+ All Categories
Home > Documents > 4. Tunneling FETs - nanoHUB

4. Tunneling FETs - nanoHUB

Date post: 11-Feb-2022
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
39
4. Tunneling FETs Dmitri Nikonov Thanks to Uygar Avci [email protected] Beyond CMOS computing Nikonov 4. TFET 1
Transcript
Page 1: 4. Tunneling FETs - nanoHUB

4. Tunneling FETs

Dmitri Nikonov

Thanks to Uygar Avci

[email protected]

Beyond CMOS computing

Nikonov 4. TFET 1

Page 2: 4. Tunneling FETs - nanoHUB

Outline

Band-to-band tunneling

Tunneling FET operation principles

Experimental realizations

Atomistic simulations

Homojunction TFET

Heterojunction TFET

Nikonov 4. TFET 2

Page 3: 4. Tunneling FETs - nanoHUB

Motivation • Need lower VDD to lower Switching Energy (~C.VDD

2) • When CMOS supply voltage is scaled <0.5V, performance suffers significantly

• TFET offers sharper turn-on devices compared to MOSFET

Better performance for ultra low-power applications

8x

For the same low switching energy and leakage power, TFET outperforms CMOS

Atomistic Model Prediction

Lg=20nm

InAs TFET

(VLSI 2011)

[email protected]

TFET

Switching

Energy0.3 fJ

Leakage

Power0.5 nW

Low-power MOSFET

Nikonov 4. TFET 3

Page 4: 4. Tunneling FETs - nanoHUB

Vd N i N

Vg Gate

Source Drain Subthreshold slope in MOSFETs is limited by the tail

of the Fermi distribution

To the thermodynamic limit value

Typically 80-120mV/dec at low current – depends on electrostatic control.

4

~ 1 / Subthreshold

Slope (mV/dec)

1

exp 1 expeV eV

fkT kT

1log( )

60 /g

d I eSS mV decade

dV kT

MOSFET

Nikonov 4. TFET 4

Page 5: 4. Tunneling FETs - nanoHUB

Vd P+ i-InAs N

Vg Gate

Source Drain

Tunneling

barriers Courtsey M. Luisier (Purdue)

M. Luisier and G. Klimeck, EDL, 2009

Tunnel FETs operate by tunneling through the S/D

barrier rather than diffusion over the barrier

Two required conditions:

• Thin enough barrier over a large enough area for effective (high current)

tunneling.

• Sufficient density of states on both the transmission and receiving sides to provide energetic

locations for the carriers.

5

Tunneling Field-Effect Transistor

Nikonov 4. TFET 5

Page 6: 4. Tunneling FETs - nanoHUB

2 22

Fmk

N

Bands parabolic close to edge = effective mass approximation

a=0.3nm m=mass ~ 0.2me=0.2*9.1*10-31kg kF=Fermi momentum~3/nm N=4*1046/(J*m3)=0.07/(eV*atom)

