+ All Categories
Home > Documents > 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO...

4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO...

Date post: 06-Apr-2018
Category:
Upload: phungkien
View: 219 times
Download: 5 times
Share this document with a friend
67
Publication# 17466 Rev: E Amendment/+1 Issue Date: November 1997 1 MACH 4 Family MACH 4 FAMILY 1 MACH ® 4 Family High Performance EE CMOS Programmable Logic With Maximum Ease Of Use DISTINCTIVE CHARACTERISTICS High-performance, EE CMOS CPLD family SpeedLocking™ for guaranteed fixed timing (-7/10/12/15 ns tPD) High density — 1250-10,000 PLD Gates — 44-208 Pins — 32-384 Registers 32-256 macrocells — D/T,J-K,S-R Registers and latches — Synchronous or asynchronous mode — Programmable polarity — Reset/preset swapping Central, input, and output switch matrices — 100% Routability Input and output switch matrices for 100% pin-out retention JTAG in-system programmable Up to 20 product terms per macrocell, with XOR Registered/latched inputs Synchronous and asynchronous modes for each macrocell — Clock generator in each PAL ® block for programmable clocks, edges in either mode — Individual clock, initialization product terms in asynchronous mode Extensive software development support Third-party hardware programming support PRODUCT SELECTOR GUIDE Device Package Macrocells I/Os Dedicated Inputs Output Enables Flip- Flops Commercial Industrial t SS (ns) t CO (ns) I CC Static (mA) t PD (ns) f CNT (MHz) t PD (ns) M4(LV)-32 44 PLCC 44 TQFP 32 32 2 32 32 7.5 133 10 5.5 5.5 35 M4(LV)-64 44 PLCC 44 TQFP 64 32 2 32 96 7.5 133 10 5.5 5.5 55 M4(LV)-96 100 TQFP 96 48 8 48 144 7.5 133 10 5.5 5.5 60 M4-96 144 PQFP 96 96 6 96 96 15 66.6 NA NA NA 188 M4(LV)-128 100 PQFP 100 TQFP 128 64 6 64 192 7.5 133 10 5.5 5.5 70 M4(LV)-128N 84 PLCC 128 64 6 64 192 7.5 133 10 5.5 5.5 70 M4(LV)-192 144 TQFP 192 96 16 96 288 10 100 12 6 6.5 85 M4(LV)-256 208 PQFP 256 128 14 128 384 10 100 12 6 6.5 100
Transcript
Page 1: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

Publication# 17466 Rev: EAmendment/+1 Issue Date: November 1997

MACH 4 FAMILY

1

MACH® 4 FamilyHigh Performance EE CMOS Programmable LogicWith Maximum Ease Of Use

MA

CH 4 Fam

ily

DISTINCTIVE CHARACTERISTICS High-performance, EE CMOS CPLD family SpeedLocking™ for guaranteed fixed timing (-7/10/12/15 ns tPD) High density

— 1250-10,000 PLD Gates— 44-208 Pins— 32-384 Registers

32-256 macrocells— D/T,J-K,S-R Registers and latches— Synchronous or asynchronous mode— Programmable polarity— Reset/preset swapping

Central, input, and output switch matrices — 100% Routability

Input and output switch matrices for 100% pin-out retention JTAG in-system programmable Up to 20 product terms per macrocell, with XOR Registered/latched inputs Synchronous and asynchronous modes for each macrocell

— Clock generator in each PAL® block for programmable clocks, edges in either mode— Individual clock, initialization product terms in asynchronous mode

Extensive software development support Third-party hardware programming support

PRODUCT SELECTOR GUIDE

Device Package Macrocells I/OsDedicated

InputsOutputEnables

Flip-Flops

Commercial Industrial

tSS (ns)

tCO (ns)

ICC Static (mA)

tPD (ns)

fCNT (MHz) tPD (ns)

M4(LV)-3244 PLCC44 TQFP

32 32 2 32 32 7.5 133 10 5.5 5.5 35

M4(LV)-6444 PLCC44 TQFP

64 32 2 32 96 7.5 133 10 5.5 5.5 55

M4(LV)-96 100 TQFP 96 48 8 48 144 7.5 133 10 5.5 5.5 60

M4-96 144 PQFP 96 96 6 96 96 15 66.6 NA NA NA 188

M4(LV)-128100 PQFP100 TQFP

128 64 6 64 192 7.5 133 10 5.5 5.5 70

M4(LV)-128N 84 PLCC 128 64 6 64 192 7.5 133 10 5.5 5.5 70

M4(LV)-192 144 TQFP 192 96 16 96 288 10 100 12 6 6.5 85

M4(LV)-256 208 PQFP 256 128 14 128 384 10 100 12 6 6.5 100

1

Page 2: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

GENERAL DESCRIPTION

The MACH® 4 family from Vantis offers an exceptionally flexible architecture and delivers a superior CPLD solution of easy-to-use silicon products and software tools. The overall benefits for users are a guaranteed and predictable CPLD solution, faster time-to-market, greater flexibility and lower cost in design and manufacturing. The MACH 4 CPLDs are members of Vantis' high-performance 0.35-micron process and offer densities ranging from 32 to 256 macrocells with 100% utilization and 100% pin-out retention.

All MACH 4 family members deliver first-time fit and easy system integration with pin-out retention after any design change and refit.With multi-tiered central switch matrices, enhanced logic arrays, intelligent logic allocator with an XOR gate and multi-clocking, the MACH 4 family has synchronous/asynchronous logic and flexible set/reset capabilities. For both 3.3-V and 5-V operations, the MACH 4 products can deliver guaranteed fixed timing as fast as 7.5 ns tPD and 133 MHz fCNT through the SpeedLocking feature when using up to 20 product terms per output.

The MACH 4 family offers 6 density-I/O combinations in Thin Quad Flat Pack (TQFP), Plastic Quad Flat Pack (PQFP) and Plastic Leaded Chip Carrier (PLCC) ranging from 44 to 208 pins. It also offers I/O safety features for mixed-voltage designs so that the 3.3-V devices can accept 5-V inputs and 5-V devices do not overdrive 3.3-V inputs. Additional features include Bus-Friendly™ inputs and I/Os, programmable power-down mode for extra power savings and individual output slew rate control for the highest speed transition or for the lowest noise transition.

All MACH 4 products are 5-V or 3.3-V in-system programmable through the JTAG (IEEE Std. 1149.1) interface. JTAG boundary scan testing capability also allows product testability on automatic test equipment for device connectivity.

Vantis offers software design support for MACH devices through its own development system and device fitters integrated into third-party CAE tools. Platform support extends across PCs, Sun and HP workstations under advanced operating systems such as Windows 3.1, Windows 95 and NT, SunOS and Solaris, and HPUX.

MACHXL® software is a complete development system for the PC, supporting Vantis' MACH devices. It supports design entry with Boolean and behavioral syntax, state machine syntax and truth tables. Functional simulation and static timing analysis are also included in this easy-to-use system. This development system includes high-performance device fitters for all MACH devices.

The same fitter technology included in MACHXL software is seamlessly incorporated into third-party tools from leading CAE vendors such as Synario, Viewlogic, Mentor Graphics, Cadence and MINC. Interface kits and MACHXL configurations are also available to support design entry and verification with other leading vendors such as Synopsys, Exemplar, OrCAD, Synplicity and Model Technology. These MACHXL configurations and interfaces accept EDIF 2.0.0 netlists, generate JEDEC files for MACH devices, and create industry-standard SDF, VITAL-compliant VHDL and Verilog output files for design simulation.

Vantis offers in-system programming support for MACH devices through its MACHPRO® software enabling MACH device programmability through JTAG compliant ports and easy-to-use PC interface. Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program MACH devices or test them for connectivity.

2 MACH 4 Family

Page 3: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

CONNECTION DIAGRAM (M4(LV)-32)Top View

44-Pin PLCC

Note:Advance information for the M4(LV)-32.

PIN DESIGNATIONSCLK/I = Clock or Input

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

1 44 43 425 4 3 26 41 40

7

8

9

10

11

12

13

14

15

16

17

23 24 25 2619 20 21 2218 27 28

39

38

37

36

35

34

33

32

31

30

29

I/O5

I/O6

I/O7

TDI

CLK0/I0

GND

TCK

I/O8

I/O9

I/O10

I/O11

I/O27

I/O26

I/O25

I/O24

TDO

GND

CLK1/I1

TMS

I/O23

I/O22

I/O21

I/O12

I/O13

I/O14

I/O15

VC

C

GN

D

I/O16

I/O17

I/O18

I/O19

I/O20

I/O4

I/O3

I/O2

I/O1

I/O0

GN

D

VC

C

I/O31

I/O30

I/O29

I/O28

Block BBlock A

17466E-1

MACH 4 Family 3

Page 4: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CONNECTION DIAGRAM (M4(LV)-32)Top View

44-Pin TQFP

Note:Advance information for the M4(LV)-32.

PIN DESIGNATIONSCLK/I = Clock or Input

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

I/O12

I/O13

I/O14

I/O15

VC

CG

ND

I/O16

I/O17

I/O18

I/O19

I/O20

I/O4

I/O3

I/O2

I/O1

I/O0

GN

DV

CC

I/O31

I/O30

I/O29

I/O28

I/O27I/O26I/O25I/O24TDOGNDCLK1/I1TMSI/O23I/O22I/O21

I/O5I/O6I/O7TDI

CLK0/I0GNDTCKI/O8I/O9

I/O10I/O11

1234567891011

3332313029282726252423

44 43 42 41 40 39 38 37 36 35 34

12 13 14 15 16 17 18 19 20 21 22

Block BBlock A

17466E-2

4 MACH 4 Family

Page 5: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

CONNECTION DIAGRAM (M4(LV)-64)Top View

44-Pin PLCC

Note:Advance information for the M4(LV)-64.

PIN DESIGNATIONSCLK/I = Clock or Input

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

1 44 43 425 4 3 26 41 40

7

8

9

10

11

12

13

14

15

16

17

23 24 25 2619 20 21 2218 27 28

39

38

37

36

35

34

33

32

31

30

29

I/O5

I/O6

I/O7

TDI

CLK0/I0

GND

TCK

I/O8

I/O9

I/O10

I/O11

I/O27

I/O26

I/O25

I/O24

TDO

GND

CLK1/I1

TMS

I/O23

I/O22

I/O21

I/O12

I/O13

I/O14

I/O15

VC

C

GN

D

I/O16

I/O17

I/O18

I/O19

I/O20

I/O4

I/O3

I/O2

I/O1

I/O0

GN

D

VC

C

I/O31

I/O30

I/O29

I/O28

Block BBlock A

17466E-3

MACH 4 Family 5

Page 6: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CONNECTION DIAGRAM (M4(LV)-64)Top View

44-Pin TQFP

Note:Advance information for the M4(LV)-64.

PIN DESIGNATIONSCLK/I = Clock or Input

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

Block B Block C

Block DBlock A

I/O12

I/O13

I/O14

I/O15

VC

CG

ND

I/O16

I/O17

I/O18

I/O19

I/O20

I/O4

I/O3

I/O2

I/O1

I/O0

GN

DV

CC

I/O31

I/O30

I/O29

I/O28

I/O27I/O26I/O25I/O24TDOGNDCLK1/I1TMSI/O23I/O22I/O21

I/O5I/O6I/O7TDI

CLK0/I0GNDTCKI/O8I/O9

I/O10I/O11

1234567891011

3332313029282726252423

44 43 42 41 40 39 38 37 36 35 34

12 13 14 15 16 17 18 19 20 21 22

17466E-4

6 MACH 4 Family

Page 7: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

CONNECTION DIAGRAM (M4(LV)-32 and M4(LV)-64)Top View

48-Pin TQFP

Note:Advance information. Pin-compatible with the M4(LV)-32 and the M4(LV)-64.

PIN DESIGNATIONSCLK/I = Clock or Input

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

NC = No Connect

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

I/O12

I/O13

I/O14

I/O15

VC

CN

CG

ND

I/O16

I/O17

I/O18

I/O19

I/O20

I/O4

I/O3

I/O2

I/O1

I/O0

GN

DN

CV

CC

I/O31

I/O30

I/O29

I/O28

I/O27I/O26I/O25I/O24TDOGNDNCCLK1/I1TMSI/O23I/O22I/O21

I/O5I/O6I/O7TDI

CLK0/I0NC

GNDTCKI/O8I/O9

I/O10I/O11

123456789101112

33343536

3231302928272625

4445464748 43 42 41 40 39 38 37

13 14 15 16 17 18 19 20 21 22 23 24

17466E-5

MACH 4 Family 7

Page 8: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CONNECTION DIAGRAM (M4(LV)-128N)Top View

84-Pin PLCC

Note:Pin-compatible with the MACH131, MACH231, and MACH435.

PIN DESIGNATIONSCLK/I = Clock or Input

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

Blo

ck GBlo

ck C

123 818283846789 45 80 76777879 7512131415161718192021

232425262728293031

7372717069686766656463626160595857565554

43424140 4746454437363534 393833 48 52515049

10

22

11

3253

74I/O9

I/O10I/O11I/O12I/O13I/O14I/O15

CLK0/I0VCCGND

CLK1/I1I/O16I/O17I/O18I/O19I/O20I/O21I/O22I/O23GND

I/O8 GNDI/O55I/O54I/O53I/O52I/O51I/O50I/O49I/O48CLK3/I4

VCCCLK2/I3I/O47I/O46I/O45I/O44I/O43I/O42I/O41

GND

I/O40

GN

D

VC

CI/O

0

I/O62

I/O63

I 5VC

C

I/O3

I/O4

I/O5

I/O6

I/O1

I/O2

I/O61

I/O57

I/O58

I/O59

I/O60

I/O56

I/O7

GN

D

GN

D

VC

CI 2

I/O34

I/O33

I/O32

VC

C

I/O29

I/O28

I/O27

I/O26

I/O31

I/O30

I/O35

I/O39

I/O38

I/O37

I/O36

GN

D

I/O25

I/O24

Blo

ck B

Block A Block H

Block D Block E

Blo

ck F

8 MACH 4 Family

Page 9: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

CONNECTION DIAGRAM (M4(LV)-96)Top View

100-Pin TQFP

Note:Advance information for the M4(LV)-96.

