+ All Categories
Home > Documents > 4 Silicon LDMOS

4 Silicon LDMOS

Date post: 27-Oct-2015
Category:
Upload: luong-dinh-thap
View: 69 times
Download: 3 times
Share this document with a friend
Description:
Silicon LDMOS
Popular Tags:
52
2006-02-23 Lars Vestling - Uppsala University Silicon RF transistors II: LDMOS 1 Silicon RF transistors II: LDMOS Lars Vestling Uppsala University, Sweden
Transcript
Page 1: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

1

Silicon RF transistors II:LDMOS

Lars VestlingUppsala University, Sweden

Page 2: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

2

Outline• Introduction• Manufacturing • LDMOS Models• State-of-the-art LDMOS techniques• Future LDMOS concepts• Summary• References

Page 3: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

3

What is a DMOS?

LDMOSLateral double-diffused MOS

VDMOSVertical double-diffused MOS

Page 4: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

4

History

• 1969 – the first LDMOS was presented• 1972 – the LDMOS as a microwave device was presented • Switching devices

Power suppliesMotor controlsetc.....

• From mid-90‘s – Base station applicationsNMT, GSM, 3G, (900 MHz-3 GHz)Philips, Freescale (Motorola), Infineon (Ericsson)

Page 5: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

5

Base stations – RF power transistors

Base stations

Power amplifiers (PA)

RF-devices

Source: Ericsson

RF power devices has other demands than CMOS

Output powerEfficiencyLinearity

Page 6: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

6

Why LDMOS in base station applications?

Compared to Bipolar Junction Transistors (BJT)• Better linearity• Grounded substrate

source connected to substrate => no bondwire required => substrate inductance decreasedpackaging, BeO can be avioded

• Reliabilitynegtive temperature coefficient

• Higher gain

The VDMOS has some of the BJT drawbacks as well

Page 7: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

7

Typical transistor data

• Power 5-10 W up to 150 W per transistor

• Frequencies900 MHz to 2.7 GHz today

• Supply voltageVDD=26-28 V which implies a BV>60 V

Page 8: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

8

Market

• Base station applications, market share of 90% for LDMOSDevces working at 28 V, up to 2.7 GHz, gain of 15dB and efficiency of 25%.

• RF-LDMOS marketdominated by Freescale (former Motorola) with ~80% of marketothers are: Philips, Infineon, STMicroectronics

Page 9: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

9

Cross-section of a modern LDMOS device

source: Freescale

Page 10: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

10

Important transistor parameters

• ID,sat – saturated current• BV – breakdown voltage• RON vs BV – on-

resistance vs breakdown voltage

• fT, fMAX – cut-offfrequencies

Page 11: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

11

Outline• Introduction• Manufacturing• LDMOS Models• State-of-the-art LDMOS techniques• Future LDMOS concepts• Summary

Page 12: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

12

Manufacturing• Specific issues compared to CMOS• Substrate

Resistivity and epi-thickness sets BV10 Ωcm, 10 μm => BV=60-100V

• P+sinkerArea comsumingTemperature budget

• GatePolycide, gate resistanceOxide thickness, VT, BVOXGate length, Cgd, gate length not equal to channel length

• Double diffused• Channel engineering• Drain engineering• Drift region, RESURF technology

Page 13: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

13

Double-diffused

LDMOS for Power ICsSuitable for circuit integrationDevice design for avalancheruggedness

LDMOS for RFDeep p+sinker to provide substratecontactDevice design for superior RF performance

p-well and n+source are double-diffused to create the channel

Page 14: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

14

Channel engineering

• By modifying the doping in and near the channel, different behaviour can be obtained

channel length determinesspeedchannel doping level sets threshold voltage and controls punch-throughp-well curvature controlsjunction breakdown

VT Lch

NA

BV

Page 15: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

15

Drain engineering

• Used to reduce peak electric fieldTailoring doping profiles through implantation and annealing

• Minimizes IDQ drift• Do not affect BV and RON

Drain engineeringapplied in this region

Page 16: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

16

Drift region, RESURF

• RESURFREduced SURface Field

• Lateral and verticaldiodes interact to provide 2D-depletion

• Not LDMOS specificWorks for all lateral HV devices

• Charge balance• Lower RON

Page 17: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

17

Layout

• Device dividedin gate fingers to reduce gateresistance

• Exampleeach finger is 100 μmtotal width is 20 mm

Drain

Gate

Page 18: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

18

Outline• Introduction• Manufacturing• LDMOS Models• State-of-the-art LDMOS techniques• Future LDMOS concepts• Summary

Page 19: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

19

Models

• Ordinary MOS-models (SPICE) are not sufficient.• SPICE sub-circuits may solve the problem.

