+ All Categories
Home > Documents > 3.0 Loading Calculation

3.0 Loading Calculation

Date post: 05-Mar-2016
Category:
Upload: naba-raj-shrestha
View: 226 times
Download: 2 times
Share this document with a friend
Description:
Calculation sheet
Popular Tags:

of 65

Transcript
  • 3.1 Dead Load

    3.1.1 Concrete and Soil Weight [D & Ds](a) Applied Loads

    Table 3-1 Concrete and Soil Weight

    Component Qty Length Width(in) (in)

    Mat Foundation 1 596.00 596.00Compressor Pedestal 1

    Electric Motor Pedestal 1 201.19 181.13Z063-1002 Pedestal 1Z063-6506 Pedestal 1

    Z063-1004 (Pedestal) 1Z063-6504 (Pedestal) 1

    Z063-6502A (Pedestal) 1Z063-6502B (Pedestal) 1Cylinder N1 (Pedestal) 1 43.31 23.63Cylinder N2 (Pedestal) 1 43.31 23.63Cylinder N3 (Pedestal) 1 43.31 23.63Cylinder N4 (Pedestal) 1 43.31 23.63Cylinder N5 (Pedestal) 1 43.31 23.63Cylinder N6 (Pedestal) 1 43.31 23.63P063-5055 Pedestal 1 51.94 23.63

    Soil Weight 1Total Weight of Concrete and Soil

    Therefore,Total Applied Load @ Y-dir.

    (b) Reaction Summary from STAAD Load 1: SELFWEIGHT (D) + Load 2: STRUCTURAL DL (DS)

    Fy

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    3.1.2 Empty Dead Load [De](a) Applied LoadsEmpty Dead Load [De] is considered as 0.60 of No Operating (Static) Load Case [Dno].

    Therefore,

  • Total Applied Load @ Y-dir.

    (b) Reaction Summary from STAAD Load 3: EMPTY DL (DE)

    Fy

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • 3.1.3 No Operating (Static) [Dno](a) Applied Loads

    Table 3-2 Static Load of Equipment

    Component QtyMass(lbs)

    Compressor Frame 1 192684Crank 1 Cylinder 1 15764Crank 2 Cylinder 1 27889Crank 3 Cylinder 1 21584Crank 4 Cylinder 1 13338Crank 5 Cylinder 1 28859Crank 6 Cylinder 1 28859

    Flywheel 1 3041Main Driver (MC063-1000) 1 115743

    Suction Volume Bottle (Z063-6501A) 1 7673Suction Volume Bottle (Z063-6501B) 1 7673

    Discharge Volume Bottle (Z063-6502A) 1 5600Discharge Volume Bottle (Z063-6502B) 1 5600

    Suction Volume Bottle (Z063-6503) 1 6416Discharge Volume Bottle (Z063-6504) 1 5821

    Suction Volume Bottle (Z063-6505) 1 1941Discharge Volume Bottle (Z063-6506) 1 4564

    Suction Volume Bottle (Z063-1001) 1 3991Discharge Volume Bottle (Z063-1002) 1 7077

    Suction Volume Bottle (Z063-1003) 1 5358Discharge Volume Bottle (Z063-1004) 1 19335

    Distance Piece Drain Tank (D063-1001) 1 177Distance Piece Drain Tank (D063-1002) 1 177

    Cylinder Crank 1 Support 1 1323Cylinder Crank 2 Support 1 1345Cylinder Crank 3 Support 1 1345Cylinder Crank 4 Support 1 1345Cylinder Crank 5 Support 1 1345Cylinder Crank 6 Support 1 1345

    Total Weight of Compressor Frame, Cylinder, Motor and Equipment PedestalTherefore,Total Applied Load @ Y-dir.

    (b) Reaction Summary from STAAD

  • Load 4: NO OPERATING STATIC (DNO)Fy

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • 3.1.4 Operating Dynamic [Do](a) Applied Loads

    Table 3-3 Dynamic Load (Operating Load)

    ComponentMass Angle

    (lbs / lbs-ft) (deg)Electric Motor at Rated Load

    Fa 12140 lbsFb 40690 lbsFc 5850 lbsFd 30350 lbs

    Primary Forces / MomentsHorizontal Primary (Force H') 14979 lbs 58.06

    Vertical Primary (Force V') 1594 lbs 0Horizontal Primary (Moment CZ') 114507 lbs-ft 209.72

    Vertical Primary (Moment CX') 3083 lbs-ft 0Secondary Forces / Moments

    Horizontal Sec. (Force H") 2543 lbs 121.95Vertical Sec. (Force V") 0 lbs 0

    Horizontal Sec. (Moment CZ") 19442 lbs-ft 330.29Vertical Sec. (Moment CX") 0 lbs-ft 0

    Moment Due to Compressor Torque ReactionCR @ 6 Hz 27533 lbs-ft -119.70

    CR @ 12 Hz 65087 lbs-ft 33CR @ 18 Hz 28034 lbs-ft -62.40CR @ 36 Hz 17395 lbs-ft -20

    Total Dynamic LoadsTherefore,Total Applied Load @ Y-dir.

    (b) Reaction Summary from STAAD Load 70: OPERATING DYNAMIC (DO)

    Fy

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    3.2 Live Load

    3.3.1 Live load [L2](a) Applied Loads

  • Table 3-4 Live Load

    ComponentLoad Area

    Live load 250 1.736 1540.57Total Live Load

    Therefore,Total Applied Load @ Y-dir.

    (b) Reaction Summary from STAAD Load 11: LIVE LOAD >100PSF (L2)

    Fy

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    (lbs/ft2) (lbs/in2) (ft2)

  • 3.3 Wind LoadWind Load is calculated based on ASCE 7-05, design wind speed shall be used 110 mph.As per site specific conditions design pressure is calculated. It is assumed that wind isapproaching to compressor pad and equipment from both X-direction and Z-direction.

    Fw = qz G Cf Af = 0.24 Af (psi)

    = 28.46 psf

    Gust Effect factor, G = 0.85Force coefficient, Cf = 1.40Exposure category = C

    = 0.94= 1.00= 0.85

    Importance factor, I = 1.15Basic wind speed, V = 110 mph

    3.3.1 Normal Wind Load [W]

    3.3.1.1 Wind Load @ +X Direction [W(+x)] and -X Direction [W(-x)](a) Applied Loads

    Table 3-5 Wind Load @ X Direction

    ComponentWind Pressure Area

    (psi)Concrete Pedestal 0.24 58970

    Equipment 0.24 87588Total Wind Load @ X Direction

    Therefore,Total Applied Load @ +X dir.