PIN DESIGNATIONSCLK/I = Clock or Input

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

NC = No connect

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

12345678910111213141516171819202122232425

NCTDINCNC

I/O6I/O7I/O8I/O9

I/O10I/O11

I0/CLK0VCC

GNDI1/CLK1

I/O12I/O13I/O14I/O15I/O16I/O17

NCNC

TMSTCKNC

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

GN

DN

CN

CI/O

18I/O

19I/O

20I/O

21I/O

22I/O

23 NC I2

NC

NC

GN

DV

CC I3

I/O24

I/O25

I/O26

I/O27

I/O28

I/O29 NC

NC

GN

D

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

GN

DN

CN

CI/O

5I/O

4I/O

3I/O

2I/O

1I/O

0I7 V

CC

GN

DN

CN

CI6 N

CI/O

47I/O

46I/O

45I/O

44I/O

43I/O

42N

CN

CG

ND

75747372717069686766656463626160595857565554535251

NCTDONCNCNCI/O41I/O40I/O39I/O38I/O37I/O36I5/CLK3GNDVCCI4/CLK2I/O35I/O34I/O33I/O32I/O31I/O30NCNCNCNC

Blo

ck B

Blo

ck C

Block A Block H

Block D Block E

Blo

ck F

Blo

ck G

MACH 4 Family 9

Page 10: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CONNECTION DIAGRAM (M4(LV)-128)Top View

100-Pin PQFP

The numbers in parentheses reflect compatible pin numbers for 84-pin PLCC.

PIN DESIGNATIONSI/CLK = Input or Clock

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

TRST = Test Reset

ENABLE = Program

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

I/O0

VC

CG

ND

GN

DV

CC

I/O63

I/O62

I/O61

I/O60

I/O59

I/O58

I/O57

I/O56

GNDGND

TDII5

I/O8I/O9

I/O10I/O11I/O12I/O13I/O14I/O15

IO/CLK0

GNDGND

I1/CLK1I/O16I/O17I/O18I/O19I/O20I/O21I/O22I/O23TMSTCKGNDGND

282930

4 56789101112131415161718192021222324252627

123

99 98100

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

97 96 95 94 93 92 91 90 89 88 87 86 85 84 82 8183

I/O46I/O45I/O44I/O43I/O42I/O41I/O40I2ENABLEGNDGND

GNDTD0TRSTI/O55I/O54I/O53I/O52I/O51I/O50I/O49I/O48I4/CLK3GNDGND

I3/CLK2I/O47

GND

777675747372717069686766656463626160595857565554535251

807978

I/O24

I/O25

I/O26

I/O27

I/O28

I/O29

I/O30

I/O31

GN

DG

ND

I/O32

I/O33

I/O34

I/O35

I/O36

I/O37

I/O38

I/O39

Block A Block H

Block D Block E

Blo

ck C

Blo

ck B

Blo

ck F

Blo

ck G

(83)(12)(13)(14)(15)(16)(17)(18)(19)(20)

(23)(24)(25)(26)(27)(28)(29)(30)(31)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(62)(61)(60)(59)(58)(57)(56)(55)(54)(41)

(73)(72)(71)(70)(69)(68)(67)(66)(65)

(10) (9

)(8

)(7

)(6

)(5

)(4

)(3

)

(82)

(81)

(80)

(79)

(78)

(77)

(76)

(75)

VCCVCC

VCCVCC

VC

C

VC

C

17466E-6

10 MACH 4 Family

Page 11: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

CONNECTION DIAGRAM (M4(LV)-128)Top View

100-Pin TQFP

PIN DESIGNATIONSCLK/I = Clock or Input

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

TRST = Test Reset

ENABLE = Program

12345678910111213141516171819202122232425

GNDTDI

I/O8I/O9

I/O10I/O11I/O12I/O13I/O14I/O15

I0/CLK0VCCGND

I1/CLK1I/O16I/O17I/O18I/O19I/O20I/O21I/O22I/O23TMSTCKGND

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

GN

DG

ND

I/O24

I/O25

I/O26

I/O27

I/O28

I/O29

I/O30

I/O31 I2

VC

CG

ND

GN

DV

CC

I/O32

I/O33

I/O34

I/O35

I/O36

I/O37

I/O38

I/O39

GN

DG

ND

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

GN

DG

ND

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

I/O0

VC

CG

ND

GN

DV

CC

I5 I/O63

I/O62

I/O61

I/O60

I/O59

I/O58

I/O57

I/O56

GN

DG

ND

75747372717069686766656463626160595857565554535251

GNDTDOTRSTI/O55I/O54I/O53I/O52I/O51I/O50I/O49I/O48I4/CLK3GNDVCCI3/CLK2I/O47I/O46I/O45I/O44I/O43I/O42I/O41I/O40ENABLEGND

Blo

ck B

Blo

ck C

Block A Block H

Block D Block E

Blo

ck F

Blo

ck G

17466E-7

MACH 4 Family 11

Page 12: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CONNECTION DIAGRAM (M4-96/96)Top View

144-Pin PQFP

PIN DESIGNATIONSCLK = Clock

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

TRST = Test Reset

ENABLE = Program

63 64 65 66 67 68 69 70 71 72

73747576777879808182838485868788899091929394959697

56 57 58 59 60 61 62

9899

100101102103104

54 5553

108107

106105

31

4 567891011

123

282930

12131415161718192021222324252627

323334

3536

I/O13I/O14I/O15

VCCTDI

I5GND

I0/CLK0I1/CLK1

I/O16I/O17VCC

I/O18I/O19GNDI/O20I/O21I/O22I/O23I/O24I/O25VCCGNDI/O26I/O27I/O28I/O29I/O30I/O31GNDTMSTCKVCC

I/O32I/O33I/O34

I/O12

GN

DI/O

11I/O

10I/O

9I/O

8V

CC

I/O7

I/O6

GN

DI/O

5I/O

4I/O

3I/O

2I/O

1I/O

0V

CC

GN

DG

ND

VC

CI/O

95I/O

94I/O

93I/O

92I/O

91I/O

90G

ND

I/O89

I/O88

VC

CI/O

87I/O

86I/O

85I/O

84G

ND

I/O83

I/O82I/O81I/O80VCCTDO\TRSTGNDI4/CLK3I3/CLK2I/O79I/O78VCCI/O77I/O76GNDI/O75I/O74I/O73I/O72I/O71I/O70VCCGNDI/O69I/O68I/O67I/O66I/O65I/O64GNDI2ENABLEVCCI/O63I/O62I/O61

I/O35

GN

DI/O

36I/O

37I/O

38I/O

39V

CC

I/O40

I/O41

GN

DI/O

42I/O

43I/O

44I/O

45I/O

46I/O

47V

CC

GN

DG

ND

VC

CI/O

48I/O

49I/O

50I/O

51I/O

52I/O

53G

ND

I/O54

I/O55

VC

C

I/O56

I/O57

I/O58

I/O59

GN

DI/O

60

Block C Block D

Blo

ck B

Blo

ck E

Block A Block F

17466E-8

12 MACH 4 Family

Page 13: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

CONNECTION DIAGRAM (M4(LV)-192)Top View

144-Pin TQFP

Note:Advance information for the M4(LV)-192.

PIN DESIGNATIONSCLK = Clock

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

123456789101112131415161718192021222324252627282930313233343536

GNDTDI

I/O16I/O17I/O18I/O19I/O20I/O21I/O22I/O23

I2I3

VCCGND

I4I/O24I/O25I/O26I/O27I/O28I/O29I/O30I/O31GNDVCC

I/O32I/O33I/O34I/O35I/O36I/O37I/O38I/O39TMSTCKGND

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

GN

DI/O

40I/O

41I/O

42I/O

43I/O

44I/O

45I/O

46I/O

47 I5 I6 I7C

LK1

GN

DV

CC

CLK

2 I8 I9I/O

48I/O

49I/O

50I/O

51I/O

52I/O

53I/O

54I/O

55V

CC

GN

DI/O

56I/O

57I/O

58I/O

59I/O

60I/O

61I/O

62I/O

63

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

114

113

112

111

110

109

I/O15

I/O14

I/O13

I/O12

I/O11

I/O10

I/O9

I/O8

GN

DV

CC

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

I/O0

I1 I0 CLK

0G

ND

VC

CC

LK3

I15

I14

I13

I/O95

I/O94

I/O93

I/O92

I/O91

I/O90

I/O89

I/O88

GN

D

108107106105104103102101100999897969594939291908988878685848382818079787776757473

GNDTDONCI/O87I/O86I/O85I/O84I/O83I/O82I/O81I/O80I12VCCGNDI11I10I/O79I/O78I/O77I/O76I/O75I/O74I/O73I/O72GNDVCCI/O71I/O70I/O69I/O68I/O67I/O66I/O65I/O64NCGND

17466E-9

MACH 4 Family 13

Page 14: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CONNECTION DIAGRAM (M4(LV)-256)Top View

208-Pin PQFP

PIN DESIGNATIONSCLK = Clock

GND = Ground

I = Input

I/O = Input/Output

VCC = Supply Voltage

TDI = Test Data In

TCK = Test Clock

TMS = Test Mode Select

TDO = Test Data Out

TRST = Test Reset

ENABLE = Program

180

208

207

206

205

204

203

202

201

200

199

198

197

196

195

194

193

192

191

163

162

161

160

159

158

190

189

188

187

186

185

184

183

182

181

179

178

177

175

174

176

173

172

171

170

169

168

167

165

164

166

157

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 9756 57 58 59 60 61 62 98 99 100

101

102

103

104

54 5553

145

132131130129128127126125124123122

156155154153152151150149148

147146

144143142141140139138137136135134133

121120119118117116115114113112111110109108107106105

31

42

43444546474849505152

4 567891011

123

282930

12131415161718192021222324252627

40

41

3233343536373839

GNDTDI

I/O16I/O17I/O18I/O19I/O20I/O21I/O22I/O23VCCGNDI/O24I/O25I/O26I/O27I/O28I/O29I/O30I/O31

I2I3

GNDVCCVCCGNDGNDVCCVCCGND

I4I/O32I/O33I/O34I/O35I/O36I/O37I/O38I/O39GNDVCC

I/O40I/O41I/O42I/O43I/O44I/O45I/O46I/O47TMSTCKGND

GN

DI/O

15I/O

14I/O

13I/O

12I/O

11I/O

10I/O

9I/O

8G

ND

VC

CI/O

7I/O

6I/O

5I/O

4I/O

3I/O

2I/O

1I/O

0I1 I0 C

LK0

VC

CG

ND

GN

DV

CC

VC

CG

ND

GN

DV

CC

CLK

3I1

3I1

2I/O

127

I/O12

6I/O

125

I/O12

4I/O

123

I/O12

2I/O

121

I/O12

0V

CC

GN

DI/O

119

I/O11

8I/O

117

I/O11

6I/O

115

I/O11

4I/O

113

I/O11

2G

ND

GNDTDOTRSTI/O111I/O110I/O109I/O108I/O107I/O106I/O105I/O104VCCGNDI/O103I/O102I/O101I/O100I/O99I/O98I/O97I/O96I11GNDVCCVCCGNDGNDVCCVCCGNDI10I9I/O95I/O94I/O93I/O92I/O91I/O90I/O89I/O88GNDVCCI/O87I/O86I/O85I/O84I/O83I/O82I/O81I/O80ENABLEGND

GN

DI/O

48I/O

49I/O

50I/O

51I/O

52I/O

53I/O

54I/O

55G

ND

VC

CI/O

56I/O

57I/O

58I/O

59I/O

60I/O

61I/O

62I/O

63 I5 I6C

LK1

VC

CG

ND

GN

DV

CC

VC

CG

ND

GN

DV

CC

CLK

2 I7 I8I/O

64I/O

65I/O

66I/O

67I/O

68I/O

69I/O

70I/O

71V

CC

GN

DI/O

72I/O

73I/O

74I/O

75I/O

76I/O

77I/O

78I/O

79G

ND

Block HBlock G Block I Block J

Blo

ck E

Blo

ck C

Blo

ck F

Blo

ck D

Blo

ck MB

lock K

Blo

ck NB

lock L

Block ABlock B Block P Block O

17466E-10

14 MACH 4 Family

Page 15: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

ORDERING INFORMATIONCommercial ProductsVantis programmable logic products for commercial applications are available with several ordering options. The order number(Valid Combination) is formed by a combination of:

Valid Combinations

The Valid Combinations table lists configurations planned tobe supported in volume for this device. Consult the local Vantissales office to confirm availabil i ty of specific validcombinations and to check on newly released combinations.

/64

FAMILY TYPEM4- = MACH 4 Family (5-V VCC)

M4- 128 Y C

MACROCELL DENSITY 96 = 96 Macrocells128N = 128 Macrocells, Non-ISP 128 = 128 Macrocells 256 = 256 Macrocells

I/Os /64 = 64 I/Os /96 = 96 I/Os/128 = 128 I/Os

OPERATING CONDITIONSC = Commercial (0°C to +70°C)

PACKAGE TYPEJ = Plastic Leaded Chip Carrier (PLCC)Y = Plastic Quad Flat Pack (PQFP)V = Thin Quad Flat Pack (TQFP)

SPEED-7 = 7.5 ns tPD-10 = 10 ns tPD-12 = 12 ns tPD-15 = 15 ns tPD

-7

Valid Combinations

M4-128N/64 -7, -10, -12, -15 JC

M4-96/96 -15 YC

M4-128/64 -7, -10, -12, -15YC

M4-256/128 -10, -12, -15

M4-128/64 -7, -10, -12, -15 VC

MACH 4 Family, 5-V (Com’l) 15

Page 16: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

ORDERING INFORMATIONCommercial ProductsVantis programmable logic products for commercial applications are available with several ordering options. The order number(Valid Combination) is formed by a combination of:

Valid Combinations

The Valid Combinations table lists configurations planned tobe supported in volume for this device. Consult the local Vantissales office to confirm availabil i ty of specific validcombinations and to check on newly released combinations.