EnhancementMOS for channelregionJFET for drain-under-gate regionJFET or R(V,I) for extended drain

• Difficult to extractmodel parameters!

Page 20: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

20

Models - problems

• The channel/drain-endpotential, VX

Decides the channeltransistor

• How model the drift region

JFETResistor, R(I,Vgs,Vds)Analytical expressions

• All LDMOS devices are different => difficult to have a generic LDMOS model

VX

Page 21: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

21

MOS model 20 (Philips)

• SPICE model• Combination of MOS model 9 and

MOS model 31MOS model 9 – enhancement typeMOSFET model for the channel region.MOS model 31 - junction-isolated accumulation/depletion-type MOSFETmodel. Used for the drain extension of high-voltage MOS devices.

• Model includes:charge dynamics of the drain extensionregion.not the quasi-saturation (currentcompression) effect.

Page 22: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

22

The Chalmers model

• Generic large-signalmodel

• Analytical expression for the drain current, Ids

• Parasitics appendedC=const. or C=C(V)

L33

221 )()()(

)1()tanh())tanh(1(

pkgspkgspkgs

dsdspkds

VVPVVPVVP

VVII

−+−+−=Ψ

+⋅⋅Ψ+⋅= λα

drai

ncu

rrent

PoutPAE

drain voltage input power

Page 23: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

23

Thermal modeling

• Power devices generate heat• The heat is distributed unevenly depending on the layout• Problem characterizing the thermal properties

Pulsed measurement removes heatingPulsed S-parameter measurements with thermal chuck

• Big challenge!!!

Page 24: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

24

Outline• Introduction• Manufacturing• LDMOS Models• State-of-the-art LDMOS techniques• Future LDMOS concepts• Summary

Page 25: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

25

What is done to improve the performance?

• Miller capacitance• Shielding• Metal sinker

Better temperature budgetLess area consuming

• MetalizationGold, AlCu

• Plastic encapsulationLower cost but worse thermal properties than ceramics

• ScalingtOX, LG, thinner substrates (<100 microns)

Page 26: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

26

Miller effect - gate-drain capacitance• Feedback capacitance

affects gainVgs must be maximizedfor max gainVgs determined by Miller capacitance

• Must minimize Cgd to minimize gain reductiondue to Miller effect

)4/()(

2

2

SS

optgsmA RV

RVgG ≈

Page 27: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

27

Shielding

1GS

2GS

1GS 2GS

IM3 vs PAE

CGD vs VDS

Example (Motorola)

Re-designing the metalshield

⇒lower CGD

⇒lower IM3

Page 28: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

28

Freescale (Motorola) MRF5S19060Typical characteristics

Power gain, GA = 14 dBDrain efficiency, ηD = 23 %IM3 = –37 dBc@ VDD=28V, IDQ=750 mA, 1960 MHz, Pout=12WBV=65 V

Page 29: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

29

Outline• Introduction• Manufacturing• LDMOS Models• State-of-the-art LDMOS techniques• Future LDMOS concepts• Summary

Page 30: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

30

Future concepts

• The supply voltage will increase to 50 V. [ITRS]• BV must increase from 60 to more than 100 V• New device concepts for higher supply voltages are needed.• Avaliable devices (28 V) can not be directly scaled to 50 V.

• Solution?:

Novel LDMOS device concept with a dual-layer extended drain region, which shields the active gate region from high voltage.

Page 31: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

31

UU LDMOS project

• ObjectiveImplement a new type of LDMOS in a standard CMOS processBreakdown voltages above 100 V and at the same time fT and fMAX at around 10 GHzDemonstrate RF-performance for frequencies relevant to telecommunication, 1-3 GHz.

ChallengeHow to combine high voltage with a short channel?

Page 32: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

32

Standard LDMOS concept, CMOS compatible

p+

n- drift region

n+n+p-base

n+ poly

p-substrate

Source Gate Drain

kanal

• Lateral diffusion of p-base -> short channel 0.3 μm• Long poly-gate -> low gate resistance• Long drift region -> high breakdown voltage

channel

Page 33: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

33

Double depletion LDMOS

• Buried p-top => more effective drift region depletion =>higher drift region doping => lower resistance for preserved BV => higher current

p+

n- drift region

n+n+p-base

n+ poly

p-substrate

Source Gate Drain

kanal

p-top

• Lateral diffusion of p-base => short channel

• Long poly-gate => low RG

• Long drift region => high BV

channel

Page 34: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

34

Dual conduction layer LDMOS

p+

n- drift region

n+n+p-base

n+ poly

p-substrate

Source Gate Drain

kanal

n-topp-top

channel

• Buried p-top => more effective drift region depletion => higher drift region doping => lower resistancefor preserved BV => higher current