max 3 2

2mN

a

26

wE

ma

width of band: narrow band heavy mass

Fermi level

kF

density of states: it is larger for a heavy mass

* per 1 spin state Cartoon of density of States

Nikonov 4. TFET 6

Page 7: 4. Tunneling FETs - nanoHUB

Probability of tunneling http://en.wikipedia.org/wiki/Quantum_tunneling

2 2exp

b bw m U

T

w=width=1nm mb=mass= 0.2* 9.1*10-31kg Ub=height=0.8eV T~0.016

Tunneling current density http://arxiv.org/abs/0711.1461

22 42b l r

e VJ TU N N a

A~0.3m N= 4*1046 /(J*m3) J/V=1.2*1014 S/m2

2/ 0.5V J RA m

Heavier mass smaller tunneling probability

Quantum Tunneling

Nikonov 4. TFET 7

Page 8: 4. Tunneling FETs - nanoHUB

TFET Device and Operation

MOSFET-like structure, but with opposite type doping in Source and Drain

Can use different device geometries like MOSFET

TFET

MOSFET

Over the Barrier

Through the Barrier

Vg

Vg

Nikonov 4. TFET 8

Page 9: 4. Tunneling FETs - nanoHUB

Device Operation

S

D

S

S

D

S

D D

Nikonov 4. TFET 9

M. Luisier and G. Klimeck, IEEE EDL, 30, 602 (2009)

Page 10: 4. Tunneling FETs - nanoHUB

Device Operation

S

D

S

S

D

S

D D

Nikonov 4. TFET 10

M. Luisier and G. Klimeck, IEEE EDL, 30, 602 (2009)

Page 11: 4. Tunneling FETs - nanoHUB

Device Operation

S

D

S

S

D

S

D D

Nikonov 4. TFET 11

M. Luisier and G. Klimeck, IEEE EDL, 30, 602 (2009)

Page 12: 4. Tunneling FETs - nanoHUB

Device Operation

S

D

S

S

D

S

D D

Nikonov 4. TFET 12

M. Luisier and G. Klimeck, IEEE EDL, 30, 602 (2009)

Page 13: 4. Tunneling FETs - nanoHUB

Homojunction vs. Heterojunction

• Heterojunction can achieve higher tunneling current

Homojunction Heterojunction

Material- A Material- B

Nikonov 4. TFET 13

Page 14: 4. Tunneling FETs - nanoHUB

Si TFET (UC Berkeley)

• Show of highest possible current with Si with sub-60 mV/dec SS

– Best published Si or Ge TFET

– Shows high-angle to gate interface tunneling increases current

VLSI 2010

Nikonov 4. TFET 14

Page 15: 4. Tunneling FETs - nanoHUB

SiGe TFET (CEA-LETI)

• Show of high current with no sub-60 mV/dec SS

– Possibly not a TFET but metal contact to channel. No sub-60mV/dec expected.

VLSI 2012

Nikonov 4. TFET 15

Page 16: 4. Tunneling FETs - nanoHUB

Vertical III-V (Intel, Penn-State, Notre Dame)

• Intel: Showed sub-60mV/dec SS

• Penn-State: High-current capability of heterojunction TFET

• Notre Dame: High-current with tunneling perpendicular to gate interface

Penn-State (VLSI 2012) Intel (IEDM 2011) Notre Dame (EDL-2012)

Nikonov 4. TFET 16

Page 17: 4. Tunneling FETs - nanoHUB

Heterojunction InGaAs TFET. Side-gated. Better electrostatic control.

The only semiconductor TFET (there was one carbon-nanotube before) with <60mV/decade. Albeit at small Vds,

over a small Vg range.

G. Dewey et al., IEDM, 2011.

Intel TFET Demonstration !

Nikonov 4. TFET 17

Page 18: 4. Tunneling FETs - nanoHUB

Other Experimental TFET

• Stanford (2006): CNT – Good SS at very low current (pA)

• Stanford (2008): Strained-Ge Double-gate – Either high-current or good SS, not together

• Hitachi (2010): Novel TFET device idea (Si)

• Peking Uni. (2011): Novel TFET device idea (Si)

• Hokkaido Uni. (2012): InAs nanowire on Si he-j TFET – Very good SS ~21mV dec. with low Idsat

– No clear understanding of how this was achieved

Nikonov 4. TFET 18

Page 19: 4. Tunneling FETs - nanoHUB

• Still MUCH lower drive currents than

conventional MOS • Require band-gap

engineering with hetero-junction d layers

• Sub-threshold slope still poor

S. Mookerjea et al., IEDM ‘09 [1] K. Jeon, et al., VLSI (11.4.1.-1) 2010 [2] W. Choi et al., IEEE-EDL vol.28, no.8, p.743 (2007)

[3] F. Mayer et al., IEDM Tech Dig., p.163 (2008) [4] T. Krishnamohan et al., IEDM Tech Dig., p.947

(2008)

[1]

32nm MOS @ Vds = 0.8V

Most Experimental Still Poor Performance

Nikonov 4. TFET 19

Page 20: 4. Tunneling FETs - nanoHUB

TFET Modeling Approaches

For accurate prediction, quantum solution with band-structure calculation is chosen

Analytic modeling using Kane’s model

•Fast computation •Requires calibration to electrical data for reliable prediction.