/64

FAMILY TYPEM4LV- = MACH 4 Family (3.3-V VCC)

M4LV- 128 Y C

MACROCELL DENSITY128N = 128 Macrocells, Non-ISP 128 = 128 Macrocells 256 = 256 Macrocells

I/Os /64 = 64 I/Os /128 = 128 I/Os

OPERATING CONDITIONSC = Commercial (0°C to +70°C)

PACKAGE TYPEJ = Plastic Leaded Chip Carrier (PLCC)Y = Plastic Quad Flat Pack (PQFP)V = Thin Quad Flat Pack (TQFP)

SPEED-7 = 7.5 ns tPD-10 = 10 ns tPD-12 = 12 ns tPD-15 = 15 ns tPD

-10

Valid Combinations

M4LV-128N/64 -7, -10, -12, -15 JC

M4LV-128/64 -7, -10, -12, -15YC

M4LV-256/128 -10, -12, -15

M4LV-128/64 -7, -10, -12, -15 VC

16 MACH 4 Family, 3.3-V (Com’l)

Page 17: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

ORDERING INFORMATIONIndustrial ProductsVantis programmable logic products for commercial applications are available with several ordering options. The order number(Valid Combination) is formed by a combination of:

Valid Combinations

The Valid Combinations table lists configurations planned tobe supported in volume for this device. Consult the local Vantissales office to confirm availabil i ty of specific validcombinations and to check on newly released combinations.

/64

FAMILY TYPEM4- = MACH 4 Family (5-V VCC)

M4- 128 Y I

MACROCELL DENSITY128N = 128 Macrocells, Non-ISP 128 = 128 Macrocells 256 = 256 Macrocells

I/Os /64 = 64 I/Os /128 = 128 I/Os

OPERATING CONDITIONSI = Industrial (40°C to +85°C)

PACKAGE TYPEJ = Plastic Leaded Chip Carrier (PLCC)Y = Plastic Quad Flat Pack (PQFP)V = Thin Quad Flat Pack (TQFP)

SPEED-10 = 10 ns tPD-12 = 12 ns tPD-14 = 14 ns tPD-18 = 18 ns tPD

-10

Valid Combinations

M4-128N/64 -10, -12, -14, -18 JI

M4-128/64 -10, -12, -14, -18YI

M4-256/128 -12, -14, -18

M4-128/64 -10, -12, -14, -18 VI

MACH 4 Family, 5-V (Ind) 17

Page 18: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

ORDERING INFORMATIONIndustrial ProductsVantis programmable logic products for industrial applications are available with several ordering options. The order number (ValidCombination) is formed by a combination of:

Valid Combinations

The Valid Combinations table lists configurations planned tobe supported in volume for this device. Consult the local Vantissales office to confirm availabil i ty of specific validcombinations and to check on newly released combinations.

/64

FAMILY TYPEM4LV- = MACH 4 Family (3.3-V VCC)

M4LV- 128 Y I

MACROCELL DENSITY128N = 128 Macrocells, Non-ISP 128 = 128 Macrocells 256 = 256 Macrocells

I/Os /64 = 64 I/Os /128 = 128 I/Os

OPERATING CONDITIONSI = Industrial (40°C to +85°C)

PACKAGE TYPEJ = Plastic Leaded Chip Carrier (PLCC)Y = Plastic Quad Flat Pack (PQFP)V = Thin Quad Flat Pack (TQFP)

SPEED-10 = 10 ns tPD-12 = 12 ns tPD-14 = 14 ns tPD-18 = 18 ns tPD

-10

Valid Combinations

M4LV-128N/64 -10, -12, -14, -18 JI

M4LV-128/64 -10, -12, -14, -18YI

M4LV-256/128 -12, -14, -18

M4LV-128/64 -10, -12, -14, -18 VI

18 MACH 4 Family, 3.3-V (Ind)

Page 19: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

FUNCTIONAL DESCRIPTION The fundamental architecture of the MACH 4 devices (Figure 1) consists of multiple optimized PAL blocks interconnected by a central switch matrix. The central switch matrix allows communication between PAL blocks, and routes inputs to the PAL blocks. Together, the PAL blocks and central switch matrix allow the logic designer to create large designs in a single device instead of multiple devices.

Most pins are I/O pins that can be used as inputs, output, or bidirectional pins. There are some dedicated input pins, but all macrocells have internal feedback, allowing the pin to be used as an input if the macrocell signal is not needed externally.

The key to being able to make effective use of these devices lies in the interconnect schemes. Because of the programmable interconnections, the product term arrays have been decoupled from the central switch matrix; the macrocells have been decoupled from the product terms through the logic allocator; and the I/O pins have been decoupled from the macrocells due to the output switch matrix. In addition, more input routing options are provided by the input switch matrix. These resources provide the flexibility needed to place and route designs efficiently.

In a MACH 4 device, all signals incur the same delays, regardless of routing. Performance is design-independent, and is guaranteed by the SpeedLocking feature.

I/OPins

Clock/InputPins

Cen

tral

Sw

itch

Mat

rix

I/OPins

I/OPins

DedicatedInput Pins

PAL Block

PAL Block

LogicAllocatorwith XOR

Output/Buried

Macrocells

33

or34

1616

ClockGenerator

LogicArray

Out

put S

witc

h M

atrix

InputSwitchMatrix

I/O C

ells

16

16

8

4 PAL Block

17466E-11

Figure 1. MACH 4 Block Diagram and PAL Block Structure

MACH 4 Family 19

Page 20: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

The PAL Blocks

The PAL blocks resemble independent PAL devices on the chip. This provides for logic functions that need the complete interconnect that a PAL device provides. PAL blocks communicate with each other through the central switch matrix.

Each PAL block consists of:

a product-term array

a logic allocator

macrocells

an output switch matrix

I/O cells

an input switch matrix

a clock generator

The logic allocator distributes the product terms to the macrocells, as required by each individual design. The macrocell configures the signal largely by determining the storage characteristics. Macrocell signals are routed to I/O cells and the I/O pins by the output switch matrix. The I/O cells on the MACH 4 devices also allow for registered or latched inputs. The input switch matrix optimizes the routing of input signals into the central switch matrix.

The clock generator uses the four global clock inputs to generate a set of four clock signals available throughout the PAL block. Various combinations of clock signals in both true and complement form can be generated.

Each PAL block also contains an asynchronous reset product term and an asynchronous preset product term to be used for synchronous-mode macrocells. This allows synchronous flip-flops within a single PAL block to be initialized as a bank. Macrocells implemented in asynchronous mode are not affected by the PAL-block initialization.

The Central Switch Matrix

The central switch matrix takes all dedicated inputs and signals from the input switch matrices and routes them as needed to the PAL blocks. Feedback signals that only return to the same PAL block still must go through the central switch matrix. This mechanism ensures that PAL blocks in the MACH 4 devices communicate with each other with consistent, predictable delays.

The central switch matrix makes a MACH 4 device more than just several PAL devices on a single chip. It allows the designer to think of the device not as a collection of blocks, but as a single programmable device; the software partitions the design into PAL blocks through the central switch matrix so that the designer does not have to be concerned with the internal architecture of the device.

The Input Switch Matrix

The input switch matrix (Figure 2) optimizes routing of inputs to the central switch matrix. Without the input switch matrix, each input and feedback signal has only one way to enter the central switch matrix. The input switch matrix provides additional ways for these signals to enter the central switch matrix.

20 MACH 4 Family

Page 21: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

PAL Block Clock Generation

Each MACH 4 device has four clock pins that can also be used as inputs. These pins drive a clock generator in each PAL block (Figure 3). The clock generator provides four clock signals that can be used anywhere in the PAL block. These four PAL block clock signals can consist of a large number of combinations of the true and complement edges of the global clock signals; Table 1 lists the possible combinations.

Table 1. PAL Block Clock Combinations

Block CLK0 Block CLK1 Block CLK2 Block CLK3

GCLK0

GCLK1

GCLK0

GCLK1

X

X

X

X

GCLK1

GCLK1

GCLK0

GCLK0

X

X

X

X

X

X

X

X

GCLK2

GCLK3

GCLK2

GCLK3

X

X

X

X

GCLK3

GCLK3

GCLK2

GCLK2

To

Cen

tral

Sw

itch

Mat

rix

Fro

m M

acro

cell

2

From Input Cell

Dire

ct

Fro

m M

acro

cell

1

Reg

iste

red/

Latc

hed

17466E-12

Figure 2. MACH 4 Input Switch Matrix

GCLK0

GCLK1

GCLK2

GCLK3

Block CLK0(GCLK0 or GCLK1)

Block CLK1(GCLK1 or GCLK0)

Block CLK2(GCLK2 or GCLK3)

Block CLK3(GCLK3 or GCLK2)

17466E-13

Figure 3. PAL Block Clock Generator

MACH 4 Family 21

Page 22: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

This feature provides high flexibility for partitioning state machines and dual-phase clocks. It also allows latches to be driven with either polarity of latch enable, and in a master-slave configuration.

Synchronous and Asynchronous Operation

The MACH 4 family can perform synchronous or asynchronous logic. Each individual cell can be programmed as synchronous or asynchronous, allowing unlimited “mixing and matching” of the two logic styles. The selection of synchronous or asynchronous mode affects the logic allocator and the macrocell, since product terms used for logic in the synchronous mode are used for control functions in the asynchronous mode.

The Product Term Array

The product-term array consists of a number of product terms that form the basis of the logic being implemented. The inputs to the AND gates come from the central switch matrix (Table 2), and are provided in both true and complement forms for efficient logic implementation.

Because the number of product terms available for a given logic function is not fixed, the full sum of products is not realized in the array. The product terms drive the logic allocator, which allocates the appropriate number of product terms to generate the function.

The Logic Allocator

Within the logic allocator, product terms are allocated to macrocells in “product term clusters.” The availability and distribution of product term clusters are automatically considered by the software as it places and routes functions within a PAL block. The size of a product term cluster has been optimized to provide high utilization of product terms, making complex functions using many product terms possible. Yet when few product terms are used, there will be a minimal number of unused—or wasted—product terms left over.

The logic allocator has two fundamental modes, depending on whether the macrocell is synchronous or asynchronous. The synchronous mode (Figure 4a) has a basic product term cluster of four product terms; the asynchronous mode (Figure 4b) has a basic cluster of two product terms. Note that if the product term cluster is routed to a different macrocell, the allocator configuration is not determined by the mode of the macrocell actually being driven. The configuration is always set by the mode of the macrocell that the cluster will drive if not routed away, regardless of the actual routing.

In addition, there is an extra product term that can either join the basic cluster to give an extended cluster, or drive the second input of an exclusive-OR gate in the signal path. If included with the basic cluster, this provides for up to 20 product terms on a synchronous function that uses four extended 5-product-term clusters. A similar asynchronous function can have up to 18 product terms.

Table 2. PAL Block Inputs

Device Number of Inputs to PAL Block

M4(LV)-32

M4(LV)-64

M4(LV)-96

M4(LV)-128

M4(LV)-192

33

33

33

33

33

M4(LV)-256 34

22 MACH 4 Family

Page 23: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

When the extra product term is used to extend the cluster, the value of the second XOR input can be programmed as a 0 or a 1, giving polarity control. The possible configurations of the logic allocator are shown in Figures 5 and 6.

Table 3. Logic Allocator

Output Macrocell Available Clusters Output Macrocell Available Clusters

M0 C0, C1, C2 M8 C7, C8, C9, C10

M1 C0, C1, C2, C3 M9 C8, C9, C10, C11

M2 C1, C2, C3, C4 M10 C9, C10, C11, C12

M3 C2, C3, C4, C5 M11 C10, C11, C12, C13

M4 C3, C4, C5, C6 M12 C11, C12, C13, C14

M5 C4, C5, C6, C7 M13 C12, C13, C14, C15

M6 C5, C6, C7, C8 M14 C13, C14, C15

M7 C6, C7, C8, C9 M15 C14, C15

0 Default

0 Default

Prog. Polarity

To

n-1

To

n-2

Fro

m n

-1

To

n+1

Fro

m n

+1

Fro

m n

+2

Basic Product Term Cluster

ExtraProduct

Term

Logic Allocator

a. Synchronous Mode

n n

To

mac

roce

lln

0 Default

0 Default

Prog. Polarity

To

n-1

To

n-2

Fro

m n

-1

To

n+1

Fro

m n

+1

Fro

m n

+2

Basic Product Term Cluster

ExtraProduct

Term

Logic Allocator

b. Asynchronous Mode

n n

To

mac

roce

lln

17466E-14

Figure 4. Logic Allocator. Configuration of cluster “n” set by mode of macrocell “n”.

MACH 4 Family 23

Page 24: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

Note that the configuration of the logic allocator has absolutely no impact on the speed of the signal. All configurations have the same delay. This means that designers do not have to decide between optimizing resources or speed; both can be optimized.

If not used in the cluster, the extra product term can act in conjunction with the basic cluster to provide XOR logic for such functions as data comparison, or it can work with the D-,T-type flip-flop to provide for J-K, and S-R register operation. In addition, if the basic cluster is routed to

00

a. Basic cluster with XOR b. Extended cluster, active high

c. Extended cluster, active low d. Basic cluster routed away; single-product-term, active high

e. Extended cluster routed away

17466E-15

Figure 5. Logic Allocator Configurations: Synchronous Mode

00

a. Basic cluster with XOR b. Extended cluster, active high

c. Extended cluster, active low d. Basic cluster routed away; single-product-term, active high

e. Extended cluster routed away

17466E-16

Figure 6. Logic Allocator Configurations: Asynchronous Mode

24 MACH 4 Family

Page 25: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

another macrocell, the extra product term is still available for logic. In this case, the first XOR input will be a logic 0. This circuit has the flexibility to route product terms elsewhere without giving up the use of the macrocell.

