisthensupplied

    throughvariousductsandintothespaceswhicharetobecooled.Thistypeofsystemisusefulforsmall

    buildings.

    2)Chilledwatercentralairconditioningplant:

    http://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50160.aspxhttp://www.brighthub.com/engineering/mechanical/articles/50158.aspx
  • 7/27/2019 (3) Central a C Plants

    2/14

    Thistypeofsystemismoreusefulforlargebuildingscomprisingofanumberoffloors.Ithasthe

    plantroomwherealltheimportantunitslikethecompressor,condenser,throttlingvalveandthe

    evaporatorarehoused.Theevaporatorisashellandtube.OnthetubesidetheFreonfluidpassesat

    extremelylowtemperature,whileontheshellsidethebrinesolutionispassed.Afterpassingthroughthe

    evaporator,thebrinesolutiongetschilledandispumpedtothevariousairhandlingunitsinstalledat

    differentfloorsofthebuilding.Theairhandlingunitscomprisethecoolingcoilthroughwhichthechilled

    brineflows,andtheblower.

    Theblowersuckshotreturnairfromtheroomviaductsandblowsitoverthecoolingcoil.Thecool

    airisthensuppliedtothespacetobecooledthroughtheducts.Thebrinesolutionwhichhasabsorbed

    theroomheatcomesbacktotheevaporator,getschilledandisagainpumpedbacktotheairhandling

    unit.Tooperateandmaintaincentralairconditioningsystemsweneedtohavegoodoperators,

    techniciansandengineers.Properpreventativeandbreakdownmaintenanceoftheseplantsisvital.

    Figure5,showingcontrolpanel,compressor,condenserandaccessories

  • 7/27/2019 (3) Central a C Plants

    3/14

    Figure6,ShowingviewofAirConditioningPlantRoom

  • 7/27/2019 (3) Central a C Plants

    4/14

    Figure7,ShowingoveralllayoutofAirConditioningSysteminamultistorybuilding

  • 7/27/2019 (3) Central a C Plants

    5/14

    Aircycle

    Figure8,ShowingoveralllayoutofAirConditioningDuctSysteminamultistorybuilding

    Indoorairmaybetoocold,toohot,toodry,toowet,toodraftyortoostill.Theseconditionsare

    changedbyrotatingtheairandthesetreatmentsareprovidedintheairconditioningaircycle.

    Airdistribution systemdirects the treated air from the air conditioning equipment to the space tobe

    conditionedandthenbacktotheequipment.Themaincomponentsintheaircycleare

    (i)Fan (ii)Supplyduct

    (iii)SupplyOutlets (iv)Returnoutlets

    (v)Returnduct (vi)Filter

  • 7/27/2019 (3) Central a C Plants

    6/14

    (vii)Coolingcoil(orheatingcoilforlowtemperatureareas).

    Thetotalresistanceofthesecomponentstotheflowoftheairplusthefrictionresistancecaused

    bytheairpassingthroughtheductrunaremajorfactorsindeterminingthesizeofthefanandfanmotor

    andtheamountofairpressurethatisrequired.

    ForaBroadcastStudiosetupthisresistanceisoftheorderof25mmto50mmofwatergauge.

    Centrifugalfanismostcommonlyusedincommercialandresidentialinstallations.Itconsistsofascroll,a

    shaftandawheel.Thescrollisactuallyahousingfortheshaftandwheelandtheshaftservesasanaxle

    forthewheel.Thewheel iscylindrical inshapeandhasmanyblades.Centrifugalfansareavailablewith

    forwardorbackwardcurvedblades.Aforwardcurvedfancandeliverarequiredquantityofairatlowfan

    speed.Theairvelocityandspeedofthefanwheel(tipspeed)notonlyplayalargepartindeterminingthe

    efficiencyofthefanbutalsoaffectthelevelofnoisegeneratedbythefan.Hightipspeedandhighvelocity

    usuallyresultinmorenoise.