• N-top at surface => higher currentfor preserved BV

• Lateral diffusion of p-base => short channel

• Long poly-gate => low RG

• Long drift region => high BV

Page 35: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

35

Enhanced dual conduction layer LDMOS

p+

n- drift region

n+n+p-base

n+ poly

p-substrate

Source Gate Drain

kanal

n-topp-top

channel

• Buried p-top => more effective drift region depletion => higher drift region doping => lower resistancefor preserved BV => higher current

• Blanket N-top at surface => evenhigher current for preserved BV

• Lateral diffusion of p-base => short channel

• Long poly-gate => low RG

• Long drift region => high BV

Page 36: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

36

Dual depletion effect

LDMOS without p-top layerBadly distributed field over the drift region

LDMOS with p-top layerUniformly distributed field over the drift region

Page 37: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

37

UU LDMOS – performance

• World record results were achieved.2 W/mm @ 70 V and 1 GHz1 W/mm @ 28 V and 1 GHzHigh linear gain 23dB1 W/mm @ 50 V, 3.2 GHz0.6 W/mm @ 28 V, 3.2 GHzComparablewith SiCMESFET

f=1.9 GHzVds=48 VVgs=1.1 V POUT

PAE

Input power (dBm)

Page 38: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

38

UU LDMOS

• This device concept offersRF performance in a wide voltage rangeVery high breakdown voltages (fMAX=4 GHz @ BV=400 V)

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

0 .4

0 .5

0 .6

0 .7

0 .80 .91

1 0 2 0 3 0 4 0 5 0 6 0

Pou

t -3d

B c

ompr

essi

on (

dBm

)

Pout -3dB

compression (W

/mm

)

D ra in vo lta g e (V )

p a tte rn e d n -to pf= 3 .2 G H z

1

10

10 100 1000

LDMOS fT and fMAX vs BV

ftfmax

Cut

-off

frequ

ency

[GH

z]

BV [V]

Page 39: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

39

Linearity

• The linearity performance of LDMOS is very critical for the overall PA performance

• Output power normally backed-off in order to meet linearity requirements – power efficiency also drops drastically

• The linearity may be improved with some methods, e.g. combining transistors with different VT – more ideal transfer characteristic

• Major improvement can probably be achieved if the device structure itself is changed (doping profiles, dimensions etc.)

• The key is to understand the silicon

Modified device

Page 40: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

40

Better linearity with modified channel

• Simulation has shown that by changing the doping profile in the channel the transfer characteristic is improved

5678

1

2

3

4

5678

VIP3

2.22.01.81.61.41.21.00.8Gate Voltage (V)

vip3 uniform channel vip3 graded channel

A uniform channel doping provides more ideal transfer curve and has a higher VIP3 than the usual graded doping profile.This modification can be achieved with modified process stepsVIP3 is a linearity measure

Page 41: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

41

Further improvements

• Other transistor parasiticsmay also make the deviceless ideal – less linear

• Parasitics also influenceother parameters, such as output power and efficiency

• One important parasitic is the coupling to the siliconsubstrate

• This will affect the transistor output resistance in off-state

Page 42: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

42

Why off-state ROUT important?

• PA operates along a loadline.

• In on-state ROUT (Rds) is mainly determined by the channel output conductance

• The ROUT in off-statedetermines the losses.

• Affects the power efficieny of PA

VD

IDLoad line

Page 43: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

43

Cds Gd

CjsubCjs

Csub Gsub

DrainSource

Substrate

Vx

• Simulation have shown that both substrate resistivity and thickness strongly affects the off-state ROUT

• 10X improvement in off-stateoutput resistance when usinghigh resistivty bulk-Si

HR silicon substrate improves ROUT - Efficiency

(1 kΩcm)101

103

105

107

109

107 108 109 1010 1011

RO

UT

(Ωm

m)

Frequency (Hz)

Optimized 1 kΩcm substratep- epi/p+ substrate

Increasing drain voltage

Page 44: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

44

LDMOS on SOI?

• The use of SOI may further reduce the coupling to the substrate – HR SOI may therefore be interesting

• Traditionally (CMOS) SOI also reduces other parasitics, which may lead to better overall device performance

Bulk LDMOS SOI LDMOS

Page 45: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

45

LDMOS on SOI?