    Total Applied Load @ -X dir.

    (b) Reaction Summary from STAAD Load 12: WIND @ +X DIR [W (+X)]

    Fx (+X-dir)

    Load 13: WIND @ -X DIR [W (-X)]Fx (-X-dir)

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    qz = 0.00256*Kz*Kzt*Kd*V2*I

    Velocity pressure coeff.,KzTopographic factor, KztWind directionality factor,Kd

    (in2)

  • 3.3.1.2 Wind Load @ +Z Direction [W(+z)] and -Z Direction [W(-z)](a) Applied Loads

    Table 3-6 Wind Load @ Z Direction

    ComponentWind Pressure Area

    (psi)Concrete Pedestal 0.24 42715

    Equipment 0.24 70494Total Wind Load @ Z Direction

    Therefore,Total Applied Load @ +Z dir.

    Total Applied Load @ -Z dir.

    (b) Reaction Summary from STAAD Load 14: WIND @ +Z DIR [W (+Z)]

    Fz (+Z-dir)

    Load 15: WIND @ -Z DIR [W (-Z)]Fz (-Z-dir)

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    (in2)

  • Table 3-1 Concrete and Soil WeightHeight Area Volume Density Weight Fy

    (in) (kcf) (kips) (kips)44.00 2466.78 9044.86 0.16 1447.18 -1447.18

    4550.96 0.16 728.15 -728.15152.69 253.07 3220.10 0.16 515.22 -515.2289.25 106.33 790.83 0.16 126.53 -126.5399.06 105.22 868.59 0.16 138.97 -138.9789.25 35.74 265.82 0.16 42.53 -42.5389.25 33.83 251.61 0.16 40.26 -40.2679.38 44.38 293.57 0.16 46.97 -46.9779.38 38.29 253.29 0.16 40.53 -40.5368.94 7.11 40.85 0.16 6.54 -6.5446.81 7.11 27.73 0.16 4.44 -4.4464.50 7.11 38.22 0.16 6.11 -6.1151.38 7.11 30.44 0.16 4.87 -4.8754.88 7.11 32.52 0.16 5.20 -5.2045.06 7.11 26.70 0.16 4.27 -4.2741.88 8.52 29.73 0.16 4.76 -4.7636.00 1540.57 4621.72 0.12 554.61 -554.61

    Total Weight of Concrete and Soil -3717.14

    = -3717.14 kips

    Load 1: SELFWEIGHT (D) + Load 2: STRUCTURAL DL (DS)= 3717.14 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    Empty Dead Load [De] is considered as 0.60 of No Operating (Static) Load Case [Dno].

    (ft2) (ft3)

  • = -322.33 kips

    = 322.33 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • Table 3-2 Static Load of EquipmentX Y Z Weight Fy

    (in) (in) (in) (kips) (kips)0.00 0.00 -3.16 192.68 -192.68

    -137.59 -83.27 0.00 15.76 -15.76128.73 -60.05 0.00 27.89 -27.89-131.30 -11.61 0.00 21.58 -21.58129.72 11.61 0.00 13.34 -13.34-128.16 60.05 0.00 28.86 -28.86128.16 83.27 0.00 28.86 -28.86

    0.00 -124.30 0.00 3.04 -3.040.00 -210.81 0.00 115.74 -115.74

    -115.55 63.19 73.81 7.67 -7.67115.55 86.42 73.81 7.67 -7.67-131.89 117.91 -86.22 5.60 -5.60131.89 133.27 -86.22 5.60 -5.60109.25 -60.05 71.66 6.42 -6.42156.30 -109.25 -86.03 5.82 -5.82128.94 11.42 54.72 1.94 -1.94127.95 10.83 -77.95 4.56 -4.56-132.28 -11.50 58.47 3.99 -3.99-131.89 -11.58 -85.23 7.08 -7.08-142.33 -83.55 55.13 5.36 -5.36-160.44 -130.91 -84.64 19.34 -19.3439.38 123.03 -133.47 0.18 -0.18-39.38 123.03 -133.47 0.18 -0.18-170.47 -83.27 -52.56 1.32 -1.32159.84 -60.05 -64.17 1.35 -1.35-161.42 -11.61 -56.30 1.35 -1.35156.30 11.61 -59.64 1.35 -1.35-159.25 60.05 -65.94 1.35 -1.35-159.25 83.27 -65.94 1.35 -1.35

    Total Weight of Compressor Frame, Cylinder, Motor and Equipment Pedestal -537.21

    = -537.21 kips

  • = 537.21 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • Table 3-3 Dynamic Load (Operating Load)Force (kips) Moment (kips-ft)

    Fx Fy Fz Mz My MxElectric Motor at Rated Load

    -12.14-40.69-5.85

    -30.35Primary Forces / Moments

    -7.92 -12.711.59

    56.77 99.45-3.08

    Secondary Forces / Moments1.346 -2.158

    9.64 -16.89

    Moment Due to Compressor Torque Reaction27.5365.0928.0317.40

    -6.58 -102.31 0.00 138.05 66.40 79.48

    = -102.31 kips

    = 102.31 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • Table 3-4 Live LoadWeight Fy(kips) (kips)

    385.14 -385.14Total Live Load -385.14

    = -385.14 kips

    = 385.14 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • Wind Load is calculated based on ASCE 7-05, design wind speed shall be used 110 mph.

    ASCE 7-05 Section 6.5.15

    ASCE 7-05 Section 6.5.10

    where:Fw : Wind pressure, psf

    Velocity pressure at exposure C, psfAf : projected area normal to wind dir.h : Height considered = 25.0 ft

    Table 3-5 Wind Load @ X DirectionForce Fx (+X-dir) Fx (-X-dir)(kips) (kips) (kips)14.15 14.15 -14.1521.02 21.02 -21.02

    Total Wind Load @ X Direction 35.17 -35.17

    = 35.17 kips

    = -35.17 kips

    = -35.18 kips

    = 35.18 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    qz :

  • Table 3-6 Wind Load @ Z DirectionForce Fz (+Z-dir) Fz (-Z-dir)(kips) (kips) (kips)10.25 10.25 -10.2516.92 16.92 -16.92

    Total Wind Load @ Z Direction 27.17 -27.17

    = 27.17 kips

    = -27.17 kips

    = -27.17 kips

    = 27.17 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • 3.4 Earthquake LoadEarthquake load is calculated based on ASCE 7-10. As per site specific conditions earthquake response coefficient is calculated for both X-direction and Z-direction.Earthquake load for empty and operation condition is considered equal.