    Remotelocationofthefanreducesthenoisebutthesystembecomemoreexpensive.Ductsmay

    becircular,rectangularorsquareinshape.Fromtheappearanceandpracticalpointofview,rectangular

    ductsare

    generally

    adopted.

    Ducts

    are

    fabricated

    from

    awide

    variety

    of

    materials.

    Ducts

    made

    of

    sheet

    metalareverycommon.Theductsare linedwithglasswoolormineralwoolslabsof25mm thickness

    wrappedincoppernaphthanatetreatedcloth.

    Outletsareanothermajorpartoftheairdistributionsystem.Theyareimportantfromthepointof

    viewofappearance,functionsandperformance.Theprimaryfunctionoftheoutletsistoprovideproperly

    controlleddistributionofairtotheroomandremovingtheairfromtheroom.

    Ceilingdiffusers,grillesandregistersareusedassupplyoutletandgrillesareusedasreturnoutlets.

    Operation

    Beforestartingtheplant,ensurethatproperfunctioningofsafetycontrolsincludinginterlockcircuithave

    beencheckedandcorrectlyset,andthatallmotorsaremeggertested,directionofrotationverified,all

    bearingslubricatedandrefrigerationsystemfullycharged.Thecrankcaseheatermustbeenergisedwell

    inadvance.

    Proceedstepbystepforoperatingthesystemasfollows:

    Starttheairhandlingunit,ensuringthatdampersinthesupplyductarefullyopen.

    Openallwatervalvesandstartthewaterpump.Observepressuresatcondenserinletandoutlet.

    Open hotgas valve on the condenser and the discharge service valve on the compressor.Open

    discharge

    gauge

    valve

    to

    read

    the

    pressure.

    Followthesameprocedureandreadthesuctionpressure.

    Openliquidlinevalve.Observestandingpressureonthegauges.Thisshouldbeapproximately7.03

    kg/cm2

    (100psi)forR12and10.5kg/cm2

    (150psi)forR22toindicatethatthesystemistightwith

    noleakage.

    Open suction service valve and start the compressor.Observe the refrigerant and oil pressures.

    Checkthecurrentdrawnbythecompressormotor,observetheoil level inthecompressorsight

    glass.Oilshouldbeclearwithoutfoamafteroperationhasstabilised.

  • 7/27/2019 (3) Central a C Plants

    7/14

    CompressorPumpDown

    It isessential tocollect the refrigerant in thecondenserwith isolation toprevent its lossbefore

    opening the compressoror anyotherpartof the system.This is calledpumpdown and theoperation

    involvesthefollowingprocedure:

    Shortthe lowpressureswitchwithatemporaryjumperwiresothatthecompressordoesnotstop

    beforethe

    refrigerant

    from

    it

    is

    emptied.

    Slowlyclosethesuctionvalvewiththecompressorrunning.

    Whenthesuctionpressuredropstoabout0.15kg/cm2

    (2psi),stopthecompressor.

    Neverpumpthecompressorbelow0.15kg/cm2

    topreventinfiltrationofmoistureanddirtintothe

    crankcase.

    Afterafewminutes,thedissolvedrefrigerantwillleavethecrankcaseraisingthesuctionpressure.

    Thisadditionalrefrigerantcanbepumpedtothecondenserbyoperatingthecompressoragainfor

    ashortwhile.

    Repeattheaboveproceduretillthesuctionpressuredoesnotriseabove0.15kg/cm2

    afterclosing

    theservice

    valves.

    RemovingRefrigerantfromtheSystem

    Itmaybenecessarytoremovetherefrigerantfromthesystemintoacylinderifthereisanexcesscharge

    orthereisaleakinthecondenser.Takethefollowingstepsforthisoperation:

    (a) Connect a suitable line between the angle valve provided for charging and an empty refrigerant

    cylinder.

    (b)Purgetheairfromtheconnectionline.