•Suitable large geometries

Atomistic quantum modeling •Very slow computation •Requires input of tight-binding parameters for bandstructure calculation. •Suitable for small geometry

Used in this study

Nikonov 4. TFET 20

Page 21: 4. Tunneling FETs - nanoHUB

Atomistic Quantum Modeling

3D ballistic quantum transport and atomistic full-band tight-binding band structure calculation

No fitting to experimental electrical characteristics. The only input parameters are bandstructure of the material and geometry.

OMEN

Atomistic structure Density of states spectrum

Ec

Ev

E

x

Nikonov 4. TFET 21

Page 22: 4. Tunneling FETs - nanoHUB

TFET Sub-threshold Slope

Tunneling current increases sharply at the onset of Source

Valence Band and Channel Conduction Band overlap

E

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

0.0 0.1 0.2 0.3 0.4

ID (A

/um

)

VG (V)

VDS=0.4V

TFET

S

Ch

D

Nikonov 4. TFET 22

Page 23: 4. Tunneling FETs - nanoHUB

TFET Sub-threshold Slope

E

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

0.0 0.1 0.2 0.3 0.4

ID (A

/um

)

VG (V)

VDS=0.4V

TFET

S

Ch

Ch

D D

S

• Tunneling current increases sharply at the onset of Source

Valence Band and Channel Conduction Band overlap

Nikonov 4. TFET 23

Page 24: 4. Tunneling FETs - nanoHUB

Effect of Gate-length TFET subthreshold-slope improves significantly at longer gate-length for a 10nm-body with a single-gate

Lg=25 nm

50 nm 100nm

Single-gate 10nm body Vg (V)

Id (

uA/u

m)

Nikonov 4. TFET 24

Page 25: 4. Tunneling FETs - nanoHUB

Single-gate vs. Double-gate Increased gate-control continues to improve TFET characteristics, whereas MOSFET is limited by 60mV/dec

5nm body Lg=100nm For cnst. IOFF=1nA/um

DG TFET

SG TFET

2.5x

40 <20 mV/dec

SG or DG MOSFET ~60

Nikonov 4. TFET 25

Page 26: 4. Tunneling FETs - nanoHUB

Effect of Body thickness Thinner body has lower SS and higher drive

The effect is much less pronounced than SG/DG difference

Single-gate Lg=100nm For cnst. IOFF=1nA/um

tB=10 nm

20 nm

thinner

Nikonov 4. TFET 26

Page 27: 4. Tunneling FETs - nanoHUB

Effect of Device Geometry on Subthreshold-Slope

2x Lg

½ tB

SGDG Lg=50nm tB=10nm SG

Lg=100nm tB=10nm SG

Lg=100nm tB=5nm SG

Lg=100nm tB=5nm DG

Nikonov 4. TFET 27

Page 28: 4. Tunneling FETs - nanoHUB

InAs TFET Device Design

• Narrow bandgap (e.g. InAs) required for high ION

• Drain underlap to lower ambi-polar IOFF leakage

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

ID (

uA

/um

)

VG (V)

ITRS Low Power CMOS

TFET- S/D Symmetric

TFET with Drain underlap

LG = 20 nm tBody = 5 nm tOx(SiO2) = 1 nm NSource = 5e19 cm-3

NDrain = 5e18 cm-3

VDS=0.5V

Nikonov 4. TFET 28

Page 29: 4. Tunneling FETs - nanoHUB

Transistor Characteristics - II TFET has better Rout in the saturation region (high VDS)

TFET has higher saturation voltage (VDSAT-EFF)

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3

ID (u

A/u

m)

VDS (V)

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3VDS (V)

IOFF =1nA/μm

VGS =0.35V

0.3V

0.25V

0.2V

0.35V

0.3V

0.25V 0.2V

TFET MOSFET (ITRS)

VDSAT-EFF

VDSAT-EFF

Nikonov 4. TFET 29

Page 30: 4. Tunneling FETs - nanoHUB

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

ID (u

A/u

m)

VG (V)

Transistor Characteristics

• Subthreshold Slope (SS): 34-45 mV/dec

• Strong IOFF dependence on VDS

0.5V

0.1V 0.2V

0.3V 0.4V VDS

TFET

Nikonov 4. TFET 30

Page 31: 4. Tunneling FETs - nanoHUB

11

HTFET Material Considerations

Lattice matched to InP Metamorphic Growth on InP or GaAs

Staggered and broken gap systems have higher tunneling probability.