    MARK :Site Class :

    Occupancy Category :

    Earthquake Base Shear formula

    where:the seismic response coefficient determined in accordance with ASCE 7-10 Section 12.8.1.1.

    W = the effective seismic weight per ASCE 7-10 Section 12.7.2.0.062

    (ASCE 7-10 Eq. 12.8-2)0.062

    the following:

    be less than:

    Therefore: S TL :

    Cs = ( SD1 * TL ) / ( T2 (R/Ie) )Cs =

    Cs shall not be less than:Minimum Cs:

    Cs = 0.044 * SDS * Ie 0.01Cs =

    In addition, for structures located where S1 is equal to or greater than 0.6g, Cs shall not

    For S1>=0.6g:

    Cs = ( 0.5 * S1 ) / ( R/Ie )Cs =

    (ASCE 7-10) Table 11.4-1 Site Coefficient, Fa

  • Primary Compressor FoundationD (L2CC-000-25-BD-0001 Section 1.7)III (L2CC-000-25-BD-0001 Section 1.7)

    1.25 (ASCE 7-10 Sec 11.5.1 & Table 1.5-2 &L2CC-000-25-BD-0001 Section 1.7)

    0.093 (ASCE 7-10 Sec 11.4.1 & L2CC-000-25-BD-0001Section 1.7 )

    0.049 (ASCE 7-10 Sec 11.4.1 & L2CC-000-25-BD-0001Section 1.7)

    (ASCE 7-10 Section 12.8.1 & Eq. 12.8-1)

    the seismic response coefficient determined in accordance with ASCE 7-10

    the effective seismic weight per ASCE 7-10 Section 12.7.2.(ASCE 7-10 Sec 12.8.1.1)

    (ASCE 7-10 Eq. 12.8-2)

    (ASCE 7-10 Eq. 12.8-3)0.181

    (ASCE 7-10 Eq. 12.8-4)7.995

    Minimum Cs = 0.01

    (ASCE 7-10 Eq. 12.8-5)0.005 < 0.01 0.01

    19.32 ft/s

    (ASCE 7-10 Eq. 12.8-6)0.015

    computed in accordance with ASCE 7-10 Eq. 12.8-2 need not exceed

    D1 / ( T (R/Ie) )

    = ( SD1 * TL ) / ( T2 (R/Ie) )

    = 0.044 * SDS * Ie 0.01Therefore, Minimum Cs =

    is equal to or greater than 0.6g, Cs shall not

    0.6g=0.6*32.2 ft/s2=

    = ( 0.5 * S1 ) / ( R/Ie )

    Table 11.4-1 Site Coefficient, Fa

  • Parameter at Short PeriodSite Class Ss 0.25 Ss = 0.5

    A 0.8 0.8 B 1.0 1.0 C 1.2 1.2 D 1.6 1.4 E 2.5 1.7 F See ASCE 7-10 Section 11.4.7

    Parameter at 1-s PeriodSite Class S 0.1 S = 0.2

    A 0.8 0.8 B 1.0 1.0 C 1.7 1.6 D 2.4 2.0 E 3.5 3.2 F See ASCE 7-10 Section 11.4.7

    1.60 2.40

    Mapped Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration

    Note: Use straight-line interpolation for intermediate values of Ss.

    (ASCE 7-10) Table 11.4-2 Site Coefficient, FvMapped Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration

    Note: Use straight-line interpolation for intermediate values of S1.

    Site Coefficient (Fa) :Site Coefficient (Fv) :

  • Parameter at Short PeriodSs = 0.75 Ss = 1.0 Ss 1.25

    0.8 0.8 0.8 1.0 1.0 1.0 1.1 1.0 1.0 1.2 1.1 1.0 1.2 0.9 0.9

    Parameter at 1-s PeriodS = 0.3 S = 0.4 S 0.5

    0.8 0.8 0.8 1.0 1.0 1.0 1.5 1.4 1.3 1.8 1.6 1.5 2.8 2.4 2.4

    (ASCE 7-10 Sec 11.4.3 & Table 11.4-1)(ASCE 7-10 Sec 11.4.3 & Table 11.4-2)

    ) Spectral Response Acceleration

    Table 11.4-2 Site Coefficient, Fv) Spectral Response Acceleration

  • (ASCE 7-10 Eq. 11.4-1)0.149

    (ASCE 7-10 Eq. 11.4-2)0.118

    (ASCE 7-10 Eq. 11.4-3)0.099

    (ASCE 7-10 Eq. 11.4-4)0.078

    where:the design spectral response acceleration parameter in the short period range as determined from ASCE 7-10 Section 11.4.4 or 11.4.7.

    R = the response modification factor in ASCE 7-10 Table 12.2-1.

    Seismic Force-Resisting System:

    I3. Prestressed or reinforced concrete

    R = 2

    the importance factor determined in accordance with ASCE 7-10 Section 11.5.1.the design spectral response acceleration parameter at a period of 1 s, as determined from ASCE 7-10 Section 11.4.4 or 11.4.7.

    T = the fundamental period of the structure(s) determined in ASCE 7-10 Section 12.8.2.long-period transition period(s) determined in ASCE 7-10 Section 11.4.5.

    parameter at short periods as determined in accordance with ASCE 7-10 Section 11.4.1.

    parameter at a period of 1 s as determined in accordance with ASCE 7-10 Section 11.4.1.

    periods adjusted for site class effects as defined in ASCE 7-10 Section 11.4.3.

    period of 1 s adjusted for site class effects as defined in ASCE 7-10 Section 11.4.3.

    Meteorological Data (Location)Lake Charles is located in southwest Louisiana, approximately 35 milesfrom the US Gulf Coast at Latitude 30 15' 02" North and Longititude 93 16' 42" West.