    (c)Keep

    the

    cylinder

    cold

    by

    immersing

    it

    in

    ice

    cold

    water

    to

    ensure

    afaster

    refrigerant

    flow

    from

    the

    system.

    (d) Start the compressor and open the liquid line charging valve, allowing the liquid into the empty

    cylinder. If excess refrigerant is to be removed, hold the charging valve open only until the

    dischargepressurereachesthenormalreading.Afterthisoperation,removethecharginglineand

    closethechargingvalve.

    Donotoverchargethecylinderasexcessivepressureisdangerous.

    PurgingNonCondensibleGases

    Presenceofnoncondensiblesgasessuchasaircauseshighdischargepressure,resulting inreductionof

    capacityandhighpowerconsumption.Incasesuchsymptomsarepresent,thefollowingcheckshouldbe

    done:

    Shutdownthesystemovernight,longenoughforthetemperatureofallcomponentstoleveloff.

    Readthestandingpressureandcompareitwiththerefrigerantsaturationpressurecorrespondingto

    the temperatureofthesystem. Ifthestandingpressureexceedsthesaturationpressureby0.75

    kg/cm2

    (10psi)ormore,thenoncondensiblesareexcessiveandmustberemoved.

  • 7/27/2019 (3) Central a C Plants

    8/14

    Forexample, ifR22 isusedandthesystemtemperature is85o

    F(29.4o

    C)andstandingpressure is12.8

    kg/cm2

    (175psi),thenthereisexcessofnoncondensibles.SaturationpressureforR22correspondingtoa

    temperature85o

    Fis11kg/cm2

    .Thedifferenceis1.05kg/cm2

    morethan0.75kg/cm2

    ,indicatingcorrective

    purging.Forpurging,takethefollowingsteps:

    Pumpdownthesystemasdescribedearlier.

    Immediately

    after

    stopping

    the

    compressor,

    close

    the

    compressor

    discharge

    valve.

    Runthewaterthroughthecondensorforcondensationofrefrigerantvapour.

    Crackopenthepurgevalveonthetopofthecondensorforaninstant,shutitagain.

    Allow the system to stabilize for a fewminutes before reopening and closing the purge valve.

    Repeatedpurgingandclosingoperationshouldclearthesystemofnoncondensible.

    Restorenormalsystemoperation,checkthe improvement indischargepressure.Checkrefrigerant

    chargeandcompressoroilpressure.

    RefrigerantCharging

    Acorrect

    operating

    charge

    of

    refrigerant

    in

    the

    system

    is

    essential.

    Loss

    due

    to

    leakage

    in

    the

    systemhas tobemadeup. Itmaybenecessary to replace theentirecharge.Anovercharge results in

    undulyhigh temperatures,pressuresandoperatingcostsandmaydamage thesystemcomponents.An

    undercharged system leads to insufficient cooling, high operating cost, and, in hermetic system, the

    compressormotormayfail.

    Refrigerantmaybeaddedtothesystemeitherasavapourorliquiddependinguponthelocation

    of charging point and quantity required. Generally, for adding makeup refrigerant, vapour charging

    method ismoreconvenient.Fortotalsystemcharge, liquidchargingatthehighsidefollowedbyvapour

    chargingatcompressorlowsidewillbequicker.

    Under no circumstances should liquid refrigerant be allowed to enter the compressor to avoid

    damagetothecompressor.Theprocedureforvapourchargemethodisdescribedbelow:

    Openthesuctionanddischargeshutoffvalvesofthecompressor. Installagauge inthedischarge

    gaugeportandopenthegaugelineifagaugeporthasnotbeenprovided.

    Connecta refrigerant cylinderand theconnectionwitha compoundgauge, to the chargingvalve

    providedoncompressorsuctionline.Purgetheairfromthelinesandtightentheconnections.

