+ All Categories
Home > Documents > 4G RF Planning and Optimization (Day One) 02 Jan 2014

4G RF Planning and Optimization (Day One) 02 Jan 2014

Date post: 13-Sep-2015
Category:
Upload: ahmed-gad
View: 123 times
Download: 55 times
Share this document with a friend
Description:
4G RF Planning and Optimization (Day One) 02 Jan 2014
Popular Tags:
153
Training Material 4G RF Planning & Optimization Paragon Hotel, Jakarta - Day One 4 January 2014
Transcript
  • Training Material 4G RF Planning & Optimization

    Paragon Hotel, Jakarta - Day One 4 January 2014

  • Our Product and Service

    Learning Center Research and Development

    Industrial Product

    www.floatway.com

  • 3

  • 1G to 4G

    1G

    3G

    4G

    2G

  • Wireline and Wireless: Milestones

    3.9G

    3.5G

    3.5G

    3G

    2.5G

    2G

    100 Mbps

    10 Mbps

    1 Mbps

    100 Kbps

    10 Kbps

    2000 2005 2010

    ISDN

    128 Kbps

    ADSL 1 Mbps

    ADSL 3 to 5 Mbps

    ADSL2+ 25 Mbps

    FTTH 100 Mbps

    GPRS 40 Kbps

    EDGE 100 Kbps

    UMTS 350 Kbps

    HSDPA 1 Mbps

    HSPA+ 5 Mbps

    LTE 10 Mbps

    Mobile throughput follows landline throughput by approx. factor 10

  • Name Current Job Profile

    Previous Experience

    Expectations, etc.

    Participant Introduction

    6 Alfin Hikmaturokhman.,MT

  • RADIO CELLULAR TECHNOLOGY

    7

  • 2G & 3G Radio Technology from GSM to UMTS Evolution: Data rates

    HSCSD High Speed Circuit Switched Data Circuit-switched No new network elements: SW modifications Bundling 1-8 channels

    GPRS General Packet Radio Services Packet-switched New infrastructure (new protocol architecture: prerequisite for UMTS!)

    Bundling 1-8 channels

    EDGE Enhanced Data rates for the GSM Evolution

    8PSK instead of GMSK (Gaussian Minimum Shift Keying) Bundling 1-8 channels

    UMTS (WCDMA)

    Terrestrial Radio Access

  • Wireless Broadband Technology Evolution .

    WCDMA 3G R99

    DL up to 384 Kbps

    HSDPA Rel 4

    DL up to 3.6 Mbps

    HSDPA Rel 5

    DL up to 7.2 Mbps

    HSPA

    Rel 6

    DL up to 14 Mbps,

    UL up to 5.8 Mbps

    HSPA+

    Rel 7 DL up to 21

    Mbps,

    UL up to 8.3 Mbps

    HSPA+

    Rel 8

    DL up to 35 Mbps,

    UL up to 8.3 Mbps

    4G (WiMAX and LTE)

    DL up to 48 Mbps,

    UL up to 24 Mbps

  • 10

    Towards to 4G

  • NETWORK ARCHITECTURE

    11

  • 3GPP architecture evolution towards flat architecture

    GGSN

    SGSN

    RNC

    NB

    Release 6

    GGSN

    SGSN

    RNC

    NB

    Release 7

    Direct Tunnel

    GGSN

    SGSN

    RNC

    NB

    Release 7

    Direct Tunnel and

    RNC in NB

    Release 8

    SAE and LTE

    SAE GW

    MME

    eNB

    Control Plane User Plane

  • LTE Network Architecture

    UMTS : Universal Mobile Telecommunications System

    UTRAN : Universal Terrestrial Radio Access Network

    GGSN : Gateway GPRS Support Node

    GPRS: General Packet Radio Service

    SGSN : Serving GPRS Support Node

    RNC: Radio Network Controller

    NB: Node B

    GGSN

    UMTS 3G: UTRAN

    SGSN

    RNC RNC

    NB NB NB NB

    MME

    S-GW / P-GW

    MME

    S-GW / P-GW

    eNB

    eNB eNB

    eNB

    EPC

    E-UTRAN

    EPC ; Evolved Packet Core

    MME : Mobility Management Entity

    S-GC : Serving Gateway

    P-GW : PDN Gateway

    PDN : Packet Data Network

    eNB : E-UTRAN Node B / Evolved Node B

    E-UTRAN ; Evolved-UTRAN

  • Simplified LTE network elements and interfaces 3GPP TS 36.300 Figure 4: Overall Architecture