    SMS = Fa * SSSMS =

    SM1 = FV * S1SM1 =

    SDS = 2/3 (SMS)SDS =

    SD1 = 2/3 (SM1)SD1 =

    SDS =

    I. ALL STEEL AND REINFORCED CONCRETE DISTRIBUTED MASS CANTILEVER STRUCTURES NOT OTHERWISE COVERED HEREIN INCLUDING STACKS, CHIMNEYS, SILOS, SKIRT-SUPPORTED VERTICAL VESSELS AND SINGLE PEDESTAL OR SKIRT SUPPORTED

    Ie =SD1 =

    TL =

    SS = the mapped maximum considered earthquake (MCER) spectral response acceleration

    S1 = the mapped maximum considered earthquake (MCER) spectral response acceleration

    SMS = the MCER, 5 percent damped, spectral response acceleration parameter at short

    SM1 = the MCER, 5 percent damped, spectral response acceleration parameter at a

    Long-Period Transition Period (TL) :

  • (ASCE 7-10 Eq. 11.4-1)

    (ASCE 7-10 Eq. 11.4-2)

    (ASCE 7-10 Eq. 11.4-3)

    (ASCE 7-10 Eq. 11.4-4)

    the design spectral response acceleration parameter in the short period range as determined from ASCE 7-10 Section 11.4.4 or 11.4.7.the response modification factor in ASCE 7-10 Table 12.2-1.

    I3. Prestressed or reinforced concrete

    the importance factor determined in accordance with ASCE 7-10 Section 11.5.1.the design spectral response acceleration parameter at a period of 1 s, as determined from ASCE 7-10 Section 11.4.4 or 11.4.7.the fundamental period of the structure(s) determined in ASCE 7-10 Section 12.8.2.long-period transition period(s) determined in ASCE 7-10 Section 11.4.5.

    parameter at short periods as determined in accordance with ASCE 7-10 Section 11.4.1.

    parameter at a period of 1 s as determined in accordance with ASCE 7-10 Section 11.4.1.

    periods adjusted for site class effects as defined in ASCE 7-10 Section 11.4.3.

    period of 1 s adjusted for site class effects as defined in ASCE 7-10 Section 11.4.3.

    (L2CC-000-25-BD-0001 Section 1.8)Lake Charles is located in southwest Louisiana, approximately 35 milesfrom the US Gulf Coast at Latitude 30 15' 02" North and Longititude 93 16' 42" West.

    12 (s) (ASCE 7-10 Sec 11.4.5 & Figure 22-12)

    I. ALL STEEL AND REINFORCED CONCRETE DISTRIBUTED MASS CANTILEVER STRUCTURES NOT OTHERWISE COVERED HEREIN INCLUDING STACKS, CHIMNEYS, SILOS, SKIRT-SUPPORTED VERTICAL VESSELS AND SINGLE PEDESTAL OR SKIRT SUPPORTED

    the mapped maximum considered earthquake (MCER) spectral response acceleration

    the mapped maximum considered earthquake (MCER) spectral response acceleration

    , 5 percent damped, spectral response acceleration parameter at short

    , 5 percent damped, spectral response acceleration parameter at a

  • Location

  • As an alternative to performing an analysis to determine the fundamental period, T, it is

    Section 12.8.2.1, directly.

    0.271 (s)

    Structure Type:

    Structure TypeMoment-resisting frame systems in which the frames resist 100% of the required seismic force and are not enclosed or adjoined by components that are more rigid and will prevent the frames from deflecting where subjected to seismic forces: Steel moment-resisting frames Concrete moment-resisting framesSteel eccentrically braced frames in accordance with Table 12.2-1 lines B1 or D1Steel buckling-restrained braced framesAll other structural systems

    3.4.1 Earthquake Load @ X-Direction(a) Applied Loads

    Table 3-7 Earthquake Load @ X-Direction due to Foundation Weight

    ComponentVolume Density Weight

    (kcf) (kips)Mat Foundation 9044.86 0.16 1447.18

    Compressor Pedestal 4550.96 0.16 728.15Electric Motor Pedestal 3220.10 0.16 515.22

    Z063-1002 Pedestal 790.83 0.16 126.53Z063-6506 Pedestal 868.59 0.16 138.97

    Z063-1004 (Pedestal) 265.82 0.16 42.53Z063-6504 (Pedestal) 251.61 0.16 40.26

    Z063-6502A (Pedestal) 293.57 0.16 46.97

    permitted to use the approximate building period, Ta, calculated in accordance with ASCE 7-10

    Ta = Ct * hnx

    Ta =

    where hn is the structural height as defined in ASCE 7-10 Section 11.2 and the coefficientsCt and x are determined from Table 12.8-2.

    (ASCE 7-10) Table 12.8-2 Values of Approximate Period Parameters Ct and x

    (ft3)

  • As an alternative to performing an analysis to determine the fundamental period, T, it is

    (ASCE 7-10 Eq. 12.8-7)

    All other structural systems

    Structure Type x

    0.028 0.80 0.016 0.90

    Steel eccentrically braced frames in accordance with Table 12.2-1 lines B1 or D1 0.03 0.75 0.03 0.75 0.02 0.75

    Table 3-7 Earthquake Load @ X-Direction due to Foundation WeightSeismic Load Moment(Fx) 0.062W Mz

    (+X-dir) (-X-dir) (+X-dir) (-X-dir)(kips) (kips) (kips-ft) (kips-ft)89.73 -89.73 0.00 0.00 45.15 -45.15 509.65 -509.65 31.94 -31.94 320.35 -320.35 7.84 -7.84 57.94 -57.94 8.62 -8.62 67.16 -67.16 2.64 -2.64 19.47 -19.47 2.50 -2.50 18.43 -18.43 2.91 -2.91 20.31 -20.31

    , calculated in accordance with ASCE 7-10

    Table 12.8-2 Values of Approximate Period Parameters Ct and xCt

  • Z063-6502B (Pedestal) 253.29 0.16 40.53Cylinder N1 (Pedestal) 40.85 0.16 6.54Cylinder N2 (Pedestal) 27.73 0.16 4.44Cylinder N3 (Pedestal) 38.22 0.16 6.11Cylinder N4 (Pedestal) 30.44 0.16 4.87Cylinder N5 (Pedestal) 32.52 0.16 5.20Cylinder N6 (Pedestal) 26.70 0.16 4.27P063-5055 Pedestal 29.73 0.16 4.76

    Total Seismic Load due to Foundation Weight

  • 2.51 -2.51 17.53 -17.53 0.41 -0.41 2.65 -2.65 0.28 -0.28 1.55 -1.55 0.38 -0.38 2.41 -2.41 0.30 -0.30 1.75 -1.75 0.32 -0.32 1.92 -1.92 0.26 -0.26 1.47 -1.47 0.30 -0.30 1.60 -1.60