Product term clusters do not “wrap” around a PAL block. This means that the macrocells at the ends of the block have fewer product terms available. Refer to the individual product data sheets for details.

The Macrocell

The macrocell consists of a storage element, routing resources, a clock multiplexer, and initialization control. The macrocell has two fundamental modes: synchronous and asynchronous (Figure 7). The mode chosen only affects clocking and initialization in the macrocell.

In either mode, a combinatorial path can be used. For combinatorial logic, the synchronous mode will generally be used, since it provides more product terms in the allocator.

SWAP

D/T/L QAP AR

Power-UpReset

PAL-BlockInitialization

Product Terms

From Logic Allocator

Block CLK0

Block CLK1

Block CLK2

Block CLK3

To Output and InputSwitch Matrices

Common PAL-block resource

Individual macrocell resources

From PAL-ClockGenerator

a. Synchronous Mode

D/T/L QAP AR

Power-UpReset

IndividualInitialization

Product Term

From LogicAllocator

Block CLK0

Block CLK1

To Output and InputSwitch Matrices

Individual ClockProduct Term

From PAL-BlockClock Generator

b. Asynchronous Mode

17466E-17

Figure 7. Macrocell

MACH 4 Family 25

Page 26: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

The flip-flop can be configured as a D-type, T-type, J-K, or S-R register or latch. The primary flip-flop configurations are shown in Figure 8, although others are possible. Flip-flop functionality is defined in Table 4. Note that a J-K latch is inadvisable, as it will cause oscillation if both J and K inputs are HIGH.

D QAP AR

D QAP AR

L QAP AR

L QAP AR

GG

T QAP AR

a. D-type with XOR b. D-type with programmable D polarity

c. Latch with XOR d. Latch with programmable polarity

e. T-type with programmable T polarity

J QAP AR

K

f. J-K with programmable J and K polarity

S QAP AR

R

g. S-R with programmable S and R polarity h. Combinatorial with XOR

i. Combinatorial with programmable polarity

17466E-18

Figure 8. Primary Macrocell Configurations

26 MACH 4 Family

Page 27: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

*Polarity of CLK/LE can be programmed.

Although the macrocell shows only one input to the register, the XOR gate in the logic allocator allows the D-, T-type register to emulate J-K, and S-R behavior. In this case, the available product terms are divided between J and K (or S and R). When configured as J-K, S-R, or T-type, the extra product term must be used on the XOR gate input for flip-flop emulation. In any register type, the polarity of the inputs can be programmed.

The clock input to the flip-flop can select any of the four PAL block clocks in synchronous mode, with the additional choice of either polarity of an individual product term clock in the asynchronous mode.

The initialization circuit depends on the mode. In synchronous mode (Figure 9), asynchronous reset and preset are provided, each driven by a product term common to the entire PAL block.

Table 4. Register/Latch Operation

Configuration Input(s) CLK/LE* Q+

D-type Register

D=X

D=0

D=1

0,1, ↓ (↑)

↑ (↓)

↑ ↓

Q

0

1

T-type Register

T=X

T=0

T=1

0, 1, ↓ (↑)

↑ (↓)

↑ (↓)

Q

Q

Q

J-K Register

J=K=X

J=0, K=0

J=0, K=1

J=1, K=0

J=1, K=1

0,1, ↓ (↑)

↑ (↓)

↑ (↓)

↑ (↓)

↑ (↓)

Q

Q

0

1

Q

S-R Register

S=R=X

S=0, R=0

S=0, R=1

S=1, R=0

S=1, R=1

0,1, O (↓)

↑ (↓)

↑ (↓)

↑ (↓)

↑ (↓)

Q

Q

0

1

Undefined

D-type Latch

D=X

D=0

D=1

1(0)

0(1)

0(1)

Q

0

1

MACH 4 Family 27

Page 28: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

In asynchronous mode (Figure 10), a single individual product term is provided for initialization. It can be selected to control reset or preset.

Note that the reset/preset swapping selection feature affects power-up reset as well. The initialization functionality of the flip-flops is illustrated in Table 5.

The macrocell sends its data to the output switch matrix and the input switch matrix. The output switch matrix can route this data to an output if so desired. The input switch matrix can send the signal back to the central switch matrix as feedback.

Power-UpReset

APD/T/L

ARQ

PAL-BlockInitialization

Product Terms

a. Power-Up Reset

Power-UpPreset

APD/L

PAL-BlockInitialization

Product Terms

ARQ

b. Power-Up Preset

17466E-19

Figure 9. Synchronous Mode Initialization Configurations

Power-UpReset

APD/L/T

ARQ

IndividualReset

Product Term

a. Reset

Power-UpPreset

APD/L/T

ARQ

IndividualPreset

Product Term

b. Preset

17466E-20

Figure 10. Asynchronous Mode Initialization Configurations

28 MACH 4 Family

Page 29: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

*Transparent latch is unaffected by AR, AP.

The Output Switch Matrix

The output switch matrix allows macrocells to be connected to any of several I/O cells within a PAL Block. This provides high flexibility in determining pinout, and allows design changes that will not affect pinout.

In the MACH 4 devices, each PAL block has twice as many macrocells as I/O cells. The MACH 4 output switch matrix allows for half of the macrocells to drive I/O cells within a PAL block, in combinations according to Figure 11. Each I/O cell can choose from eight macrocells; each macrocell has a choice of four I/O cells.

Table 5. Asynchronous Reset/Preset Operation

AR AP CLK/LE* Q+

0 0 X See Table 3

0 1 X 1

1 0 X 0

1 1 X 0

Macro-cell

I/OCell

I/OCell

I/OCell

I/OCell

I/OCell

MUX

Macro-cell

Macro-cell

Macro-cell

Macro-cell

Macro-cell

Macro-cell

Macro-cell

Macro-cell

a. Macrocell drives one of 4 I/Os b. I/O can choose one of 8 macrocells17466E-21

Figure 11. MACH 4 Output Switch Matrix

MACH 4 Family 29

Page 30: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

The I/O Cell

The I/O cell (Figure 12) simply consists of programmable output enable, a feedback path, and in the MACH 4 devices, a flip-flop. An individual output enable product term is provided for each I/O cell. The feedback signal drives the input switch matrix.

The MACH 4 I/O cell contains a flip-flop, which provides the capability for storing the input in a D-type register or latch. The clock can be any of the PAL block clocks. Both the direct and registered versions of the input are sent to the input switch matrix. This allows for such functions as “time-domain-multiplexed” data comparison, where the first data value is stored, and then the second data value is put on the I/O pin and compared with the previous stored value.

Note that the flip-flop used in the MACH 4 I/O cell is independent of the flip-flops in the macrocells. It powers up to a logic low.

SpeedLocking for Guaranteed Fixed Timing

The MACH 4 architecture allows allocation of up to 20 product terms to an individual macrocell with the assistance of an XOR gate without incurring additional timing delays.

Using this architectural strength, the MACH 4 devices provide the industry's highest-speed and only fixed timing at both 3.3-V and 5-V supply voltages. This SpeedLocking feature delivers guaranteed fixed speed independent of logic path, routing resources, or design refits.

JTAG Boundary Scan Testability

All MACH 4 devices, except the M4(LV)-128N, have JTAG boundary scan cells built in. This allows functional testing of the device through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more complete board-level testing.

5-V or 3.3-V In-System Programming

Another benefit from the JTAG circuitry that Vantis has derived is the ability to use the JTAG port for 5-V or 3.3-V in-system programming. This allows the device to be soldered to the board before

D/L* Q

Block CLK3Block CLK2Block CLK1Block CLK0

To InputSwitchMatrix

IndividualOutput EnableProduct Term

From OutputSwitch Matrix

17466E-22

Figure 12. I/O Cell

30 MACH 4 Family

Page 31: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

programming. Once the device is attached, the delicate PQFP or TQFP leads are protected from programming and testing operations that could potentially damage them. Programming and verification of the device is done serially, and it only requires the use of the Test Access Port. Use of the programming Enable pin (ENABLE) is optional.

Zero-Hold-Time Input Register

The MACH 4 devices have a zero-hold time (ZHT) fuse. This fuse controls the time delay associated with loading data into all I/O cell registers and latches in the MACH 4 devices.

When programmed, the ZHT fuse increases the data path setup delays to input storage elements, matching equivalent delays in the clock path. When the fuse is erased, the setup time to the input storage element is minimized.

This feature facilitates doing worst-case designs for which data is loaded from sources which have low (or zero) minimum output propagation delays from clock edges.

Power-Down Mode

Each individual PAL block in the MACH 4 devices features a programmable low-power mode, which results in power savings of up to 50%. The signal speed paths in the low-power PAL block will be slightly slower than those in the non-low-power PAL block. This feature allows speed critical signal paths to run at maximum frequency while the rest of the signal paths operate in the low-power mode.

Bus-Friendly Inputs and I/Os

The MACH 4 devices’ inputs and I/Os feature the Bus-Friendly circuitry incorporating two inverters in series which loop back to the input. This double inversion weakly holds the input at its last driven logic state and pulls the voltage away from the input threshold voltage. At power-up, the Bus-Friendly latches are reset to a logic level “1.” For an illustration of this configuration, please refer to the Input/Output Equivalent Schematics section.

Programmable Slew Rate

Each MACH 4 device I/O has an individually programmable output slew-rate control bit. Each output can be individually configured for the highest speed transition or for the lowest noise transition. In systems properly designed for high-speed applications, the fast slew-rate output option can be used to achieve the highest speed. However, the slower slew rate is more effective than the fast slew rate in keeping noise generation and ground bounce to the minimum level.

PCI Compliant

The MACH 4 devices with speed grades -7, -10 and -12 are compliant with the PCI Local Bus Specification published by the PCI Special Interest Group. The predictable timing of the MACH 4 devices ensures compliance with the PCI timing specifications independent of the logic design fitting.

Safe for Mixed Supply Voltage System Designs

The MACH 4 devices are safe for mixed supply voltage system designs. The 5-V device will not overdrive 3.3-V devices above the output voltage of 3.3 V, while it accepts inputs from other 3.3-V devices. The 3.3-V device will accept inputs up to 5.5 V. Thus, the MACH 4 devices provide easy-to-use mixed-voltage design capability.

MACH 4 Family 31

Page 32: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

Power-Up Reset/Preset

All flip-flops power up to a known state for predictable system initialization. The power-up value can be programmed through the initialization swapping selection feature. The VCC rise must be monotonic and clock must be inactive until the reset delay time, 10 µs maximum, has elapsed.

Security Bit

A security bit is provided on the MACH 4 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. Preload and the JTAG circuitry can be used independently of the security bit, since a separate security bit is provided to disable these features. The bits can only be erased in conjunction with the array during an erase cycle.

Quality and Testability

The MACH devices offer a very high level of built-in quality. The fact that the device is erasable allows direct verification of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

Technology

The MACH 4 devices, except the M4-96/96, are fabricated on Vantis’ advanced electrically-erasable 0.35-µm (Leff) CMOS technology. This provides the devices with performance and power consumption that are unmatched in the industry. The floating gate cells rely on Fowler-Nordheim tunnelling to charge the gate, and have long proven their endurance and reliability.

32 MACH 4 Family

Page 33: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

ABSOLUTE MAXIMUM RATINGSStorage Temperature . . . . . . . . . . . . . –65°C to +150°CAmbient Temperaturewith Power Applied . . . . . . . . . . . . . –55°C to +100°CDevice Junction Temperature . . . . . . . . . . . . . +130°CSupply Voltagewith Respect to Ground . . . . . . . . . . –0.5 V to +7.0 V

DC Input Voltage . . . . . . . . . . . .–0.5 V to VCC + 0.5 V

Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V

Latchup Current (TA = 0°C to +70°C) . . . . . . . . 200 mA

Stresses above those listed under Absolute Maximum Ratingsmay cause permanent device failure. Functionality at or abovethese limits is not implied. Exposure to Absolute MaximumRatings for extended periods may affect device reliability.

OPERATING RANGESCommercial (C) DevicesAmbient Temperature (TA)Operating in Free Air . . . . . . . . . . . . . . . 0°C to +70°CSupply Voltage (VCC)with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V

Operating ranges define those limits between which thefunctionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges

Notes:1. Total IOL for one PAL block should not exceed 64 mA.

2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.

3. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol Parameter Description Test Conditions Min Typ Max Unit

VOH Output HIGH VoltageIOH = –3.2 mA, VCC = MinVIN = VIH or VIL

2.4 3.3 V

VOL Output LOW VoltageIOL = 24 mA, VCC = MinVIN = VIH or VIL (Note 1)

0.5 V

VIH Input HIGH VoltageGuaranteed Input Logical HIGH Voltage for all Inputs (Note 2)

2.0 V

VIL Input LOW VoltageGuaranteed Input Logical LOW Voltage for all Inputs (Note 2)

0.8 V

IIH Input HIGH Leakage Current VIN = 5.25 V, VCC = Max (Note 3) 10 µA

IIL Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 3) –10 µA

IOZHOff-State Output Leakage Current HIGH

VOUT = 5.25 V, VCC = Max VIN = VIH or VIL (Note 3)

10 µA

IOZLOff-State Output Leakage Current LOW

VOUT = 0 V, VCC = Max VIN = VIH or VIL (Note 3)

–10 µA

ISC Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 4) –30 –160 mA

MACH 4 Family, 5-V (Com’l) 33

Page 34: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CAPACITANCE (Note 1)

Note:1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where

capacitance may be affected.