    Admit the refrigerant by slowly opening the refrigerant cylinder. The cylinder should be kept in

    uprightpositiontopreventtherefrigerantfromenteringthecompressorinliquidstate.

    Start

    the

    compressor.

    Asthecylindergetsemptied, itspressurewilldropto thesame levelasthesuctionpressure.The

    remaining refrigerant canbedrawn from the cylinderby closing the suction shutoff valve and

    pullingavacuumonthecylinderwiththecompressorrunning.

    Checkthequantityofrefrigerantchargebynotingthedifference intheweightofthecylinderand

    observingthepressure.

  • 7/27/2019 (3) Central a C Plants

    9/14

    WaterTreatment

    Algae/slime scale and corrosionon thewater sideof theheat transfer equipment retardsheat

    transfer causing general loss of efficiency and breakdowns. Oxygen, Carbon Dioxide, Sulphur Dioxide

    absorbed from theairanddissolved inwatercausecorrosion,reducing thecapacityof lines, increasing

    frictionallossesandpumpingcost.Hardwatercausesscalingproblem.Whenheated,themineralsareleft

    behind,whichformadepositontheheatexchangersurface.Theheattransferratingofthescaleisvery

    much lower thanmetal.Retardedheat transfer results in increased dischargepressure causing loss in

    capacityandincreasedpowerconsumption.

    Scalingofthecondensortubesinarecirculatedwatersystemisunavoidable.Descalinghastobe

    carriedoutasapreventivemaintenanceonceevery12monthsorearlierdependingonthehardnessof

    thewater.Descalingcanbecarriedoutquiteconvenientlybycirculatingmildinhibitedacidsolutionwith

    thehelpofasmallpumpconnectedacrossthecondensorinletandthewatervalvesareclosedtoconfine

    thecirculationtothecondenseronly.

    Chemical compounds are available which suspend minerals of dissolved scale. Algae attach

    themselvesto

    the

    surfaces,

    and

    since

    they

    are

    living

    plants,

    they

    grow

    until

    they

    clog

    the

    passages

    of

    the

    system. Bacteria forms slime and close the system in much the same way as algae. Algae/Slime is

    controlledbyuseoftoxic.Aspecialistshouldbeconsultedtodeterminethealgae/slime.

    Thetroubleshouldbediagnosedasaccuratelyaspossiblebeforeanyrepairisattempted.Definite

    symptomswillaccompanyafaultyoperationinthesystem.Thefollowingtroubleshootingchartwillhelp

    infaultlocationandpromptcorrection:

    ********

    TONNAGE MEASUREMENT OF AC PLANTS

    (I) By air-flow method

    Tonnage of refrigeration (TR) = A x V x (H1 - H2) {FPS units}S 200

  • 7/27/2019 (3) Central a C Plants

    10/14

    Where

    A = Cross sectional area of duct through which air is passing in sq. ft.V = Air velocity per minute, in Ft. per minute, measured by anemometer in

    ft./minS = Specific volume of (return) airH1 = Enthalpy for return air, in Btu/lb

    H2 = Enthalpy for supply air, in Btu/lb

    Note:Both H1 andH2 are determined from the psychometric chart with help of Dry bulbtemperature (Tdb in deg F.) and Wet bulb temperature (Twb in deg F.) SimilarlySpecific volume (S) is determined from the psychometric chart

    Example 1:

    Calculate Tonnage of AC Plant having the following measurement figures:A = 30.25 sq. ft.

    V = 293 Ft. per minuteS = Specific volume of return air = 13.7 cubic Ft./ Lb.

    For Return duct,Tdb = 73

    0F and Twb = 670 F. ------------- (X)

    For Supply duct,Tdb = 53

    0F and Twb = 490 F. ------------- (Y)

    Calculations:

    H1 = Enthalpy for return air, in Btu/ Lb, determined from psychometric chart in r/o(X)

    = 31.8 Btu/Lb.H2 = Enthalpy for supply air, in Btu/ Lb, determined from psychometric chart in r/o(Y)

    = 19.8 Btu/Lb.S = Specific volume of return air = 13.7 cubic Ft./ Lb.