    196.08 -196.08

  • Table 3-8 Earthquake Load @ X-Direction due to Equipment Static Loads

    ComponentMass Weight

    (lbs) (kips)Compressor Frame 192684 192.68

    Crank 1 Cylinder 15764 15.76 Crank 2 Cylinder 27889 27.89 Crank 3 Cylinder 21584 21.58 Crank 4 Cylinder 13338 13.34 Crank 5 Cylinder 28859 28.86 Crank 6 Cylinder 28859 28.86

    Flywheel 3041 3.04 Main Driver (MC063-1000) 115743 115.74

    Suction Volume Bottle (Z063-6501A) 7673 7.67 Suction Volume Bottle (Z063-6501B) 7673 7.67

    Discharge Volume Bottle (Z063-6502A) 5600 5.60 Discharge Volume Bottle (Z063-6502B) 5600 5.60

    Suction Volume Bottle (Z063-6503) 6416 6.42 Discharge Volume Bottle (Z063-6504) 5821 5.82

    Suction Volume Bottle (Z063-6505) 1941 1.94 Discharge Volume Bottle (Z063-6506) 4564 4.56

    Suction Volume Bottle (Z063-1001) 3991 3.99 Discharge Volume Bottle (Z063-1002) 7077 7.08

    Suction Volume Bottle (Z063-1003) 5358 5.36 Discharge Volume Bottle (Z063-1004) 19335 19.34

    Distance Piece Drain Tank (D063-1001) 177 0.18 Distance Piece Drain Tank (D063-1002) 177 0.18

    Cylinder Crank 1 Support 1323 1.32 Cylinder Crank 2 Support 1345 1.35 Cylinder Crank 3 Support 1345 1.35 Cylinder Crank 4 Support 1345 1.35 Cylinder Crank 5 Support 1345 1.35 Cylinder Crank 6 Support 1345 1.35

    Total Seismic Load due to EquipmentTherefore,Total Applied Load @ +X-dir.

    Total Applied Load @ -X-dir.

    (b) Reaction Summary from STAAD

  • Table 3-8 Earthquake Load @ X-Direction due to Equipment Static LoadsSeismic Load Moment(Fx) 0.062W Mz

    (+X-dir) (-X-dir) (+X-dir) (-X-dir)(kips) (kips) (kips-ft) (kips-ft)11.95 -11.95 256.88 -256.88 0.98 -0.98 21.27 -21.27 1.73 -1.73 37.64 -37.64 1.34 -1.34 29.13 -29.13 0.83 -0.83 18.00 -18.00 1.79 -1.79 38.94 -38.94 1.79 -1.79 38.94 -38.94 0.19 -0.19 4.10 -4.10 7.18 -7.18 156.19 -156.19 0.48 -0.48 13.28 -13.28 0.48 -0.48 13.28 -13.28 0.35 -0.35 5.06 -5.06 0.35 -0.35 5.06 -5.06 0.40 -0.40 11.03 -11.03 0.36 -0.36 5.27 -5.27 0.12 -0.12 3.17 -3.17 0.28 -0.28 4.32 -4.32 0.25 -0.25 6.59 -6.59 0.44 -0.44 6.43 -6.43 0.33 -0.33 8.76 -8.76 1.20 -1.20 17.64 -17.64 0.01 -0.01 0.12 -0.12 0.01 -0.01 0.12 -0.12 0.08 -0.08 1.43 -1.43 0.08 -0.08 1.37 -1.37 0.08 -0.08 1.42 -1.42 0.08 -0.08 1.40 -1.40 0.08 -0.08 1.36 -1.36 0.08 -0.08 1.36 -1.36

    33.31 -33.31

    = 229.38 kips

    = -229.38 kips

  • [EE(+X)] = [EO(+X)]Load 20: EARTHQUAKE EMPTY @ [+XDIR] ([EE(+X)])

    Fx (+X-dir)

    Load 24: EARTHQUAKE OPERATING @ [+XDIR] ([EO(+X)])Fx (+X-dir)

    [EE(-X)] = [EO(-X)]Load 21: EARTHQUAKE EMPTY @ [-XDIR] ([EE(-X)])

    Fx (-X-dir)

    Load 25: EARTHQUAKE OPERATING @ [-XDIR] ([EO(-X)])Fx (-X-dir)

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • Load 20: EARTHQUAKE EMPTY @ [+XDIR] ([EE(+X)])= -229.38 kips

    Load 24: EARTHQUAKE OPERATING @ [+XDIR] ([EO(+X)])= -229.38 kips

    Load 21: EARTHQUAKE EMPTY @ [-XDIR] ([EE(-X)])= 229.38 kips

    Load 25: EARTHQUAKE OPERATING @ [-XDIR] ([EO(-X)])= 229.38 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • 3.4.2 Earthquake Load @ Z-Direction(a) Applied Loads

    Table 3-9 Earthquake Load @ Z-Direction due to Foundation Weight

    Component

    Volume Density Weight

    (kcf) (kips)Mat Foundation 9044.86 0.16 1447.18

    Compressor Pedestal 4550.96 0.16 728.15Electric Motor Pedestal 3220.10 0.16 515.22

    Z063-1002 Pedestal 790.83 0.16 126.53Z063-6506 Pedestal 868.59 0.16 138.97

    Z063-1004 (Pedestal) 265.82 0.16 42.53Z063-6504 (Pedestal) 251.61 0.16 40.26

    Z063-6502A (Pedestal) 293.57 0.16 46.97Z063-6502B (Pedestal) 253.29 0.16 40.53Cylinder N1 (Pedestal) 40.85 0.16 6.54Cylinder N2 (Pedestal) 27.73 0.16 4.44Cylinder N3 (Pedestal) 38.22 0.16 6.11Cylinder N4 (Pedestal) 30.44 0.16 4.87Cylinder N5 (Pedestal) 32.52 0.16 5.20Cylinder N6 (Pedestal) 26.70 0.16 4.27P063-5055 Pedestal 29.73 0.16 4.76

    Total Seismic Load due to Foundation Weight

    Table 3-10 Earthquake Load @ Z-Direction due to Equipment Static Loads

    ComponentMass Weight

    (lbs) (kips)Compressor Frame 192684 192.68

    Crank 1 Cylinder 15764 15.76Crank 2 Cylinder 27889 27.89Crank 3 Cylinder 21584 21.58Crank 4 Cylinder 13338 13.34Crank 5 Cylinder 28859 28.86Crank 6 Cylinder 28859 28.86