Parameter Symbol Parameter Description Test Conditions Typ Unit

CIN Input Capacitance VIN = 2.0 V VCC = 5.0 V, TA = 25°C, f = 1 MHz

6 pF

COUT Output Capacitance VOUT = 2.0 V 8 pF

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-7 -10 -12 -15

UnitMin Max Min Max Min Max Min Max

tPD Input, I/O, or Feedback to Combinatorial Output 3 7.5 3 10 3 12 3 15 ns

tSASetup Time from Input, I/O, or Feedback to Product Term Clock

D-type 3.5 4 5 8 ns

T-type 4.5 5 6 9 ns

tHA Register Data Hold Time Using Product Term Clock 3.5 4 5 8 ns

tCOA Product Term Clock to Output 4 9.5 4 12 4 14 4 18 ns

tWLAProduct Term, Clock Width

LOW 4 5 8 9 ns

tWHA HIGH 4 5 8 9 ns

fMAXA

Maximum Frequency Using Product Term Clock (Note 2)

External Feedback 1/(tSA + tCOA)D-type 74.0 62.5 52.6 38.5 MHz

T-type 71.4 58.8 50.0 37 MHz

Internal Feedback (fCNTA)D-type 90.9 71.4 58.8 47.6 MHz

T-type 83.3 66.7 55.6 45.4 MHz

No Feedback (Note 3)

1/(tWLA + tWHA) 125 100 62.5 55.6 MHz

tSSSetup Time from Input, I/O, or Feedback to Global Clock

D-type 5.5 6 7 10 ns

T-type 6.5 7 8 11 ns

tHS Register Data Hold Time Using Global Clock 0 0 0 0 ns

tCOS Global Clock to Output 2 5.5 2 6.5 2 8 2 10 ns

tWLSGlobal Clock Width

LOW 3 5 6 6 ns

tWHS HIGH 3 5 6 6 ns

fMAXS

Maximum Frequency Using Global Clock (Note 2)

External Feedback 1/(tSS + tCOS)D-type 90 80 66.7 50 MHz

T-type 83.3 74.1 62.5 47.6 MHz

Internal Feedback (fCNTS)D-type 133 100 83.3 66.6 MHz

T-type 117 90.9 76.9 62.5 MHz

No Feedback (Note 3)

1/(tWLS + tWHS) 166.7 100 83.3 88.3 MHz

tSLASetup Time from Input, I/O, or Feedback to Product Term Clock

4 4 5 8 ns

34 MACH 4 Family, 5-V (Com’l)

Page 35: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

tHLA Latch Data Hold Time Using Product Term Clock 4 4 5 8 ns

tGOA Product Term Gate to Output 11 13 16 19 ns

tGWAProduct Term Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)

4 5 6 9 ns

tSLS Setup Time from Input, I/O, or Feedback to Global Gate 6 7 8 10 ns

tHLS Latch Data Hold Time Using Global Gate 0 0 0 0 ns

tGOS Gate to Output 6 7.5 10 11 ns

tGWSGlobal Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)

5 5 6 6 ns

tICO Input Register Clock to Combinatorial Output 14 15.5 18 20 ns

tICS Input Register Clock to Output Register SetupD-type 7 8 9 15

T-type 8 9 10 16

tWICLInput Register Clock Width

LOW 4.5 5 6 6 ns

tWICH HIGH 4.5 5 6 6 ns

fMAXIRMaximum Input Register Frequency

1/(tWICL + tWICH) 110 100 83.3 83.3 MHz

tIGO Input Latch Gate to Combinatorial Output 12 14 16 20 ns

tIGOLInput Latch Gate to Output Through Transparent Output Latch

14 16 18 22 ns

tIGSAInput Latch Gate to Output Latch Setup Using Product Term Output Latch Gate

4 4 4 14 ns

tIGSSInput Latch Gate to Output Latch Setup Using Global Output Latch Gate

9 9 9 16 ns

tWIGL Input Latch Gate Width LOW 5 5 6 6 ns

tAR Asynchronous Reset to Registered or Latched Output 12 14 16 20 ns

tARW Asynchronous Reset Width (Note 2) 10 10 12 15 ns

tARR Asynchronous Reset Recovery Time (Note 2) 8 8 10 15 ns

tAP Asynchronous Preset to Registered or Latched Output 12 14 16 20 ns

tAPW Asynchronous Preset Width (Note 2) 10 10 12 15 ns

tAPR Asynchronous Preset Recovery Time (Note 2) 8 8 8 15 ns

tEA Input, I/O, or Feedback to Output Enable 2 9.5 2 10 2 12 2 15 ns

tER Input, I/O, or Feedback to Output Disable 2 9.5 2 10 2 12 2 15 ns

Input Register with Standard-Hold-Time Option

tPDLInput, I/O, or Feedback to Output Through Transparent Input Latch

10 12 14 17 ns

tSIR Input Register Setup Time 2 2 2 2 ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-7 -10 -12 -15

UnitMin Max Min Max Min Max Min Max

MACH 4 Family, 5-V (Com’l) 35

Page 36: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

Notes:1. See Switching Test Circuit for test conditions.

2. These parameters are not 100% tested, but are evaluated at initial characterization.

3. This parameter does not apply to flip-flops in the emulated mode since the feedback path is required for emulation.

tHIR Input Register Hold Time 3 3 3 4 ns

tSIL Input Latch Setup Time 2 2 2 2 ns

tHIL Input Latch Hold Time 3 3 3 4 ns

tSLLASetup Time from Input, I/O, or Feedback Through Transparent Input Latch to Product Term Output Gate

4 4 4 4 ns

tSLLSSetup Time from Input, I/O, or Feedback Through Transparent Input Latch to Output Gate

7 8 9 12 ns

tPDLLInput, I/O, or Feedback to Output Through Transparent Input and Output Latches

12 14 16 19 ns

Input Register with Zero-Hold-Time Option

tPDLI Input, I/O, or Feedback to Output Through Transparent

Input Latch16 18 20 23 ns

tSIRI Input Register Setup Time 6 6 6 6 ns

tHIRI Input Register Hold Time 0 0 0 0 ns

tSILI Input Latch Setup Time 6 6 6 6 ns

tHILI Input Latch Hold Time 0 0 0 0 ns

tSLLAI Setup Time from Input, I/O, or Feedback Through

Transparent Input Latch to Product Term Output Gate11 13 16 16 ns

tSLLSI Setup Time from Input, I/O, or Feedback Through

Transparent Input Latch to Output Gate12 15 18 18 ns

tPDLLI Input, I/O, or Feedback to Output Through Transparent

Input and Output Latches18 20 22 25 ns

Power-Down Mode and Slow Slew Rate Option

tLP

Power-down mode delay adder. For macrocells in a power-down mode PAL block, this parameter must be added to: tPD, tCOA, tSS, tGOA, tSLS, tICO, tICS, tIGO, tIGOL, tIGSS, tAR, tARR, tAP, tAPR, tEA, tER, tPDL, tSLLS, tPDLL

2.5 2.5 2.5 2.5 ns

tSLW

Slow slew rate delay adder. For an output configured with slow slew rate option, this parameter must be added to: tPD, tCOA, tCOS, tGOA, tGOS, tICO, tIGO, tIGOL, tAP, tAR, tPDL, tPDLL

2.5 2.5 2.5 2.5 ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-7 -10 -12 -15

UnitMin Max Min Max Min Max Min Max

36 MACH 4 Family, 5-V (Com’l)

Page 37: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

ABSOLUTE MAXIMUM RATINGSStorage Temperature . . . . . . . . . . . . . –65°C to +150°CAmbient Temperature with Power Applied . . . . . . . . . . . . . –55°C to +100°CDevice Junction Temperature . . . . . . . . . . . . . +130°CSupply Voltage with Respect to Ground . . . . . . . . . . –0.5 V to +4.5 V

DC Input Voltage . . . . . . . . . . . . . . . . –0.5 V to 6.0 V

Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V

Latchup Current (TA = 0°C to +70°C) . . . . . . . . 200 mA

Stresses above those listed under Absolute Maximum Ratingsmay cause permanent device failure. Functionality at or abovethese limits is not implied. Exposure to Absolute MaximumRatings for extended periods may affect device reliability.

OPERATING RANGESCommercial (C) DevicesAmbient Temperature (TA) Operating in Free Air . . . . . . . . . . . . . . . 0°C to +70°CSupply Voltage (VCC) with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V

Operating ranges define those limits between which thefunctionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges

Notes:1. Total IOL for one PAL block should not exceed 64 mA.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Parameter Symbol Parameter Description Test Conditions Min Typ Max Unit

VOH Output HIGH VoltageVCC = Min VIN = VIH or VIL

IOH = –100 µA VCC – 0.2 V

IOH = –3.2 mA 2.4 V

VOL Output LOW VoltageVCC = Min VIN = VIH or VIL (Note 1)

IOL = 100 µA 0.2 V

IOL = 24 mA 0.5 V

VIH Input HIGH VoltageGuaranteed Input Logical HIGH Voltage for all Inputs

2.0 5.5 V

VIL Input LOW VoltageGuaranteed Input Logical LOW Voltage for all Inputs

–0.3 0.8 V

IIH Input HIGH Leakage Current VIN = 3.6 V, VCC = Max (Note 2) 5 µA

IIL Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 2) –5 µA

IOZH Off-State Output Leakage Current HIGHVOUT = 3.6 V, VCC = Max VIN = VIH or VIL (Note 2)

5 µA

IOZL Off-State Output Leakage Current LOWVOUT = 0 V, VCC = Max VIN = VIH or VIL (Note 2)

–5 µA

ISC Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 3) –15 –160 mA

MACH4 Family, 3.3-V (Com’l) 37

Page 38: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CAPACITANCE (Note 1)

Note:1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where

capacitance may be affected.

Parameter Symbol Parameter Description Test Conditions Typ Unit

CIN Input Capacitance VIN = 2.0 V VCC = 3.3 V, TA = 25°C, f = 1 MHz

6 pF

COUT Output Capacitance VOUT = 2.0 V 8 pF

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-7 -10 -12 -15

UnitMin Max Min Max Min Max Min Max

tPD Input, I/O, or Feedback to Combinatorial Output 3 7.5 3 10 3 12 3 15 ns

tSASetup Time from Input, I/O, or Feedback to Product Term Clock

D-type 3.5 4 5 8 ns

T-type 4.5 5 6 9 ns

tHA Register Data Hold Time Using Product Term Clock 3.5 4 5 8 ns

tCOA Product Term Clock to Output 4 4 12 4 14 4 18 ns

tWLAProduct Term, Clock Width

LOW 4 5 8 9 ns

tWHA HIGH 4 5 8 9 ns

fMAXA

Maximum Frequency Using Product Term Clock (Note 2)

External Feedback 1/(tSA + tCOA)D-type 74.0 62.5 52.6 38.5 MHz

T-type 71.4 58.8 50.0 37 MHz

Internal Feedback (fCNTA)D-type 90.9 71.4 58.8 47.6 MHz

T-type 83.3 66.7 55.6 45.4 MHz

No Feedback(Note 3)

1/(tWLA + tWHA) 125 100 62.5 55.6 MHz

tSSSetup Time from Input, I/O, or Feedback to Global Clock

D-type 5.5 6 7 10 ns

T-type 6.5 7 8 11 ns

tHS Register Data Hold Time Using Global Clock 0 0 0 0 ns

tCOS Global Clock to Output 2 5.5 2 6.5 2 8 2 10 ns

tWLSGlobal Clock Width

LOW 3 5 6 6 ns

tWHS HIGH 3 5 6 6 ns

fMAXS

Maximum Frequency Using Global Clock (Note 2)

External Feedback 1/(tSS + tCOS)D-type 90 80 66.7 50 MHz

T-type 83.3 74.1 62.5 47.6 MHz

Internal Feedback (fCNTS)D-type 133 100 83.3 66.6 MHz

T-type 117 90.9 76.9 62.5 MHz

No Feedback (Note 3)

1/(tWLS + tWHS)

166.7100 83.3 88.3 MHz

tSLASetup Time from Input, I/O, or Feedback to Product Term Clock

4 4 5 8 ns

38 MACH 4 Family, 3.3-V (Com’l)

Page 39: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

tHLA Latch Data Hold Time Using Product Term Clock 4 4 5 8 ns

tGOA Product Term Gate to Output 11 13 16 19 ns

tGWAProduct Term Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)

4 5 6 9 ns

tSLS Setup Time from Input, I/O, or Feedback to Global Gate 6 7 8 10 ns

tHLS Latch Data Hold Time Using Global Gate 0 0 0 0 ns

tGOS Gate to Output 6 7.5 10 11 ns

tGWSGlobal Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)

5 5 6 6 ns

tICO Input Register Clock to Combinatorial Output 14 15.5 18 20 ns

tICS Input Register Clock to Output Register SetupD-type 7 8 9 15

T-type 8 9 10 16

tWICLInput Register Clock Width

LOW 4.5 5 6 6 ns

tWICH HIGH 4.5 5 6 6 ns

fMAXIRMaximum Input Register Frequency

1/(tWICL + tWICH) 110 100 83.3 83.3 MHz

tIGO Input Latch Gate to Combinatorial Output 12 14 16 20 ns

tIGOLInput Latch Gate to Output Through Transparent Output Latch

14 16 18 22 ns

tIGSAInput Latch Gate to Output Latch Setup Using Product Term Output Latch Gate

4 4 4 14 ns

tIGSSInput Latch Gate to Output Latch Setup Using Global Output Latch Gate

9 9 9 16 ns

tWIGL Input Latch Gate Width LOW 5 5 6 6 ns

tAR Asynchronous Reset to Registered or Latched Output 12 14 16 20 ns

tARW Asynchronous Reset Width (Note 2) 10 10 12 15 ns

tARR Asynchronous Reset Recovery Time (Note 2) 8 8 10 15 ns

tAP Asynchronous Preset to Registered or Latched Output 12 14 16 20 ns

tAPW Asynchronous Preset Width (Note 2) 10 10 12 15 ns

tAPR Asynchronous Preset Recovery Time (Note 2) 8 8 8 15 ns

tEA Input, I/O, or Feedback to Output Enable 2 9.5 2 10 2 12 2 15 ns

tER Input, I/O, or Feedback to Output Disable 2 9.5 2 10 2 12 2 15 ns

Input Register with Standard-Hold-Time Option

tPDLInput, I/O, or Feedback to Output Through Transparent Input Latch

10 12 14 17 ns

tSIR Input Register Setup Time 2 2 2 2 ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-7 -10 -12 -15

UnitMin Max Min Max Min Max Min Max

MACH 4 Family, 3.3-V (Com’l) 39

Page 40: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

Notes:1. See Switching Test Circuit for test conditions.