    MME

    S-GW / P-GW

    MME

    S-GW / P-GW

    eNB

    eNB eNB

    eNB

    EPC

    E-UTRAN

    EPC ; Evolved Packet Core

    MME : Mobility Management Entity

    S-GC : Serving Gateway

    P-GW : PDN Gateway

    PDN : Packet Data Network

    eNB : E-UTRAN Node B / Evolved Node B

    E-UTRAN ; Evolved-UTRAN

    eNB = All radio interface-related functions

    MME = Manages mobility, UE identity, and

    security parameters.

    S-GW = Node that terminates the interface

    towards E-UTRAN.

    P-GW = Node that terminates the interface

    towards PDN

    Simple Architecture

    Flat IP-Based Architecture

    Reduction in latency and cost

    Split between EPC and E-UTRAN

    Compatibility with 3GPP and non-3GPP

    technologies

    S1

    X2

  • System architecture for E-UTRAN only network

  • System architecture for 3GPP access networks

  • CELLULAR FREQUENCY ALLOCATION

    17

  • 2G Frequency Allocation in Indonesia

    GSM 900

    DCS 1800

  • 3G Frequency Allocation in Indonesia Frequency Spectrum Update March 2013

  • 3G Frequency Allocation in Indonesia Frequency Spectrum Plan September 2013

  • 21

  • OFDM Single Carrier Transmission (e.g. WCDMA)

    Orthogonal Frequency Division Multiplexing

  • 23

    OFDM Concept: Mengapa OFDM

    Sinyal OFDM (Orthogonal Frequency Division

    Multiplexing) dapat mendukung kondisi NLOS

    (Non Line of Sight) dengan mempertahankan

    efisiensi spektral yang tinggi dan memaksimalkan

    spektrum yang tersedia.

    Mendukung lingkungan propagasi multi-path.

    Scalable bandwidth : menyediakan fleksibilitas

    dan potensial mengurangi CAPEX (capital

    expense).

  • 24

    OFDM Concept: NLOS Performance

  • 25

    OFDM Concept : Mutipath Propagation

    Sinyal-sinyal multipath datang pada waktu yang berbeda dengan amplitudo dan pergeseran

    fasa yang berbeda, yang menyebabkan pelemahan dan penguatan daya sinyal yang diterima.

    Propagasi multipath berpengaruh terhadap performansi link dan coverage.

    Selubung (envelop) sinyal Rx berfluktuasi secara acak.

  • 26

    Multi-carrier modulation/multiplexing technique

    Available bandwidth is divided into several subchannels

    Data is serial-to-parallel converted

    Symbols are transmitted on different subcarriers

    OFDM Concept: FFT

  • 27

    OFDM Concept: IFFT

    Basic ideas valid for various multicarrier techniques:

    OFDM: Orthogonal Frequency Division Multiplexing

    OFDMA: Orthogonal Frequency Division Multiple Access

  • 28

    OFDM Concept: Single-Carrier Vs. OFDM

    Single-Carrier Mode:

    Serial Symbol Stream Used to Modulate a

    Single Wideband Carrier

    Serial Datastream Converted to Symbols

    (Each Symbol Can Represented 1 or More

    Data Bits)

    OFDM Mode:

    Each Symbol Used to Modulate a Separate

    Sub-Carrier

  • 29

    OFDM Concept: Single-Carrier Vs. OFDM

    Single-Carrier Mode OFDM Mode

    Dotted Area Represents Transmitted Spectrum

    Solid Area Represents Receiver Input

    OFDM mengatasi delay spread, multipath dan ISI (Inter Symbol Interference) secara efisien

    sehingga dapat meningkatkan throughput data rate yang lebih tinggi.