    Flywheel 3041 3.04Main Driver (MC063-1000) 115743 115.74

    Suction Volume Bottle (Z063-6501A) 7673 7.67Suction Volume Bottle (Z063-6501B) 7673 7.67

    (ft3)

  • Table 3-9 Earthquake Load @ Z-Direction due to Foundation WeightSeismic Load Moment(Fz) 0.062W Mx

    (+Z-dir) (-Z-dir) (+Z-dir) (-Z-dir)(kips) (kips) (kips-ft) (kips-ft)89.73 -89.73 0.00 0.0045.15 -45.15 509.65 -509.6531.94 -31.94 320.35 -320.357.84 -7.84 57.94 -57.948.62 -8.62 67.16 -67.162.64 -2.64 19.47 -19.472.50 -2.50 18.43 -18.432.91 -2.91 20.31 -20.312.51 -2.51 17.53 -17.530.41 -0.41 2.65 -2.650.28 -0.28 1.55 -1.550.38 -0.38 2.41 -2.410.30 -0.30 1.75 -1.750.32 -0.32 1.92 -1.920.26 -0.26 1.47 -1.470.30 -0.30 1.60 -1.60

    196.08 -196.08

    Table 3-10 Earthquake Load @ Z-Direction due to Equipment Static LoadsSeismic Load Moment(Fz) 0.062W Mx

    (+Z-dir) (-Z-dir) (+Z-dir) (-Z-dir)(kips) (kips) (kips-ft) (kips-ft)11.95 -11.95 256.88 -256.880.98 -0.98 21.27 -21.271.73 -1.73 37.64 -37.641.34 -1.34 29.13 -29.130.83 -0.83 18.00 -18.001.79 -1.79 38.94 -38.941.79 -1.79 38.94 -38.940.19 -0.19 4.10 -4.107.18 -7.18 156.19 -156.190.48 -0.48 13.28 -13.280.48 -0.48 13.28 -13.28

  • Discharge Volume Bottle (Z063-6502A) 5600 5.60Discharge Volume Bottle (Z063-6502B) 5600 5.60

    Suction Volume Bottle (Z063-6503) 6416 6.42Discharge Volume Bottle (Z063-6504) 5821 5.82

    Suction Volume Bottle (Z063-6505) 1941 1.94Discharge Volume Bottle (Z063-6506) 4564 4.56

    Suction Volume Bottle (Z063-1001) 3991 3.99Discharge Volume Bottle (Z063-1002) 7077 7.08

    Suction Volume Bottle (Z063-1003) 5358 5.36Discharge Volume Bottle (Z063-1004) 19335 19.34

    Distance Piece Drain Tank (D063-1001) 177 0.18Distance Piece Drain Tank (D063-1002) 177 0.18

    Cylinder Crank 1 Support 1323 1.32Cylinder Crank 2 Support 1345 1.35Cylinder Crank 3 Support 1345 1.35Cylinder Crank 4 Support 1345 1.35Cylinder Crank 5 Support 1345 1.35Cylinder Crank 6 Support 1345 1.35

    Total Seismic Load due to EquipmentTherefore,Total Applied Load @ +Z-dir.

    Total Applied Load @ -Z-dir.

  • 0.35 -0.35 5.06 -5.060.35 -0.35 5.06 -5.060.40 -0.40 11.03 -11.030.36 -0.36 5.27 -5.270.12 -0.12 3.17 -3.170.28 -0.28 4.32 -4.320.25 -0.25 6.59 -6.590.44 -0.44 6.43 -6.430.33 -0.33 8.76 -8.761.20 -1.20 17.64 -17.640.01 -0.01 0.12 -0.120.01 -0.01 0.12 -0.120.08 -0.08 1.43 -1.430.08 -0.08 1.37 -1.370.08 -0.08 1.42 -1.420.08 -0.08 1.40 -1.400.08 -0.08 1.36 -1.360.08 -0.08 1.36 -1.36

    33.31 -33.31

    = 229.38 kips

    = -229.38 kips

  • (b) Reaction Summary from STAAD [EE(+Z)] = [EO(+Z)]

    Load 22: EARTHQUAKE EMPTY @ [+XDIR] ([EE(+Z)])Fx (+X-dir)

    Load 26: EARTHQUAKE OPERATING @ [-XDIR] ([EO(-X)])Fx (+X-dir)

    [EE(-Z)] = [EO(-Z)]Load 23: EARTHQUAKE EMPTY @ [-ZDIR] ([EE(-Z)])

    Fx (-X-dir)

    Load 27: EARTHQUAKE OPERATING @ [-ZDIR] ([EO(-Z)])Fx (-X-dir)

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    3.5 Abnormal Load

    3.5.1 Abnormal 1 [Dab1](a) Applied Loads

    Table 3-11 Forces Due to Electric Motor at Short Circuit (Case 1)

    ComponentForce to the base

    (lbs)Electric Motor Support (Fa) 104540Electric Motor Support (Fb) -49680Electric Motor Support (Fc) 4720Electric Motor Support (Fd) 29450Total force to the base due to electric motor at short circuit

    Therefore,Total Applied Load @ Y-dir.

    (b) Reaction Summary from STAAD Load 71: ABNORMAL 1 (DAB1)

    Fy

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    3.5.2 Abnormal 2 [Dab2]

  • Load 22: EARTHQUAKE EMPTY @ [+XDIR] ([EE(+Z)])= -229.38 kips

    Load 26: EARTHQUAKE OPERATING @ [-XDIR] ([EO(-X)])= -229.38 kips

    = 229.38 kips

    Load 27: EARTHQUAKE OPERATING @ [-ZDIR] ([EO(-Z)])= 229.38 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

    Table 3-11 Forces Due to Electric Motor at Short Circuit (Case 1)

    Fy

    (kips)-104.5449.68-4.72

    -29.45-89.03

    = -89.03 kips

    = 89.03 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • (a) Applied LoadsTable 3-12 Forces Due to Electric Motor at Short Circuit (Case 2)

    ComponentForce to the base

    (lbs)Electric Motor Support (Fa) -49680Electric Motor Support (Fb) 104540Electric Motor Support (Fc) 4720Electric Motor Support (Fd) 29450Total force to the base due to electric motor at short circuit

    Therefore,Total Applied Load @ Y-dir.