2. These parameters are not 100% tested, but are evaluated at initial characterization.

3. This parameter does not apply to flip-flops in the emulated mode since the feedback path is required for emulation.

tHIR Input Register Hold Time 3 3 3 4 ns

tSIL Input Latch Setup Time 2 2 2 2 ns

tHIL Input Latch Hold Time 3 3 3 4 ns

tSLLASetup Time from Input, I/O, or Feedback Through Transparent Input Latch to Product Term Output Gate

4 4 4 4 ns

tSLLSSetup Time from Input, I/O, or Feedback Through Transparent Input Latch to Output Gate

7 8 9 12 ns

tPDLLInput, I/O, or Feedback to Output Through Transparent Input and Output Latches

12 14 16 19 ns

Input Register with Zero-Hold-Time Option

tPDLI Input, I/O, or Feedback to Output Through Transparent

Input Latch16 18 20 23 ns

tSIRI Input Register Setup Time 6 6 6 6 ns

tHIRI Input Register Hold Time 0 0 0 0 ns

tSILI Input Latch Setup Time 6 6 6 6 ns

tHILI Input Latch Hold Time 0 0 0 0 ns

tSLLAI Setup Time from Input, I/O, or Feedback Through

Transparent Input Latch to Product Term Output Gate11 13 16 16 ns

tSLLSI Setup Time from Input, I/O, or Feedback Through

Transparent Input Latch to Output Gate12 15 18 18 ns

tPDLLI Input, I/O, or Feedback to Output Through Transparent

Input and Output Latches18 20 22 25 ns

Power-Down Mode and Slow Slew Rate Option

tLP

Power-down mode delay adder. For macrocells in a power-down mode PAL block, this parameter must be added to: tPD, tCOA, tSS, tGOA, tSLS, tICO, tICS, tIGO, tIGOL, tIGSS, tAR, tARR, tAP, tAPR, tEA, tER, tPDL, tSLLS, tPDLL

2.5 2.5 2.5 2.5 ns

tSLW

Slow slew rate delay adder. For an output configured with slow slew rate option, this parameter must be added to: tPD, tCOA, tCOS, tGOA, tGOS, tICO, tIGO, tIGOL, tAP, tAR, tPDL, tPDLL

2.5 2.5 2.5 2.5 ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-7 -10 -12 -15

UnitMin Max Min Max Min Max Min Max

40 MACH 4 Family, 3.3-V (Com’l)

Page 41: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

ABSOLUTE MAXIMUM RATINGSStorage Temperature . . . . . . . . . . . . . –65°C to +150°CAmbient Temperaturewith Power Applied . . . . . . . . . . . . . –55°C to +100°CDevice Junction Temperature . . . . . . . . . . . . . +130°CSupply Voltagewith Respect to Ground . . . . . . . . . . –0.5 V to +7.0 V

DC Input Voltage . . . . . . . . . . . .–0.5 V to VCC + 0.5 V

Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V

Latchup Current (TA = –40°C to +85°C) . . . . . . 200 mA

Stresses above those listed under Absolute Maximum Ratingsmay cause permanent device failure. Functionality at or abovethese limits is not implied. Exposure to Absolute MaximumRatings for extended periods may affect device reliability.

OPERATING RANGESIndustrial (I) DevicesAmbient Temperature (TA)Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°CSupply Voltage (VCC)with Respect to Ground . . . . . . . . . . +4.50 V to +5.5 V

Operating ranges define those limits between which thefunctionality of the device is guaranteed.

DC CHARACTERISTICS over INDUSTRIAL operating ranges

Notes:1. Total IOL for one PAL block should not exceed 64 mA.

2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.

3. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol Parameter Description Test Conditions Min Typ Max Unit

VOH Output HIGH VoltageIOH = –3.2 mA, VCC = MinVIN = VIH or VIL

2.4 3.3 V

VOL Output LOW VoltageIOL = 24 mA, VCC = MinVIN = VIH or VIL (Note 1)

0.5 V

VIH Input HIGH VoltageGuaranteed Input Logical HIGH Voltage for all Inputs (Note 2)

2.0 V

VIL Input LOW VoltageGuaranteed Input Logical LOW Voltage for all Inputs (Note 2)

0.8 V

IIH Input HIGH Leakage Current VIN = 5.25 V, VCC = Max (Note 3) 10 µA

IIL Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 3) –10 µA

IOZH Off-State Output Leakage Current HIGHVOUT = 5.25 V, VCC = Max VIN = VIH or VIL (Note 3)

10 µA

IOZL Off-State Output Leakage Current LOWVOUT = 0 V, VCC = Max VIN = VIH or VIL (Note 3)

–10 µA

ISC Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 4) –30 –160 mA

MACH 4 Family, 5-V (Ind) 41

Page 42: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CAPACITANCE (Note 1)

Note:1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where

capacitance may be affected.

Parameter Symbol Parameter Description Test Conditions Typ Unit

CIN Input Capacitance VIN = 2.0 V VCC = 5.0 V, TA = 25°C, f = 1 MHz

6 pF

COUT Output Capacitance VOUT = 2.0 V 8 pF

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-10 -12 -14 -18

UnitMin Max Min Max Min Max Min Max

tPD Input, I/O, or Feedback to Combinatorial Output 3 10 3 12 3 14 3 18 ns

tSASetup Time from Input, I/O, or Feedback to Product Term Clock

D-type 4 5 8 10 ns

T-type 5 6 9 11 ns

tHA Register Data Hold Time Using Product Term Clock 4 5 8 10 ns

tCOA Product Term Clock to Output 4 12 4 14 4 18 4 20 ns

tWLAProduct Term, Clock Width

LOW 5 8 9 10 ns

tWHA HIGH 5 8 9 10 ns

fMAXA

Maximum Frequency Using Product Term Clock (Note 2)

External Feedback 1/(tSA + tCOA)D-type 62.5 52.6 38.5 33.3 MHz

T-type 58.8 50.0 37 32.2 MHz

Internal Feedback (fCNTA)D-type 71.4 58.8 47.6 35.7 MHz

T-type 66.7 55.6 45.4 34.4 MHz

No Feedback (Note 3)

1/(tWLA + tWHA) 100 62.5 55.6 50.0 MHz

tSSSetup Time from Input, I/O, or Feedback to Global Clock

D-type 6 7 10 12 ns

T-type 7 8 11 13 ns

tHS Register Data Hold Time Using Global Clock 0 0 0 0 ns

tCOS Global Clock to Output 2 6.5 2 8 2 10 2 12 ns

tWLSGlobal Clock Width

LOW 5 6 6 7 ns

tWHS HIGH 5 6 6 7 ns

fMAXS

Maximum Frequency Using Global Clock (Note 2)

External Feedback 1/(tSS + tCOS)D-type 80 66.7 50 41.7 MHz

T-type 74.1 62.5 47.6 40.0 MHz

Internal Feedback (fCNTS)D-type 100 83.3 66.6 58.8 MHz

T-type 90.9 76.9 62.5 55.5 MHz

No Feedback (Note 3)

1/(tWLS + tWHS) 100 83.3 88.3 71.4 MHz

tSLASetup Time from Input, I/O, or Feedback to Product Term Clock

4 5 8 10 ns

42 MACH 4 Family, 5-V (Ind)

Page 43: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

tHLA Latch Data Hold Time Using Product Term Clock 4 5 8 10 ns

tGOA Product Term Gate to Output 13 16 19 22 ns

tGWAProduct Term Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)

5 6 9 11 ns

tSLS Setup Time from Input, I/O, or Feedback to Global Gate 7 8 10 12 ns

tHLS Latch Data Hold Time Using Global Gate 0 0 0 0 ns

tGOS Gate to Output 7.5 10 11 12 ns

tGWSGlobal Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)

5 6 6 7 ns

tICO Input Register Clock to Combinatorial Output 15.5 18 20 22 ns

tICS Input Register Clock to Output Register SetupD-type 8 9 15 17

T-type 9 10 16 18

tWICLInput Register Clock Width

LOW 5 6 6 7 ns

tWICH HIGH 5 6 6 7 ns

fMAXIRMaximum Input Register Frequency

1/(tWICL + tWICH) 100 83.3 83.3 71.4 MHz

tIGO Input Latch Gate to Combinatorial Output 14 16 20 22 ns

tIGOLInput Latch Gate to Output Through Transparent Output Latch

16 18 22 24 ns

tIGSAInput Latch Gate to Output Latch Setup Using Product Term Output Latch Gate

4 4 14 16 ns

tIGSSInput Latch Gate to Output Latch Setup Using Global Output Latch Gate

9 9 16 18 ns

tWIGL Input Latch Gate Width LOW 5 6 6 7 ns

tAR Asynchronous Reset to Registered or Latched Output 14 16 20 22 ns

tARW Asynchronous Reset Width (Note 2) 10 12 15 17 ns

tARR Asynchronous Reset Recovery Time (Note 2) 8 10 15 17 ns

tAP Asynchronous Preset to Registered or Latched Output 14 16 20 22 ns

tAPW Asynchronous Preset Width (Note 2) 10 12 15 17 ns

tAPR Asynchronous Preset Recovery Time (Note 2) 8 8 15 17 ns

tEA Input, I/O, or Feedback to Output Enable 2 10 2 12 2 15 2 17 ns

tER Input, I/O, or Feedback to Output Disable 2 10 2 12 2 15 2 17 ns

Input Register with Standard-Hold-Time Option

tPDLInput, I/O, or Feedback to Output Through Transparent Input Latch

12 14 17 20 ns

tSIR Input Register Setup Time 2 2 2 2 ns

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-10 -12 -14 -18

UnitMin Max Min Max Min Max Min Max

MACH 4 Family, 5-V (Ind) 43

Page 44: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

tHIR Input Register Hold Time 3 3 4 4 ns

tSIL Input Latch Setup Time 2 2 2 2 ns

tHIL Input Latch Hold Time 3 3 4 4 ns

tSLLASetup Time from Input, I/O, or Feedback Through Transparent Input Latch to Product Term Output Gate

4 4 4 4 ns

tSLLSSetup Time from Input, I/O, or Feedback Through Transparent Input Latch to Output Gate

8 9 12 15 ns

tPDLLInput, I/O, or Feedback to Output Through Transparent Input and Output Latches

14 16 19 22 ns

Input Register with Zero-Hold-Time Option

tPDLI Input, I/O, or Feedback to Output Through Transparent

Input Latch18 20 23 26 ns

tSIRI Input Register Setup Time 6 6 6 6 ns

tHIRI Input Register Hold Time 0 0 0 0 ns

tSILI Input Latch Setup Time 6 6 6 6 ns

tHILI Input Latch Hold Time 0 0 0 0 ns

tSLLAI Setup Time from Input, I/O, or Feedback Through

Transparent Input Latch to Product Term Output Gate13 16 16 16 ns

tSLLSI Setup Time from Input, I/O, or Feedback Through

Transparent Input Latch to Output Gate15 18 18 18 ns

tPDLLI Input, I/O, or Feedback to Output Through Transparent

Input and Output Latches20 22 25 27 ns

Power-Down Mode and Slow Slew Rate Option

tLP

Power-down mode delay adder. For macrocells in a power-down mode PAL block, this parameter must be added to: tPD, tCOA, tSS, tGOA, tSLS, tICO, tICS, tIGO, tIGOL, tIGSS, tAR, tARR, tAP, tAPR, tEA, tER, tPDL, tSLLS, tPDLL

2.5 2.5 2.5 2.5 ns

tSLW

Slow slew rate delay adder. For an output configured with slow slew rate option, this parameter must be added to: tPD, tCOA, tCOS, tGOA, tGOS, tICO, tIGO, tIGOL, tAP, tAR, tPDL, tPDLL

2.5 2.5 2.5 2.5 ns

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-10 -12 -14 -18

UnitMin Max Min Max Min Max Min Max

44 MACH 4 Family, 5-V (Ind)

Page 45: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

MA

CH 4 Fam

ily

ABSOLUTE MAXIMUM RATINGSStorage Temperature . . . . . . . . . . . . . –65°C to +150°CAmbient Temperature with Power Applied . . . . . . . . . . . . . –55°C to +100°CDevice Junction Temperature . . . . . . . . . . . . . +130°CSupply Voltage with Respect to Ground . . . . . . . . . . –0.5 V to +4.5 V

DC Input Voltage . . . . . . . . . . . . . . . . –0.5 V to 6.0 V

Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V

Latchup Current (TA = –40°C to +85°C) . . . . . . 200 mA

Stresses above those listed under Absolute Maximum Ratingsmay cause permanent device failure. Functionality at or abovethese limits is not implied. Exposure to Absolute MaximumRatings for extended periods may affect device reliability.

OPERATING RANGESIndustrial (I) DevicesAmbient Temperature (TA) Operating in Free Air . . . . . . . . . . . . . . –40°C to +85°CSupply Voltage (VCC) with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V

Operating ranges define those limits between which thefunctionality of the device is guaranteed.

DC CHARACTERISTICS over INDUSTRIAL operating ranges

Notes:1. Total IOL for one PAL block should not exceed 64 mA.

2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).

3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Parameter Symbol Parameter Description Test Conditions Min Typ Max Unit

VOH Output HIGH VoltageVCC = MinVIN = VIH or VIL

IOH = –100 µA VCC – 0.2 V

IOH = –3.2 mA 2.4 V

VOL Output LOW VoltageVCC = MinVIN = VIH or VIL (Note 1)

IOL = 100 µA 0.2 V

IOL = 24 mA 0.5 V

VIH Input HIGH VoltageGuaranteed Input Logical HIGH Voltage for all Inputs

2.0 5.5 V

VIL Input LOW VoltageGuaranteed Input Logical LOW Voltage for all Inputs

–0.3 0.8 V

IIH Input HIGH Leakage Current VIN = 3.6 V, VCC = Max (Note 2) 5 µA

IIL Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 2) –5 µA

IOZH Off-State Output Leakage Current HIGHVOUT = 3.6 V, VCC = Max VIN = VIH or VIL (Note 2)

5 µA

IOZL Off-State Output Leakage Current LOWVOUT = 0 V, VCC = Max VIN = VIH or VIL (Note 2)

–5 µA

ISC Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 3) –15 –160 mA

MACH 4 Family, 3.3-V (Ind) 45

Page 46: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

CAPACITANCE (Note 1)

Note:1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where

capacitance may be affected.