    Memudahkan ekualisasi kanal terhadap sub-carrier OFDM individual, dibandingkan terhadap

    sinyal single-carrier yang memerlukan teknik ekualisasi adaptif lebih kompleks.

  • 30

    OFDM Concept: Motivation for Multi-carrier Approaches

    Multi-carrier transmission offers various advantages over traditional single carrier approaches:

    Highly scalable

    Simplified equalizer design in the frequency domain, also in cases of large delay spread

    High spectrum density

    Simplified the usage of MIMO

    Weakness of multi-carrier systems:

    Increased peak to average power ratio (PAPR)

  • OFDM Concept: Peak to Average Power Ratio

    (PAPR)

  • 32

    Tipe Sub-Carrier OFDM

    Data Sub-carriers

    Membawa simbol BPSK, QPSK, 16QAM, 64QAM

    Pilot Sub-carriers

    Untuk memudahkan estimasi kanal dan demodulasi koheren pada receiver.

    Null Subcarrier

    Guard Sub-carriers

    DC Sub-carrier

  • 33

    Guard Interval (Cyclic Prefix)

    Untuk mengatasi multipath delay spread

    Contoh pada WiMAX Guard Interval (cyclic prefix) : 1/4, 1/8, 1/16 or 1/32

  • 34

    OFDM Transceiver

  • 35

    OFDM & OFDMA

    OFDM

    Semua subcarrier dialokasikan untuk satu

    user

    Misal : 802.16-2004

    OFDMA

    Subcarrier dialokasikan secara fleksibel

    untuk banyak user tergantung pada kondisi

    radio.

    Misal : 802.16e-2005 dan 802.16m

  • Difference between OFDM and OFDMA

    OFDM allocates users in time

    domain only

    OFDMA allocates users in

    time and frequency domain

  • OFDMA time-frequency multiplexing

  • 38

    LTE Downlink Physical Layer Design: Physical

    Resource

    The physical resource can be seen as

    a time-frequency grid

    LTE uses OFDM (Orthogonal Frequency Division Multiplexing) as its radio technology in

    downlink

    In the uplink LTE uses a pre=coded version of OFDM, SC-FDMA (Single Carrier Frequency

    Division Multiple Access) to reduced power consumption

  • 39

    LTE Downlink Resource Grid

    Suatu RB (resource block) terdiri dari 12 subcarrier pada

    suatu durasi slot 0.5 ms.

    Satu subcarrier mempunyai BW 15 kHz, sehingga menjadi 180

    kHz per RB.

  • 40

    Bandwidth (MHz) 1.25 2.5 5.0 10.0 15.0 20.0

    Subcarrier bandwidth (kHz) 15

    Physical resource block (PRB)

    bandwidth (kHz) 180

    Number of available PRBs 6 12 25 50 75 100

    Parameters for DL generic frame structure

  • 41

    Transmission BW 1.25 MHz 2.5 MHz 5 MHz 10 MHz 15 MHz 20 MHz

    Sub-frame duration 0.5 ms

    Sub-carrier spacing 15 kHz

    Sampling frequency 192 MHz

    (1/2x3.84

    MHz)

    3.84 MHz

    7.68 MHz

    (2x3.84

    MHz)

    15.36 MHz

    (4x3.84

    MHz)

    23.04 MHz

    (6x3.84

    MHz)

    30.72 MHz

    (8x3.84

    MHz)

    FFT size 128 256 512 1024 1536 2048

    OFDM sym per slot

    (short/long CP) 7/6

    CP length

    (usec/

    samples)

    Short (4.69/9) x 6,

    (5.21/10) x 1

    (4.69/18) x 6,

    (5.21/20) x 1

    (4.69/36) x 6,

    (5.21/40) x 1

    (4.69/72) x 6,

    (5.21/80) x 1

    (4.69/108) x 6,

    (5.21/120) x 1

    (4.69/144) x 6,

    (5.21/160) x 1

    Long (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)

    Parameters for DL generic frame structure

  • LTE Spectrum Flexibility

    LTE physical layer supports any bandwidth from 1.4

    MHz to 20 MHz in steps of 180 kHz (resource block).