• It has been shown that very effective RESURF can be achieved on SOI substrates – good RON vs. BV

• Self-heating may be a problem• LDMOS on high resistivity SOI has shown impressive RF-

performance (40% PAE @ 7.2 GHz)• However, inversion and accumulation charge underneath

the BOX severely degrades the RF-performance, and must therefore be dealt with.

accumulationinversion

depletion

Page 46: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

46

Low-voltage LDMOS

• The LDMOS transistor may also be scaled down in voltage.• A CMOS compatible LDMOS concept enables integrated

PA solutions, e.g. mobile handsets

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

80

0 1 2 3 4

On-

Res

ista

nce

[žm

m]

Breakdow

n Voltage [V

]Gate Length [µm]

RON

BV

2

4

6

8

10

12

5

5.5

6

6.5

7

7.5

0 1 2 3 4

Freq

uenc

y [G

Hz]

Transconductance[m

S]

Gate Length [µm]

gm

fMAX

fT

RON, BV vs LG fT, fMAX, gm vs LG

Page 47: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

47

Low-voltage LDMOS - RF performance

Impressive performance with 400 V design rules!

0

5

10

15

20

25

30

0

10

20

30

40

50

60

-10 -5 0 5 10 15 20

Out

put P

ower

[dB

m]

Pow

er Added E

fficiency |%]

Input Power [dBm]

Pout

PAE

VG=3 VVD=6 Vf=1 GHz

2 mm LDMOS for on-wafer characterisation

Page 48: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

48

Outline• Introduction• Manufacturing• LDMOS Models• State-of-the-art LDMOS techniques• Future LDMOS concepts• Summary

Page 49: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

49

Summary LDMOS

• Main advantagesMajority carrier device -> carrier speed is larger than for BJTBackside source contact - reduced source inductance, no toxic BeO in the package, improved coolingHigh gainBetter thermal uniformity compared to BJTExcellent back-off linearity

• LDMOS (28V) benchmarking results showed > 5 dBc better IM3 and 2% worse efficiency @ fixed WCDMA back off power (Pavg) compared to GaAs (12V).

Adjustable BV -> Adjustable application voltageMature technologyEase of CMOS integrationReasonable ease of scaling up device size

Page 50: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

50

Summary LDMOS

• Main disadvantagesFrequency response limited by gate charging and transit time required through N- drift region -> < 3 GHz operationExcess efficiency degradation with increasing frequency operation -> Cds

Hot electron injection or IDQ drift issue

• FutureLDMOS device concept for higher voltages (required by ITRS) has successfully been demonstrated.LDMOS definitely has a bright future for RF power applications.

If you can do it in Silicon. Do it!

Page 51: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

51

Acknowledgements

• Klas-Håkan Eklund, COMHEAT Microwave AB• Jörgen Olsson, Uppsala University

The work reported here was performed in the context of the network TARGET– “Top Amplifier Research Groups in a European Team” and supported by the Information Society Technologies Programme of the EU under contract IST-1-507893-NOE, www.target-org.net

Page 52: 4 Silicon LDMOS

2006-02-23 Lars Vestling - Uppsala University

Silicon RF transistors II: LDMOS

52

References• J. Ankarcrona, “High Frequency Analysis of Silicon RF MOS Transistors, “ Ph.D. Theses, Uppsala University,

Uppsala, Sweden, 2005.• J. A. Appels and H. M J. Vaes, “High Voltage Thin Layer Devices (RESURF Devices), “ IEDM Tech. Dig., pp.

238-241, 1979.• H. Brech et al., “Record Efficiency and Gain at 2.1GHz of High Power RF Transistors for Cellular and 3G Base

Stations,” IEDM Tech. Dig., pp. 359-362, 2003.• W. Burger et al., “RF-LDMOS: A Device Technology for High Power RF Infrastructure Applications,” IEEE CSIC

Dig., pp. 189-192, 2004.• The International Technology Roadmap for Semiconductors, 2005, http://public.itrs.net/.• A. W. Ludikhuize et al., “Extended (180V) Voltagein 0.6um Thin-Layer-SOI A-BCD3 Technology on 1um BOX

for Display, Automotive & Consumer Applications, “ Proc. ISPSD, pp. 77-80, 2002.• Bob Metzger, “LDMOS turns up the power,” Compound Semiconductor Magazine, June 2002.• J. Olsson et al., “1 W/mm RF Power Density at 3.2 GHz for a Dual-Layer RESURF LDMOS Transistor,” IEEE

Electron Dev. Let., vol. 23, no. 4, pp. 206-208, 2002.• J. Scholvin, J. G. Fiorenza, and J. A. del Alamo, “The impact of substrate surface potential on the performance of

RF power LDMOSFETs on high-resistivity SOI,” IEDM Tech. Dig., pp. 363-366, 2003.• A. Söderbärg et al., “Integration of a Novel High-Voltage Giga-Hertz DMOS Transistor into a Standard CMOS

Process,” IEDM Tech. Dig., pp. 975-978, 1995.• L. Vestling, J. Olsson, and K.-H. Eklund, “Drift Region Optimization of Lateral RESURF Devices,” Solid-State

Electronics, vol. 46, no. 8, pp. 1177-1184, 2002.


Recommended