Parameter Symbol Parameter Description Test Conditions Typ Unit

CIN Input Capacitance VIN = 2.0 V VCC = 3.3 V, TA = 25°C, f = 1 MHz

6 pF

COUT Output Capacitance VOUT = 2.0 V 8 pF

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-10 -12 -14 -18

UnitMin Max Min Max Min Max Min Max

tPD Input, I/O, or Feedback to Combinatorial Output 3 10 3 12 3 14 3 18 ns

tSASetup Time from Input, I/O, or Feedback to Product Term Clock

D-type 4 5 8 10 ns

T-type 5 6 9 11 ns

tHA Register Data Hold Time Using Product Term Clock 4 5 8 10 ns

tCOA Product Term Clock to Output 4 12 4 14 4 18 4 20 ns

tWLAProduct Term, Clock Width

LOW 5 8 9 10 ns

tWHA HIGH 5 8 9 10 ns

fMAXA

Maximum Frequency Using Product Term Clock (Note 2)

External Feedback 1/(tSA + tCOA)D-type 62.5 52.6 38.5 33.3 MHz

T-type 58.8 50.0 37 32.2 MHz

Internal Feedback (fCNTA)D-type 71.4 58.8 47.6 35.7 MHz

T-type 66.7 55.6 45.4 34.4 MHz

No Feedback (Note 3)

1/(tWLA + tWHA) 100 62.5 55.6 50.0 MHz

tSSSetup Time from Input, I/O, or Feedback to Global Clock

D-type 6 7 10 12 ns

T-type 7 8 11 13 ns

tHS Register Data Hold Time Using Global Clock 0 0 0 0 ns

tCOS Global Clock to Output 2 6.5 2 8 2 10 2 12 ns

tWLSGlobal Clock Width

LOW 5 6 6 7 ns

tWHS HIGH 5 6 6 7 ns

fMAXS

Maximum Frequency Using Global Clock (Note 2)

External Feedback 1/(tSS + tCOS)D-type 80 66.7 50 41.7 MHz

T-type 74.1 62.5 47.6 40.0 MHz

Internal Feedback (fCNTS)D-type 100 83.3 66.6 58.8 MHz

T-type 90.9 76.9 62.5 55.5 MHz

No Feedback (Note 3)

1/(tWLS + tWHS) 100 83.3 88.3 71.4 MHz

tSLASetup Time from Input, I/O, or Feedback to Product Term Clock

4 5 8 10 ns

46 MACH 4 Family, 3.3-V (Ind)

Page 47: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

tHLA Latch Data Hold Time Using Product Term Clock 4 5 8 10 ns

tGOA Product Term Gate to Output 13 16 19 22 ns

tGWAProduct Term Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)

5 6 9 11 ns

tSLS Setup Time from Input, I/O, or Feedback to Global Gate 7 8 10 12 ns

tHLS Latch Data Hold Time Using Global Gate 0 0 0 0 ns

tGOS Gate to Output 7.5 10 11 12 ns

tGWSGlobal Gate Width LOW (for LOW transparent) or HIGH (for HIGH transparent)

5 6 6 7 ns

tICO Input Register Clock to Combinatorial Output 15.5 18 20 22 ns

tICS Input Register Clock to Output Register SetupD-type 8 9 15 17

T-type 9 10 16 18

tWICLInput Register Clock Width

LOW 5 6 6 7 ns

tWICH HIGH 5 6 6 7 ns

fMAXIRMaximum Input Register Frequency

1/(tWICL + tWICH) 100 83.3 83.3 71.4 MHz

tIGO Input Latch Gate to Combinatorial Output 14 16 20 22 ns

tIGOLInput Latch Gate to Output Through Transparent Output Latch

16 18 22 24 ns

tIGSAInput Latch Gate to Output Latch Setup Using Product Term Output Latch Gate

4 4 14 16 ns

tIGSSInput Latch Gate to Output Latch Setup Using Global Output Latch Gate

9 9 16 18 ns

tWIGL Input Latch Gate Width LOW 5 6 6 7 ns

tAR Asynchronous Reset to Registered or Latched Output 14 16 20 22 ns

tARW Asynchronous Reset Width (Note 2) 10 12 15 17 ns

tARR Asynchronous Reset Recovery Time (Note 2) 8 10 15 17 ns

tAP Asynchronous Preset to Registered or Latched Output 14 16 20 22 ns

tAPW Asynchronous Preset Width (Note 2) 10 12 15 17 ns

tAPR Asynchronous Preset Recovery Time (Note 2) 8 8 15 17 ns

tEA Input, I/O, or Feedback to Output Enable 2 10 2 12 2 15 2 17 ns

tER Input, I/O, or Feedback to Output Disable 2 10 2 12 2 15 2 17 ns

Input Register with Standard-Hold-Time Option

tPDLInput, I/O, or Feedback to Output Through Transparent Input Latch

12 14 17 20 ns

tSIR Input Register Setup Time 2 2 2 2 ns

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-10 -12 -14 -18

UnitMin Max Min Max Min Max Min Max

MACH 4 Family, 3.3-V (Ind) 47

Page 48: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

Notes:1. See Switching Test Circuit for test conditions.

2. These parameters are not 100% tested, but are evaluated at initial characterization.

3. This parameter does not apply to flip-flops in the emulated mode since the feedback path is required for emulation.

tHIR Input Register Hold Time 3 3 4 4 ns

tSIL Input Latch Setup Time 2 2 2 2 ns

tHIL Input Latch Hold Time 3 3 4 4 ns

tSLLASetup Time from Input, I/O, or Feedback Through Transparent Input Latch to Product Term Output Gate

4 4 4 4 ns

tSLLSSetup Time from Input, I/O, or Feedback Through Transparent Input Latch to Output Gate

8 9 12 15 ns

tPDLLInput, I/O, or Feedback to Output Through Transparent Input and Output Latches

14 16 19 22 ns

Input Register with Zero-Hold-Time Option

tPDLI Input, I/O, or Feedback to Output Through Transparent

Input Latch18 20 23 26 ns

tSIRI Input Register Setup Time 6 6 6 6 ns

tHIRI Input Register Hold Time 0 0 0 0 ns

tSILI Input Latch Setup Time 6 6 6 6 ns

tHILI Input Latch Hold Time 0 0 0 0 ns

tSLLAI Setup Time from Input, I/O, or Feedback Through

Transparent Input Latch to Product Term Output Gate13 16 16 16 ns

tSLLSI Setup Time from Input, I/O, or Feedback Through

Transparent Input Latch to Output Gate15 18 18 18 ns

tPDLLI Input, I/O, or Feedback to Output Through Transparent

Input and Output Latches20 22 25 27 ns

Power-Down Mode and Slow Slew Rate Option

tLP

Power-down mode delay adder. For macrocells in a power-down mode PAL block, this parameter must be added to: tPD, tCOA, tSS, tGOA, tSLS, tICO, tICS, tIGO, tIGOL, tIGSS, tAR, tARR, tAP, tAPR, tEA, tER, tPDL, tSLLS, tPDLL

2.5 2.5 2.5 2.5 ns

tSLW

Slow slew rate delay adder. For an output configured with slow slew rate option, this parameter must be added to: tPD, tCOA, tCOS, tGOA, tGOS, tICO, tIGO, tIGOL, tAP, tAR, tPDL, tPDLL

2.5 2.5 2.5 2.5 ns

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note1)

Parameter Symbol Parameter Description

-10 -12 -14 -18

UnitMin Max Min Max Min Max Min Max

48 MACH 4 Family, 3.3-V (Ind)

Page 49: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

TYPICAL CURRENT vs. VOLTAGE (I-V) CHARACTERISTICSVCC = 5 V or 3.3 V, TA = 25°C

IOH (mA)

25

–25

–50

–75

–100

–3 –2 –1

1 2 3 4 5VOH (V)

Output, HIGH

–125

–150

17466E-23

IOL (mA)

80

60

40

20

–20

–40

–60

–80

–1.0 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1.0VOL (V)

Output, LOW

17466E-24

II (mA)

20

–20

–40

–60

–80

–2 –1 1 2 3 4 5VI (V)

Input

–100

17466E-25

MACH 4 Family 49

Page 50: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

SWITCHING WAVEFORMS

Notes:1. VT = 1.5 V.

2. Input pulse amplitude 0 V to 3.0 V.

3. Input rise and fall times 2 ns–4 ns typical.

17466E-26

Combinatorial Output

tPD

Input, I/O, orFeedback

CombinatorialOutput

VT

VT

17466E-27 17466E-28

Registered Output Latched Output

VTInput, I/O, or

Feedback

RegisteredOutput

tS

tCO

VT

tH

VTClock

tPDL

Input, I/O, orFeedback

LatchedOut

Gate

VT

tHLtSL

tGO

VT

VT

17466E-29 17466E-30

Clock Width Gate Width

tWH

Clock

tWL

Gate

tGWS

VT

17466E-31 17466E-32

Registered Input Input Register to Output Register Setup

VT

CombinatorialOutput

tSIR

tICO

VT

tHIR

VT

InputRegister

Clock

RegisteredInput

VT

VT

VTtICSOutput

RegisterClock

InputRegister

Clock

RegisteredInput

50 MACH 4 Family

Page 51: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

SWITCHING WAVEFORMS

Notes:1. VT = 1.5 V.

2. Input pulse amplitude 0 V to 3.0 V.

3. Input rise and fall times 2 ns–4 ns typical.

17466E-33

Latched Input

CombinatorialOutput

Gate

tHILtSIL

tIGO

LatchedIn

VT

VT

VT

17466E-34

Latched Input and Output

LatchedIn

OutputLatch Gate

LatchedOut

tSLL

tPDLL

tIGOL

tIGS

InputLatch Gate

VT

VT

VT

MACH 4 Family 51

Page 52: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

V A N T I S

SWITCHING WAVEFORMS

Notes:1. VT = 1.5 V.

2. Input pulse amplitude 0 V to 3.0 V.

3. Input rise and fall times 2 ns–4 ns typical.

17466E-35 17466E-36

Input Register Clock Width Input Latch Gate Width

tWICH

Clock VT

tWICL

InputLatchGate

tWIGL

VT

17466E-37 17466E-38

Asynchronous Reset Asynchronous Preset

VT

VT

tARW

VT

tAR

Input, I/O, orFeedback

RegisteredOutput

Clock

tARR

Input, I/O,or Feedback

VT

VT

tAPW

VT

tAP

tAPR

RegisteredOutput

Clock

17466E-39

Output Disable/Enable

VT

VTOutputs

tER tEA

VOH – 0.5 V

VOL + 0.5 V

Input, I/O, orFeedback

52 MACH 4 Family

Page 53: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MA

CH 4 Fam

ily

V A N T I S

KEY TO SWITCHING WAVEFORMS

SWITCHING TEST CIRCUIT

Values in parentheses are for 3.3-V devices.

* Switching several outputs simultaneously should be avoided for accurate measurement.

Specification S1 CL

Commercial

Measured Output ValueR1 R2

tPD, tCO Closed35 pF

(30 pF) 300 Ω(1.6 KΩ)

390 Ω(1.6 KΩ)

1.5 VtEA

Z → H: Open

Z → L: Closed

tERH → Z: Open

L → Z: Closed5 pF

H → Z: VOH – 0.5 V

L → Z: VOL + 0.5 V

Must beSteady

MayChangefrom H to L

MayChangefrom L to H

Does Not Apply

Don’t Care,Any ChangePermitted

Will beSteady

Will beChangingfrom H to L

Will be Changing from L to H

Changing,StateUnknown

Center Line is High-Impedance“Off” State

WAVEFORM INPUTS OUTPUTS

KS000010-PAL

17466E-40

CL

Output

R1

R2

S1

Test Point

VCC

MACH 4 Family 53

Page 54: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

54 MACH 4 Family

V A N T I S

f

MAX

PARAMETERS

The parameter f

MAX

is the maximum clock rate at which the device is guaranteed to operate. Because the flexibility inherent in programmable logic devices offers a choice of clocked flip-flop designs, f

MAX

is specified for three types of synchronous designs.

The first type of design is a state machine with feedback signals sent off-chip. This external feedback could go back to the device inputs, or to a second device in a multi-chip state machine. The slowest path defining the period is the sum of the clock-to-output time and the input setup time for the external signals (t

S

+ t

CO

). The reciprocal, f

MAX

, is the maximum frequency with external feedback or in conjunction with an equivalent speed device. This f

MAX

is designated “f

MAX

external.”

The second type of design is a single-chip state machine with internal feedback only. In this case, flip-flop inputs are defined by the device inputs and flip-flop outputs. Under these conditions, the period is limited by the internal delay from the flip-flop outputs through the internal feedback and logic to the flip-flop inputs. This f

MAX

is designated “f

MAX

internal”. A simple internal counter is a good example of this type of design; therefore, this parameter is sometimes called “f

CNT.

The third type of design is a simple data path application. In this case, input data is presented to the flip-flop and clocked through; no feedback is employed. Under these conditions, the period is limited by the sum of the data setup time and the data hold time (t

S

+ t

H

). However, a lower limit for the period of each f

MAX

type is the minimum clock period (t

WH

+ t

WL

). Usually, this minimum clock period determines the period for the third f

MAX

, designated “f

MAX

no feedback.”

