+ All Categories
Home > Documents > 3D friction map Friction in Elasto Hydrodynamically .../file/MarcusBjorling.pdf · Friction in...

3D friction map Friction in Elasto Hydrodynamically .../file/MarcusBjorling.pdf · Friction in...

Date post: 31-Mar-2018
Category:
Upload: dinhdung
View: 225 times
Download: 2 times
Share this document with a friend
43
1 Friction in Elasto Hydrodynamically Lubricated contacts The influence of speed and slide to roll ratio Marcus Björling Prof. Roland Larsson (supervisor) Dr. Pär Marklund (co-supervisor) Industrial Partners Vicura AB Scania Volvo Construction Equipment 2 3D friction map
Transcript

1

Friction in Elasto HydrodynamicallyLubricated contacts

The influence of speed and slide to roll ratio

• Marcus Björling– Prof. Roland Larsson (supervisor)

– Dr. Pär Marklund (co-supervisor)

• Industrial Partners– Vicura AB

– Scania

– Volvo Construction Equipment

2

3D friction map

3

Elasto Hydrodynamic Lubrication (EHL)

4

Elasto Hydrodynamic Lubrication (EHL)

5

Project aims

• Improve the understanding of friction in EHL

• Find a good way to map out system performance

• Improve efficiency of machine components working in EHL

6

Conformal and non conformal contacts

Lubricant

Small contact areaHigh contact pressure

Large contact areaLow contact pressure

7

Typical contact pressure in rolling element bearings, 1-4 GPa!

30-120 cars on one coin

coin8

Viscosity increase several orders of magnitude

water

Mineral oil

Ester oil

9

Example of EHL contact

u1

u2

w

inlet outlet

10

Example of EHL contact

inlet outlet

u1

u2

h(x)

h min

h c

inlet outlet

u1

u2

w

Film pressure

Dry contactHertz pressure

Film pressure

Dry contactHertz pressure

h c

ViscosityEntrainment speedPressure-viscosity behaviour…

Not to scale!

11

EHL shear profile

u2

u1

u1=u2 No sliding

12

EHL shear profile

u2

u1

u1<u2 sliding

13

Limiting shear stress

Shear stress

Shear strain rate

Linear

Non-Linear Limiting shear stress

Thermal

14

Friction versus Slide to Roll Ratio (μ-slip)

μ

SRR

15

Lubrication regimes

Full film lubrication

Mixed lubrication

Boundary lubrication

16

Stribeck curve

Boundary Mixed Full film

Film thickness

μ

EHL

Hydrodynamic

17

EHL - Summary

• EHL = Elasto Hydrodynamic Lubrication • Non-conformal surfaces → small contact region• High contact pressures, 1-4 GPa • Solidification of lubricant

• The surfaces are deformed• Thin lubricant films <1μm (10-1000 nm)

• Examples: ball bearing, gears, cam followers

18

Application example

Action line coordinate

dedendum addendum

Pitch point

Entrainment velocity

Slide to roll ratio (SRR)

Effective radiusGear tooth load

19

Wedeven Associates Machine (WAM) no. 11

20

Experimental setupEntrainment speed

inlet outlet

u1

u2

h(x)

h min

h c

inlet outlet

u1

u2

221 uuUe

+=

0.34-9.6 m/s

21

Experimental setupSlide to roll ratio (SRR)

inlet outlet

u1

u2

h(x)

h min

h c

inlet outlet

u1

u2

eUuuSRR 21 +=

0.0002-0.49

22

Experimental setupLoad

inlet outlet

u1

u2

h(x)

h min

h c

Dry contact

inlet outlet

u1

u2

w

Dry contactMaximum Hertzian pressure 1.7 GPaMean Hertzian pressure1.13 GPa

w=200 N

23

3D friction map

24

µ-slip curve

25

Stribeck curve

26

3D friction map

27

2D contour map

28

Schematic 2D map of EHL friction regimes

M T

NL

LEntrainment speed

SRR

29

3D map – EHL friction regimes

Thermal

Mixed

Linear Non-Linear

30

Test parameters

• Temperatures – 40 and 90°C

• Viscosities – low and high

• Base oil type – mineral and ester

• EP additive content – 0 and 2 %

• Surface roughness – rough and smooth

• Coating – uncoated and DLC coated

31

Contact friction, low viscosity oil

32

Contact friction, high viscosity oil

33

Low viscosity vs high viscosity mineral oil

High viscosityLow viscosity

34

Difference in friction coefficient, low – high viscosity

35

Difference in friction coefficient, low – high viscosity %

36

Difference in friction coefficient, 40° – 90° %

37

Difference in friction coefficient, mineral – ester %

38

Difference in friction coefficient, rough – smooth %

39

40

– %

41

– %

42

1D Simulation modelPrinciple

Lubricant

43

1D Simulation modelSchematics

SteelCoating/Steel

Lubricant

Steel

44

Effect of DLC coating on oil film temperature increase

45

Influence of several parameters on coefficient of friction

1. Different results depending on surface roughness, temperature etc2. Given comparable viscosities

www.ltu.se/lib search ”Marcus Björling”Licentiate thesis:

46

Application example

Action line coordinate

dedendum addendum

Pitch point

Entrainment velocity

Slide to roll ratio (SRR)

Effective radiusGear tooth load

47

Where to operate?

48

Friction power MW/m²

49

In conclusion

50

Future work

• Correlate WAM tests with tests with actual gears

51

Power re-circulating test rig

52

Future work

• Correlate WAM tests with tests with actual gears

• Model the circular contact

53

Model vs experiment

ExperimentModel

54

Future work

• Correlate WAM tests with tests with actual gears

• Model the circular EHL contact

• Model gear contact friction

55

Thank you for your attention!