    (b) Reaction Summary from STAAD Load 72: ABNORMAL 2 (DAB2)

    Fy

    (c) Load Diagram (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • Table 3-12 Forces Due to Electric Motor at Short Circuit (Case 2)

    Fy

    (kips)49.68

    -104.54-4.72

    -29.45-89.03

    = -89.03 kips

    = 89.03 kips

    (Refer to "Section 6. Loading Diagram" of this Calculation Sheet)

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 41 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 42 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    Table 12.2-1 Design Coefficients and Factors for Seismic Force-Resisting Systems

    Seismic Force-Resisting System

    A. BEARING WALL SYSTEMSA1. Special reinforced concrete shear wallsA2. Ordinary reinforced concrete shear wallsA3. Detailed plain concrete shear wallsA4. Ordinary plain concrete shear wallsA5. Intermediate precast shear wallsA6. Ordinary precast shear wallsA7. Special reinforced masonry shear wallsA8. Intermediate reinforced masonry shear wallsA9. Ordinary reinforced masonry shear wallsA10. Detailed plain masonry shear wallsA11. Ordinary plain masonry shear wallsA12. Prestressed masonry shear wallsA13. Ordinary reinforced AAC masonry shear wallsA14. Ordinary plain AAC masonry shear walls

    A15. Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance or steel sheets

    A17. Light-frame walls with shear panels of all other materialsA18. Light-frame (cold-formed steel) wall systems using flat strap bracingB. BUILDING FRAME SYSTEMSB1. Steel eccentrically braced framesB2. Steel specially concentrically braced framesB3. Steel ordinary concentrically braced framesB4. Specially reinforced concrete shear wallsB5. Ordinary reinforced concrete shear wallsB6. Detailed plain concrete shear wallsB7. Ordinary plain concrete shear wallsB8. Intermediate precast shear wallsB9. Ordinary precast shear wallsB10. Steel and concrete composite eccentrically braced framesB11. Steel and concrete composite special concentrically braced framesB12. Steel and concrete composite ordinary braced frames

    A16. Light-frame (cold-formed steel) walls sheathed with wood structural panels rated for shear resistance or steel sheets

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 43 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    5 4 2 1 1/24 3 5 3 1/22 2 1 1/21 1/22 1 1/2

    6 1/2

    6 1/2

    2 4

    8 6 3 1/46 5 2 1 1/25 4 8 5 3

    Response Modification

    Coefficient, R

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 44 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 45 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 46 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 47 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 48 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    B13. Steel and concrete composite plate shear wallsB14. Steel and concrete composite special shear wallsB15. Steel and concrete composite ordinary shear wallsB16. Special reinforced masonry shear wallsB17. Intermediate reinforced masonry shear wallsB18. Ordinary reinforced masonry shear wallsB19. Detailed plain masonry shear wallsB20. Ordinary plain masonry shear wallsB21. Prestressed masonry shear walls

    B22. Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance

    B24. Light-frame walls with shear panels of all other materialsB25. Steel buckling-restrained braced framesB26. Steel special plate shear wallsC. MOMENT-RESISTING FRAME SYSTEMSC1. Steel special moment framesC2. Steel special truss moment framesC3. Steel intermediate moment framesC4. Steel ordinary moment framesC5. Special reinforced concrete moment framesC6. Intermediate reinforced concrete moment framesC7. Ordinary reinforced concrete moment framesC8. Steel and concrete composite special moment framesC9. Steel and concrete composite intermediate moment framesC10. Steel and concrete composite partially restrained moment framesC11. Steel and concrete composite ordinary moment framesC12. Cold-formed steel - special bolted moment frame

    D1. Steel eccentrically braced framesD2. Steel special concentrically braced framesD3. Special reinforced concrete shear wallsD4. Ordinary reinforced concrete shear wallsD5. Steel and concrete composite eccentrically braced framesD6. Steel and concrete composite special concentrically braced framesD7. Steel and concrete composite plate shear wallsD8. Steel and concrete composite special shear walls

    B23.Light-frame (cold-formed steel) walls sheathed with wood structural panels rated for shear resistance or steel sheets

    D. DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 49 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    6 1/26 5 5 1/24 2 2 1 1/21 1/2

    7

    7

    2 1/28 7

    8 7 4 1/23 1/28 5 3 8 5 6 3 3 1/2

    8 7 7 6 8 6 7 1/27

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 50 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 51 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 52 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 53 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 54 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    D9. Steel and concrete composite ordinary shear wallsD10. Special reinforced masonry shear wallsD11. Intermediate reinforced masonry shear wallsD12. Steel buckling-restrained braced framesD13. Steel special plate shear walls

    E1. Steel special concentrically braced framesE2. Special reinforced concrete shear wallsE3. Ordinary reinforced masonry shear wallsE4. Intermediate reinforced masonry shear wallsE5. Steel and concrete composite special concentrically braced framesE6. Steel and concrete composite ordinary braced framesE7. Steel and concrete composite ordinary shear wallsE8. Ordinary reinforced concrete shear walls

    G. CANTILEVERED COLUMN SYSTEMS DETAILED TO CONFORM TO THE REQUIREMENTS FOR:

    G1. Steel special cantilever column systemsG2. Steel ordinary cantilever column systemsG3. Special reinforced concrete moment framesG4. Intermediate reinforced concrete moment framesG5. Ordinary reinforced concrete moment framesG6. Timber frames

    E. DUAL SYSTEMS WITH INTERMEDIATE MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES

    F. SHEAR WALL-FRAME INTERACTIVE SYSTEM WITH ORDINARY REINFORCED CONCRETE MOMENT FRAMES AND ORDINARY REINFORCED CONCRETE SHEAR WALLS

    H. STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE, EXCLUDING CANTILEVER COLUMN SYSTEMS

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 55 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    6 5 1/24 8 8

    6 6 1/23 3 1/25 1/23 1/25 5 1/2

    4 1/2

    2 1/21 1/42 1/21 1/21 1 1/2

    3

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 56 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 57 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    Table 15.4-2 Seismic Coefficients for Nonbuilding Structures not Similar to Buildings