Theresa Mayer and Suman Datta, Penn State, SRC review 2011

31 Nikonov 4. TFET

Page 32: 4. Tunneling FETs - nanoHUB

InAs TFET, on current

Nikonov, Avci, Rios, Kuhn

Nikonov 4. TFET 32

Page 33: 4. Tunneling FETs - nanoHUB

InAs/GaSb TFET, on current

Nikonov, Avci, Rios, Kuhn

Nikonov 4. TFET 33

Page 34: 4. Tunneling FETs - nanoHUB

Both simulations and experimental data show significant improvement for heterojunction channel design over homojunction

Lg=15nm Simulation

Lg=100nm Experimental

Homojunc.

Heterojunc.

Homojunc.

Heterojunc.

(Dewey, IEDM’11)

(Avci, VLSI Tech ‘12)

Nikonov 4. TFET 34

Heterojunction TFET

Page 35: 4. Tunneling FETs - nanoHUB

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Id (u

A/u

m)

VG (V)

P1272 MOS

5nm Homo-jnc

2.5nm Hetero-jnc

T-FET ION/IOFF characteristic was improved for both N-type and P-type with:

• Thinner channel

• Changing device material from InAs homo-junction to a GaSb/InAs hetero-junction.

• P-TFET sub-threshold slope has MOS-like thermal behavior ~60mV/dec, due to low density of sates (DOS) in the conduction band.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Id (u

A/u

m)

VG (V)

P1272 MOS

5nm Homo-jnc

2.5nm Hetero-jnc

N-type P-type

~60 mV/dec

30-45 mV/dec VDS = 0.5V

IOFF = 10pA/um

InAs/GaSb Heterojunction TFET

Nikonov 4. TFET 35

Page 36: 4. Tunneling FETs - nanoHUB

TFET Capacitance

Increased TFET CGD capacitance quoted in literature, due to the

choice of TFET material (Si or Ge). But lower capacitance at

smaller voltages – beneficial for delay.

Y. Yang et. al. (EDL 2010)

EF EF

S Channel D

TFET

Filled states

Nikonov 4. TFET 36

Page 37: 4. Tunneling FETs - nanoHUB

III-V N-TFET Capacitance

III-V Conduction Band has low density of states resulting in low

N-TFET Cgate and CGD

DOS

LOW

HIGH

E

x (nm)

1E+16

1E+17

1E+18

1E+19

1E+20

Si

Ge

InG

aAs

InA

s

InSb

Eff.

De

nsi

ty o

f Sta

tes

(1/c

m3

) ValanceBand

ConductionBand

EF

EF

Nikonov 4. TFET 37

Page 38: 4. Tunneling FETs - nanoHUB

Challenges

• Poor experimental drive currents • Ambipolar conduction

(high DB leakage for bulk devices) • No comparable PTFET

• Asymmetric device behavior (issues in SRAM)

• Most attractive at very low operating voltages (where product frequencies

may be not so interesting)

Benefits

• Steep sub-threshold slope (< 60 mV/dec)

• Large Ion/Ioff ratio • Geometry scales well

• Some designs are compatible with conventional SiGe/Si CMOS

processes

Vd P+ i-InAs N

Vg Gate

Source Drain

Tunneling

barriers Courtsey M. Luisier (Purdue)

M. Luisier and G. Klimeck, EDL, 2009

TFET Summary

Nikonov 4. TFET 38

Page 39: 4. Tunneling FETs - nanoHUB

Summary

Band-to-band tunneling underpins TFET

Gate voltage changes tunneling in a TFET

Most experimental devices are still far from ideal (Intel stands out)

Atomistic simulations with NEGF method

Homojunction TFET = lower on-current

Heterojunction TFET = higher on-current

Nikonov 4. TFET 39


Recommended