• Volvo Construction Equipment• Scania• Vicura AB

• Statoil Lubricants• IonBond

• Swedish Foundation for Strategic Research (SFF, ProViking)

Questions?

Acknowledgements:

56

Thank you for your attention!

Questions?

57

Test procedure

58

Test procedure

59

Example of EHL contact

inlet outlet

u1

u2

h(x)

h min

h c

Film pressure

Dry contactHertz pressure

+ +

x

inlet outlet

u1

u2

h(x)

h min

h c

Film pressure

Dry contactHertz pressure

+ +

x

60

Symmetric behaviour

μ

SRR

61

1D thermal traction model

• Simulates temperature distribution and shear rate in oil film

• Tait equation of state is used for the density-pressure-temperature dependence

• The Doolittle free volume model is used for the viscosity-pressure-temperature dependence

• A Carreau-Yusada model modified by Bair is used for the shear viscosity relationship

62

63 64

Test settings

• Entrainment speed: 0.34 – 9.6 m/s• Slip: 0.02-49 %

• Load: 200 N• Maximum Hertzian pressure: 1.7 GPa• Mean Hertzian pressure: 1.13 GPa

• Temperatures: 40° and 90° C

65

Specimen parameters

• “Smooth” ball and disc– 52100 (AISI) Bearing steel

– HRc:60

– Ball surface roughness (Ra): 30 nm

– Disc surface roughness (Ra): 80 nm

• “Rough” ball and disc– 9310 (AISI) Gear steel

– HRc:63

– Ball surface roughness (Ra): 200 nm

– Disc surface roughness (Ra): 220 nm

66

Oil parametersDescription SL324 SL326 SL211 SL212

Type Ester Mineral Mineral Mineral

Additive None None None EP

Kinematic visc @40° C, cSt 103.7 109.3 30.8 30.7

Kinematic visc @100° C, cSt 15.4 11.98 5.3 5.3

Dynamic visc @40° C, mPas 94.5 94.9 27.1 27.1

Dynamic visc @100° C, mPas 13.4 9.97 4.46 4.46

Density@ 15° C, kg/m³ 928 885 872 872

Viscosity index 157 99 104 104

67

Diamond Like Carbon (DLC) in EHL

In literature• Focus on wear and boundary friction• Mostly pure sliding contacts

New study• Focus on EHL friction in full film lubrication• Rolling and sliding contacts

68

Wedeven Associates Machine (WAM) no. 11

69

Test combinations

Reference case

70

71

Change in coefficient of friction with DLC coating

Reference case

Xu, H.Development of a generalized mechanical efficiency prediction methodology for gear pairsGraduate School of The Ohio State University, 2005

Evans, R.; Cogdell, J. & Richter, G.Traction of Lubricated Rolling Contacts betweenThin-Film Coatings and SteelTribology Transactions, 2009, 52(1), 106-113

72

73

Possible explanations for friction reduction

• Boundary slipEvans, R.; Cogdell, J. & Richter, G.Traction of Lubricated Rolling Contacts between Thin-Film Coatings and SteelTribology Transactions, 2009, 52(1), 106-113

Choo, J.; Glovnea, R.; Forrest, A. & Spikes, H.A low friction bearing based on liquid slip at the wallJournal of Tribology, 2007, 129(3), 611-620

74

Possible explanations for friction reduction Boundary slip

u2

u1

u1<u2 sliding

75

Possible explanations for friction reduction Boundary slip

u2

u1

u1<u2 sliding

Profile for uncoated surface

76

Possible explanations for friction reduction Boundary slip - Limitations

RMS surface roughness of about 1 nm Reduction in friction

RMS surface roughness of about 10 nm No reduction in friction

Combined roughness in present test: > 155 nm

77

Possible explanations for friction reduction

• Thermal effects– Decrease in limiting shear stress

– Decrease in shear resistance

78

1D Simulation modelPrinciple

Lubricant

79

1D Simulation modelSchematics

SteelCoating/Steel

Lubricant

Steel

80

1D Simulation modelMaterial parameters

SteelCoating/Steel

Steel

DLC 52100(AISI)Density [kg/m³] 2500 7810Thermal conductivity [W/mK] 2 46.6Heat Capacity [J/kgK] 1000 475

Kim, J.; Yang, H.-S.; Jun, Y. & Kim, K.Interfacial effect on thermal conductivity of diamond-like carbon filmsJournal of Mechanical Science and Technology, 2010, 24(7), 1511-1514

Wojciechowski, K.; Zybala, R. & Mania, R.Application of DLC layers in 3-omega thermal conductivity methodJournal of Achievements in Materials and Manufacturing Engineering, 2009, 37(2), 512-517

81

1D Simulation modelFilm thickness

SteelCoating/Steel

Steel

• Hamrock & Dowson central film thickness• Hsu and Lee thermal correction

Hsu, C.-H. & Lee, R.-T.An Efficient Algorithm for Thermal Elastohydrodynamic Lubrication Under Rolling/Sliding Line ContactsJournal of tribology, 1994, 116(4), 762-769

Hamrock, B.Fundamentals of fluid film lubricationMcGraw-Hill, 1994

82

1D Simulation modelBoundary conditions

Bulk temperature Bulk temperature

Heat source

Continuity

83

1D Simulation modelHeat source

Heat source, Q

tPT

hSUPQ h

cen

eh ∂

∂+= εμ

Measured friction coefficientCircular Hertzian pressureSRR and entrainment speedHamrock & Dowson Hsu & LeeCompression of lubricant

84

Data points for simulations

85

Effect of DLC coating on oil film temperature increase


Recommended