    Therefore Tonnage = Tonnage of refrigeration = A x V x (H1 -H2)TRS 200

    = Tonnage of refrigeration = 30.25x293 x (31.8 19.8) TR13.7 200

    = 38.8 TR (Answer)

    (II) By Water-flow method

  • 7/27/2019 (3) Central a C Plants

    11/14

    Points to be remembered:

    1Watt = 0.86 k Cal / Hr** (unit of power i.e. rate of energy)

    1 Watt = 3.412 Btu / Hr* or [1 Btu = 1 3.412 Watts]

    1 k Watt = 3412 Btu / Hr or [1 Btu = 1 3412 k Watts] #

    1 Btu = 0.252 k Cal

    1 Ton = 12000 Btu / Hr

    = 200 Btu / Min

    = 50 k Cal / Min [200 Btu x 0.252 k Cal]

    = 3024 k Cal / Hr [200 Btu x 0.252 k Cal x 60 Min]

    = 3.561 kW # [12000 3412 = 3.561]

    Heat gained by water = { Q x Sp. Heat x (Th Tc) x 60} Btu/Hr ---- (A)= heat rejected by the refrigerant in the condenser

    Heat developed due to work done by compressor ={ 3 V x I x Cos }Watts= { 3 V x I x Cos x 3.412}*Btu/Hr ----- (B)Or= { 3 V x I x Cos x 0.86} ** k Cal /Hr

    Refrigeration capacity in TR =[Heat gained by water in Btu/Hr] [Heat developed due to work done by compressor in Btu/Hr]

    12000= (A) - (B)

    12000

    = { Q x Sp. Heat x (Th Tc) x 60} { 3 V x I x Cos x 3.412}12000

    Where Q = Quantity of water flowing through the water cooled condenser in Ltr/ Min

    Th = Temperature after condenser in0

    FTc = Temperature before condenser in 0 F

    Sample measurements

    Q = Quantity of water flowing through the water cooled condenser = 620 Ltr/ MinTh = Temperature at condenser outlet = 990 F

  • 7/27/2019 (3) Central a C Plants

    12/14

    Tc = Temperature at condenser inlet = 92 FV = compressor Voltage = 390 VoltsI = compressor Current = 60 AmpCos = Power Factor = 0.85

    Calculations:(A) = Heat rejected by the refrigerant in the condenser

    = Q x Sp. Heat x (Th Tc) x 60 Btu/Hr= 620 x 2.204 x (99 92) x 60 = 57,3922 Btu/Hr

    (B) = Heat developed due to work done by compressor

    = { 3 V x I x Cos x 3.412} Btu / Hr= { 3 x 390 x 60 x .85 x 3.412} Btu / Hr = 11, 7476 Btu / Hr

    Refrigeration capacity in TR = (A) - (B) = (57,3922) - (11,7476) = 38 TR, ANSWER 12000 12000

    ***********

    HVAC AirConditioningTroubleshootingandRepair

    ThefollowingisangeneralA/Csystemtroubleshootingguide.Realizethatitisgenericandmanyofthe

    thingslisted

    here

    may

    not

    apply

    to

    the

    944.