    Nonbuilding Structure Type

    A. ELEVATED TANKS, VESSELS, BINS OR HOPPERSA1. On symmetrically braced legs (not similar to buildings)A2. On unbraced legs or asymmetrically braced legs (not similar buildings)B. HORIZONTAL, SADDLE SUPPORTED WELDED STEEL VESSELSC. FLAT-BOTTOM GROUND-SUPPORTED TANKS:C1. Steel or fiber-reinforced plastic:C1.1. Mechanically anchoredC1.2. Self-anchoredC2. Reinforced or prestressed concrete:C2.1. Reinforced nonsliding baseC2.2. Anchored flexible baseC2.3. Unanchored and unconstrained flexible baseC3. All other

    D. CAST-IN-PLACE CONCRETE SILOS HAVING WALLS CONTINUOUS TO THE FOUNDATION

    G. ALL OTHER NONREINFORCED MASONRY STRUCTURES NOT SIMILAR TO BUILDINGS

    H. CONCRETE CHIMNEYS AND STACKS

    I1. Welded steelI2. Welded steel with special detailingI3. Prestressed or reinforced concreteI4. Prestressed or reinforced concrete with special detailing

    E. ALL OTHER REINFORCED MASONRY STRUCTURES NOT SIMILAR TO BUILDINGS DETAILED AS INTERMEDIATE REINFORCED MASONRY SHEAR WALLS

    F. ALL OTHER REINFORCED MASONRY STRUCTURES NOT SIMILAR TO BUILDINGS DETAILED AS ORDINARY REINFORCED MASONRY SHEAR WALLS

    I. ALL STEEL AND REINFORCED CONCRETE DISTRIBUTED MASS CANTILEVER STRUCTURES NOT OTHERWISE COVERED HEREIN INCLUDING STACKS, CHIMNEYS, SILOS, SKIRT-SUPPORTED VERTICAL VESSELS AND SINGLE PEDESTAL OR SKIRT SUPPORTED

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 58 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    3 2 3

    3 2 1/2

    2 3 1/41 1/21 1/2

    3

    3

    2

    1 1/4

    2

    2

    2 3 2 3

    Response Modification

    Coefficient, R

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 59 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 60 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    J. TRUSSED TOWERS (FREESTANDING OR GUYED), GUYED STACKS AND CHIMNEYS

    K. COOLING TOWERSK1. Concrete or steelK2. Wood framesL. TELECOMMUNICATION TOWERSL1. Truss: SteelL2. Pole: SteelL2.1. WoodL2.2. ConcreteL3. Frame: SteelL3.1. WoodL3.2. ConcreteM. AMUSEMENT STRUCTURES AND MONUMENTS

    O. SIGNS AND BILLBOARDS

    N. INVERTED PENDULUM TYPE STRUCTURES (EXCEPT ELEVATED TANKS, VESSELS, BINS AND HOPPERS)

    P. ALL OTHER SELF-SUPPORTING STRUCTURES, TANKS, OR VESSELS NOT COVERED ABOVE OR BY REFERENCE STANDARDS THAT ARE SIMILAR TO BUILDINGS

  • Sasol Chemicals (USA) LLCLake Charles Chemicals Project

    REPORT NAME REPORT NAME REPORT NAME

    Document No: L2CC-063-15-CA-0030-01XX April 2015

    Rev: 0Page 61 of 8

    296919302.xlsx [Discipline]

    MES DOC. NO.:MC-A22-1381112-32001

    3

    3 1/23 1/2

    3 1 1/21 1/21 1/21 1/21 1/21 1/22

    2

    3

    1 1/4

  • WIND LOAD CALCULATION REF. CODE:

    Primary Compressor Foundation

    Fw = qz G Cf Af = 0.24 Af (psi) ASCE 7-05 Section 6.5.15

    = 28.46 psf ASCE 7-05 Section 6.5.10

    Gust Effect factor, G = 0.85 where:Force coefficient, Cf = 1.40 Fw : Wind pressure, psfExposure category = C Velocity pressure at exposure C, psf

    = 0.94 Af : projected area normal to wind dir.= 1.00 h : Height considered == 0.85

    Importance factor, I = 1.15Basic wind speed, V = 110 mph

    WIND LOAD ACTING ON CONCRETE PAD/PEDESTAL:a) Wind @ X-Direction

    Area normal = 58970.00

    Wind @ X-dir (Fx) = 14.15 kips

    b) Wind @ Z-DirectionArea normal = 42715.00

    Wind @ Z-dir (Fz) = 10.25 kips

    WIND LOAD ACTING ON EQUIPMENT:a) Wind @ X-Direction

    Area normal = 87588.00

    Wind @ X-dir = 21.02 kips

    b) Wind @ Z-DirectionArea normal = 70494.00

    Wind @ Z-dir = 16.92 kips

    qz = 0.00256*Kz*Kzt*Kd*V2*I

    qz :Velocity pressure coeff.,KzTopographic factor, KztWind directionality factor,Kd

    in2

    in2

    in2

    in2

  • STAAD INPUT:

    WIND LOAD ACTING ON CONCRETE PAD/PEDESTAL:a) Wind @ +X Direction

    Staad area normal = 60105.00Wind pressure,psi = 0.24 psi _SIDE_WIND+X PR GX 0.2355

    b) Wind @ -X DirectionStaad area normal = 60879.00Wind pressure,psi = 0.23 psi _SIDE_WIND-X PR GX -0.2325

    c) Wind @ +Z DirectionStaad area normal = 40410.00Wind pressure,psi = 0.25 psi _SIDE_WIND+Z PR GZ 0.2537

    d) Wind @ -Z DirectionStaad area normal = 37405.00Wind pressure,psi = 0.27 psi _SIDE_WIND-Z PR GZ -0.2741

    WIND LOAD ACTING ON EQUIPMENT:a) Wind @ X-Direction

    Area normal = 87588.00

    Wind @ +X direction2245 FX 21021 MZ -5486512

    Wind @ -X direction2245 FX -21021 MZ 5486512

    b) Wind @ Z-DirectionArea normal (1) = 70494.00

    Wind @ +Z direction2245 FZ 16919 MX 4415744

    Wind @ -Z direction2245 FZ -16919 MX -4415744

    in2

    in2

    in2

    in2

    in2

    in2

  • REF. CODE: ASCE 7-05

    Velocity pressure at exposure C, psfprojected area normal to wind dir.Height considered = 25.0 ft

  • 3.1 Dead, 3.2 Live, 3.3 Wind3.4 Seismic, 3.5 AbnormalTable 12.2-1Table 15.4-2Wind Load Calculation


Recommended