For devices with input registers, one additional f

MAX

parameter is specified: f

MAXIR

. Because this involves no feedback, it is calculated the same way as f

MAX

no feedback. The minimum period will be limited either by the sum of the setup and hold times (t

SIR

+ t

HIR

) or the sum of the clock widths (t

WICL

+ t

WICH

). The clock widths are normally the limiting parameters, so that f

MAXIR

is specified as 1/(t

WICL

+ t

WICH

). Note that if both input and output registers are used in the same path, the overall frequency will be limited by t

ICS

. All frequencies except f

MAX

internal are calculated from other measured AC parameters. f

MAX

internal is measured directly.

LOGIC REGISTER

CLK

LOGIC REGISTER

CLK

tCOtS tS

tS

fMAX Internal (fCNT)

fMAX External 1/(ts + tCO)

LOGIC REGISTER

CLK

fMAX No Feedback; 1/(ts + tH) or 1/(tWH + tWL)

(SECONDCHIP)

REGISTER LOGIC

CLK

fMAXIR; 1/(tSIR + tHIR) or 1/(tWICL + tWICH)tSIR tHIR

17466E-41

Page 55: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MACH 4 Family 55

MA

CH 4 Fam

ily

V A N T I S

ENDURANCE CHARACTERISTICS

The MACH families are manufactured using Vantis’ advanced Electrically Erasable process. This technology uses an EE cell to replace the fuse link used in bipolar parts. As a result, the device can be erased and reprogrammed, a feature which allows 100% testing at the factory.

Endurance Characteristics

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Parameter Symbol Parameter Description Units Test Conditions

t

DR

Min Pattern Data Retention Time10 Years Max Storage Temperature

20 Years Max Operating Temperature

N Max Reprogramming Cycles 100 Cycles Normal Programming Conditions

VCC

ESD Protection

1 kΩ

Input

VCC

100 kΩ

Preload Circuitry

Feedback Input

I/O

VCCVCC

100 kΩ

1 kΩ

17466E-42

Page 56: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

56 MACH 4 Family

V A N T I S

POWER-UP RESET

The MACH devices have been designed with the capability to reset during system power-up. Following power-up, all flip-flops will be reset to LOW. The output state will depend on the logic polarity. This feature provides extra flexibility to the designer and is especially valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide range of ways V

CC

can rise to its steady state, two conditions are required to insure a valid power-up reset. These conditions are:

1. The V

CC

rise must be monotonic.

2. Following reset, the clock input must not be driven from LOW to HIGH until all applicable inputand feedback setup times are met.

V

PWR

= 4 V for 5-V devices and 2.7 V for 3.3-V devices.

Parameter Symbol

Parameter Descriptions

Max Unit

t

PR

Power-Up Reset Time 10

µ

s

t

S

Input or Feedback Setup TimeSee Switching Characteristics

t

WL

Clock Width LOW

17466E-43

Power-Up Reset Waveform

tPR

tWL

tS

VPWR

VCC

Power

RegisteredOutput

Clock

Page 57: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MACH 4 Family 57

MA

CH 4 Fam

ily

V A N T I S

DEVELOPMENT SYSTEMS (subject to change)

For more information on the products listed below, please consult the local Vantis sales office.

MANUFACTURER SOFTWARE DEVELOPMENT SYSTEMS

Vantis CorporationP.O. Box 3755920 DeGuigne DriveSunnyvale, CA 94088(408) 732-0555 or 1(888) 826-8472 (VANTIS2)http://www.vantis.com

MACHXL SoftwareVantis-ABEL Software

Vantis-Synario Software

Aldec, Inc.3 Sunset Way, Suite FHenderson, NV 89014(702) 456-1222 or (800) 487-8743

ACTIVE-CAD

Cadence Design Systems555 River Oaks PkwySan Jose, CA 95134(408) 943-1234 or (800) 746-6223

PIC DesignerConcept/Composer

SynergyLeapfrog/Verilog-XL

Exemplar Logic, Inc.815 Atlantic Avenue, Suite 105Alameda, CA 94501(510) 337-3700

Leonardo™Galileo™

Logic Modeling19500 NW Gibbs Dr.P.O. Box 310Beaverton, OR 97075(800) 346-6335

SmartModel

®

Library

Mentor Graphics Corp.8005 S.W. Boeckman Rd.Wilsonville, OR 97070-7777(800) 547-3000 or (503) 685-7000

Design Architect, PLDSynthesis™ II

Autologic II Synthesizer, QuickSim Simulator, QuickHDL Simulator

MicroSim Corp.20 FairbanksIrvine, CA 92718(714) 770-3022

MicroSim Design Lab

PLogic, PLSyn

MINC Inc.6755 Earl Drive, Suite 200Colorado Springs, CO 80918(800) 755-FPGA or (719) 590-1155

PLDesigner-XL™ Software

Model Technology8905 S.W. Nimbus Avenue, Suite 150Beaverton, OR 97008(503) 641-1340

V-System/VHDL

OrCAD, Inc.9300 S.W. Nimbus AvenueBeaverton, OR 97008(503) 671-9500 or (800) 671-9505

OrCAD Express

Synario

®

Design Automation10525 Willows Road N.E.P.O. Box 97046Redmond, WA 98073-9746(800) 332-8246 or (206) 881-6444

ABEL™

Synario™ Software

Page 58: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

58 MACH 4 Family

V A N T I S

Vantis is not responsible for any information relating to the products of third parties. The inclusion of such information is not a representation nor an endorsement by Vantis of these products.

Synopsys700 E. Middlefield Rd.Mountain View, CA 94040(415) 962-5000 or (800) 388-9125

FPGA or Design Compiler(Requires MINC PLDesigner-XL™)

VSS Simulator

Synplicity, Inc.624 East Evelyn Ave.Sunnyvale, CA 94086(408) 617-6000

Synplify

Teradyne EDA321 Harrison Ave.Boston, MA 02118(800) 777-2432 or (617) 422-2793

MultiSIM Interactive SimulatorLASAR

VeriBest, Inc.6101 Lookout Road, Suite ABoulder, CO 80301(800) 837-4237

VeriBest PLD

Viewlogic Systems, Inc.293 Boston Post Road WestMarlboro, MA 01752(800) 873-8439 or (508) 480-0881

Viewdraw, ViewPLD, Viewsynthesis

Speedwave Simulator, ViewSim Simulator, VCS Simulator

MANUFACTURER TEST GENERATION SYSTEM

Acugen Software, Inc.427-3 Amherst St., Suite 391Nashua, NH 03063(603) 881-8821

ATGEN™ Test Generation Software

iNt GmbHBusenstrasse 6D-8033 Martinsried, Munich, Germany(87) 857-6667

PLDCheck 90

MANUFACTURER SOFTWARE DEVELOPMENT SYSTEMS

Page 59: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MACH 4 Family 59

MA

CH 4 Fam

ily

V A N T I S

APPROVED PROGRAMMERS (subject to change)

For more information on the products listed below, please consult the local Vantis sales office.

MANUFACTURER PROGRAMMER CONFIGURATION

Advin Systems, Inc.1050-L East Duane Ave.Sunnyvale, CA 940 86(408) 243-7000 or (800) 627-2456BBS (408) 737-9200Fax (408) 736-2503

Pilot-U40 Pilot-U84 MVP

BP Microsystems1000 N. Post Oak Rd., Suite 225Houston, TX 77055-7237(800) 225-2102 or (713) 688-4600BBS (713) 688-9283Fax (713) 688-0920

BP1200 BP1400 BP2100 BP2200

Data I/O Corporation10525 Willows Road N.E.P.O. Box 97046Redmond, WA 98073-9746(800) 426-1045 or (206) 881-6444BBS (206) 882-3211Fax (206) 882-1043

UniSite™ Model 2900 Model 3900 AutoSite

Hi-Lo Systems4F, No. 2, Sec. 5, Ming Shoh E. RoadTaipei, Taiwan(886) 2-764-0215Fax (886) 2-756-6403orTribal Microsystems / Hi-Lo Systems44388 South Grimmer Blvd.Fremont, CA 94538(510) 623-8859BBS (510) 623-0430Fax (510) 623-9925

ALL-07 FLEX-700

SMS GmbHIm Grund 1588239 WangenGermany(49) 7522-97280Fax (49) 7522-972850orSMS USA544 Weddell Dr. Suite 12Sunnyvale, CA 94089(408) 542-0388

Sprint Expert Sprint Optima Multisite

Stag HouseSilver Court Watchmead, Welwyn Garden CityHerfordshire UK AL7 1LT44-1-707-332148Fax 44-1-707-371503

Stag Quazar

Page 60: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

60 MACH 4 Family

V A N T I S

APPROVED ADAPTER MANUFACTURERS

APPROVED ON-BOARD ISP PROGRAMMING TOOLS

System General1603A South Main StreetMilpitas, CA 95035(408) 263-6667BBS (408) 262-6438Fax (408) 262-9220or3F, No. 1, Alley 8, Lane 45Bao Shing Road, Shin DiauTaipei, Taiwan(886) 2-917-3005Fax (886) 2-911-1283

Turpro-1 Turpro-1/FX Turpro-1/TX

MANUFACTURER PROGRAMMER CONFIGURATION

California Integration Coordinators, Inc.656 Main StreetPlacerville, CA 95667(916) 626-6168Fax (916) 626-7740

MACH/PAL Programming Adapters

Emulation Technology, Inc.2344 Walsh Ave., Bldg. FSanta Clara, CA 95051(408) 982-0660Fax (408) 982-0664

Adapt-A-Socket

®

Programming Adapters

MANUFACTURER PROGRAMMER CONFIGURATION

Corelis, Inc.12607 Hidden Creek Way, Suite HCerritos, California 70703(310) 926-6727

JTAGPROG™

Vantis CorporationP.O. Box 3755920 DeGuigne DriveSunnyvale, CA 94088(408) 732-0555 or 1(888) 826-8472 (VANTIS2)http://www.vantis.com

MACHPRO

®

MANUFACTURER PROGRAMMER CONFIGURATION

Page 61: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MACH 4 Family 61

MA

CH 4 Fam

ily

V A N T I S

PHYSICAL DIMENSIONS

PL 04444-Pin Plastic Leaded Chip Carrier (measured in inches)

TOP VIEW

SEATING PLANE

.685

.695 .650.656

Pin 1 I.D..685.695

.650

.656

.026

.032 .050 REF

.042

.056

.062

.083

.013

.021

.590

.630.500REF

.009

.015

.165

.180

.090

.120

16-038-SQPL 044DA786-28-94 aeSIDE VIEW

Page 62: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

62 MACH 4 Family

V A N T I S

PHYSICAL DIMENSIONS

PQT04444-Pin Thin Quad Flat Pack (measured in inches)

1.00 REF.

1.20 MAX

11° – 13°

11° – 13°0.80 BSC

44

1

0.951.05

11.8012.20

9.8010.20

11.8012.20

9.8010.20

0.300.45

16-038-PQT-2PQT 447-11-95 ae

Page 63: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MACH 4 Family 63

MA

CH 4 Fam

ily

V A N T I S

PHYSICAL DIMENSIONS

PL 08484-Pin Plastic Leaded Chip Carrier (measured in inches)

TOP VIEW

SEATING PLANE

1.1851.195 1.150

1.156

Pin 1 I.D.

.026

.032 .050 REF

.042

.056

.062

.083

.013

.021

1.000REF

.007

.013

.165

.180

.090

.130

16-038-SQPL 084DF798-1-95 aeSIDE VIEW

1.1851.195

1.1501.156

1.0901.130

Page 64: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

64 MACH 4 Family

V A N T I S

PHYSICAL DIMENSIONS

PQR100100-Pin Plastic Quad Flat Pack; Trimmed and Formed (measured in millimeters)

18.85REF

19.9020.10

23.0023.40

12.35REF

13.9014.10

17.0017.40

Pin 100

Pin 50

Pin 30

0.25MIN

2.702.90

0.65 BASIC

16-038-PQR-1_AHPQR100EC958-5-97 lv

Pin 80

3.35MAX

SEATING PLANE

Pin 1 I.D.

Page 65: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MACH 4 Family 65

MA

CH 4 Fam

ily

V A N T I S

PHYSICAL DIMENSIONS

PQL100100-Pin Thin Quad Flat Pack

1.00 REF.

1.60 MAX

11° – 13°

11° – 13°0.50 BSC

100

1

1.351.45

15.8016.20

13.8014.20

15.8016.20

13.8014.20

0.170.27

16-038-PQT-2_AIPQL1009.3.96 lv

Page 66: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

66 MACH 4 Family

V A N T I S

PHYSICAL DIMENSIONS

PQR144144-Pin Plastic Quad Flat Pack; Trimmed and Formed (measured in millimeters)

22.75REF

27.9028.10

31.0031.40

22.75REF

27.9028.10

31.0031.40

Pin 144

Pin 72

Pin 36

0.25MIN

3.203.60

0.65 BASIC

16-038-PQR-1_AHPQR144EC958-5-97 lv

Pin 108

3.95MAX

SEATING PLANE

Pin 1 I.D.

Page 67: 4 Family - users.ugent.beusers.ugent.be/~jvncampe/digel/ppt/maxfpga.pdf · Additionally, MACHPRO generated vectors work seamlessly with HP3070, GenRad and Teradyne testers to program

MACH 4 Family 67

MA

CH 4 Fam

ily

V A N T I S

PHYSICAL DIMENSIONSPRH208208-Pin Plastic Quad Flat Pack; Trimmed and Formed (measured in millimeters)

Trademarks

Copyright © 1997 Advanced Micro Devices, Inc. All rights reserved.

AMD, Vantis, the Vantis logo and combinations thereof, SpeedLocking and Bus-Friendly are trademarks, MACH, MACHXL, MACHPRO and PAL are registered trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.s

25.50REF

27.9028.10

30.4030.80

25.50REF

27.9028.10

30.4030.80

Pin 208

Pin 104

Pin 52

0.25MIN

3.203.60

0.50 BASIC

16-038-PQR-1_AHPRH208EC958-13-97 lv

Pin 156

3.95MAX

SEATING PLANE

Pin 1 I.D.


Recommended