    Symptom/PossibleCause Solutions

    LowCompressorDischargePressure

    1.Leakinsystem

    2.Defectiveexpansionvalve

    3.Suctionvalveclosed

    4.Freonshortage

    5.Pluggedreceiverdrier

    Repair

    1.Repairleakinsystem

    2.Replacevalve

    3.Openvalve

    4.Addfreon

    5.Replacedrier

  • 7/27/2019 (3) Central a C Plants

    13/14

    6.Compressorsuctionvalveleaking

    7.Badreedvalvesincompressor

    6.Replacevalve

    7.Replacereedvalves

    HighCompressorDischargePressure

    1.Airinsystem

    2.Cloggedcondenser

    3.Dischargevalveclosed

    4.Overcharged

    system

    5.Insufficientcondenserair

    6.Loosefanbelt

    7.Condensernotcenteredonfanortoofarfrom

    radiator

    Repair

    1.Rechargesystem

    2.Cleancondenser

    3.Open

    valve

    4.Removesomerefrigerant

    5.Installlargefan

    6.Tightenfanbelt

    7.Centerandcheckdistance

    LowSuctionPressure

    1.Refrigerantshortage

    2.Worncompressorpiston

    3.Compressorheadgasketleaking

    4.Kinkedorflattenedhose

    5.Compressorsuctionvalveleaking6.Moistureinsystem

    7.Trashinexpansionvalveorscreen

    Repair

    1.Addrefrigerant

    2.Replacecompressor

    3.Replaceheadgasket

    4.Replacehose

    5.Changevalveplate6.Replacedrier

    7.Replacedrier

    HighSuctionPressure

    1.Looseexpansionvalve

    2.Overchargedsystem

    3.Expansionvalvestuckopen

    4.Compressorreedvalves

    5.Leakingheadgasketoncompressor

    Repair

    1.Tightenvalve

    2.Removesomerefrigerant

    3.Replaceexpansionvalve

    4.Replacereedvalves

    5.Replaceheadgasket

    CompressorNot

    Working

    1.Brokenbelt

    2.Brokenclutchwireorno12vpower

    3.Brokencompressorpiston

    4.Badthermostat

    5.Badclutchcoil

    6.LowRefrigerant lowpressureswitchhascut

    offclutchpower

    Repair

    1.Replacebelt

    2.Repairwireorcheckforpower

    3.Replacecompressor

    4.Replacethermostat

    5.Replaceclutchcoil

    6.Addrefrigerant

    EvaporatorNotCooling

    1.Frozencoil,switchsettoohigh

    2.Drive

    belt

    slipping

    3.Hotairleaksintocar

    4.Pluggedreceiverdrier

    5.Capillarytubebroken

    6.Shortageofrefrigerant

    7.Highheadpressure

    8.Lowsuctionpressure

    9.Highsuctionpressure

    Repair

    1.Turnthermostatswitchback

    2.Tighten

    belt

    3.Checkforholesoropenvents

    4.Replacedrier

    5.Replaceexpansionvalve

    6.Addrefrigerant

    7.Seeproblem#2

    8.Seeproblem#3

    9.Seeproblem#4

  • 7/27/2019 (3) Central a C Plants

    14/14

    10.Defectiveexpansionvalve

    11.Frozenexpansionvalve

    10.Replaceexpansionvalve

    11.Evacuateandreplacedrier

    FrozenEvaporatorCoil

    1.Faultythermostat

    2.Thermostatnotsetproperly

    3.Insufficient

    evaporator

    air

    Repair

    1.Replacethermostat

    2.Settodrivingcondition

    3.Checkforexcessiveducthoselength,

    kinkor

    bend.

    ACSystemGaugeReadings

    ThefollowingtableisageneralguidelineforA/Csystempressuresandtemperaturesbasedonambient

    outsidetemperature.Rememberthattheseareaguidelineandyouractualtemperaturesandpressures

    willvarydependingonhumidityintheairandtheconditionofyoursystem.

    A/CSystemPressureReadings

    AmbientTemperature

    Low

    Side

    Pressure

    High

    Side

    Pressure

    Center

    Vent

    Temperature

    60F 2838psi 130190psi 4446F

    70F 3040psi 190220psi 4448F

    80F 3040psi 190220psi 4348F

    90F 3540psi 190225psi 4450F

    100F 4050psi 200250psi 5260F

    110F 5060psi 250300psi 6874F

    120F 5565psi 320350psi 7075F

    *********


Recommended