    Current LTE specification supports a subset of 6

    different system bandwidths.

    All UEs must support the maximum bandwidth of 20

    MHz.

  • E-UTRA channel bandwidth

  • 44

    Case Study

    LTE Signal Spectrum (20 MHz case)

    The LTE standard uses an over-sized LTE. The actual used bandwidth is controlled by the

    number of used subcarriers. 15 kHz subcarrier spacing is the constant factor!

    18 MHz out of 20 MHz is used for data, 1 MHz on each side is used as guard band.

    LTE used spectrum radio = 90%

    WiMAX used spectrum radio = 82%

  • 45

    TDD & FDD

    Time Division Duplex (TDD)

    Frequency Division Duplex (FDD)

    Durasi Frame : 2.5 - 20ms

  • 46

    Tf = 307200 x Ts = 10 ms

    Tslot = 15360 x Ts = 0.5 ms

    Generic LTE Frame Structure type 1 (FDD)

    Untuk struktur generik, frame radio 10 ms dibagi dalam 20 slot yang sama berukuran 0.5 ms.

    Suatu sub-frame terdiri dari 2 slot berturut-turut, sehingga satu frame radio berisi 10 sub-

    frame.

    Ts menunjukkan unit waktu dasar yang sesuai dengan 30.72 MHz.

    Struktur frame tipe-1 dapat digunakan untuk transmisi FDD dan TDD.

  • 47

    LTE Frame Structure type 1 (FDD)

    2 slots form one subframe = 1 ms

    For FDD, in each 10 ms interval, all 10 subframes are available for downlink transmission and uplink

    transmissions.

    For TDD, a subframe is either located to downlink or uplink transmission. The 0th and 5th subframe in a

    radio frame is always allocated for downlink transmission.

  • Downlink LTE Frame Structure type 1 (FDD)

  • 49

    Generic LTE Frame Structure type 2 (TDD)

    Struktur frame tipe-2 hanya digunakan untuk transmisi TDD.

    Slot 0 dan DwPTSdisediakan untuk transmisi DL, sedangkan slot 1 dan UpPTS disediakan

    untuk transmisi UL.

  • 50

    LTE Frame Structure type 2 (TDD)

  • 51

    Mobile WiMAX Frame Structure

  • LTE Frame Structure type 2 (TDD)

  • DL Peak rates for E-UTRA FDD/TDD frame structure type 1

    Downlink

    Assumptions

    64 QAM

    Signal overhead for reference signals and

    control channel occupying one OFDM symbol

    Unit Mbps in 20 MHz b/s/Hz

    Requirement 100 5.0

    2x2 MIMO 172.8 8.6

    4x4 MIMO 326.4 16.3

  • UL Peak rates for E-UTRA FDD/TDD frame structure type 1

    Uplink

    Assumptions

    Single TX UE

    Signal overhead for reference signals and control

    channel occupying 2RB

    Unit Mbps in 20 MHz b/s/Hz

    Requirement 50 2.5

    16QAM 57.6 2.9

    64QAM 86.4 4.3

  • Peak rates for E-UTRA TDD frame structure type 2

    Downlink Uplink

    Assumptions 64 QAM, R=1 Single TX UE,

    64 QAM, R=1

    Unit Mbps

    in 20 MHz b/s/Hz

    Mbps

    in 20 MHz b/s/Hz

    Requirement 100 5.0 50 2.5

    2x2 MIMO in DL 142 7.1 62.7 3.1

    4x4 MIMO in DL 270 13.5

  • Quiz : LTE DL Peak Rate

    14 OFDM symbols per 1 ms subframe

    QPSK = ..... bits per symbol

    ..... X ..... = ..... bits per 1 ms subframe

    ..... bits / ..... ms = ..... Kbps per subcarrier

    ...... X ..... kbps = ...... Mbps per Scheduling Block

    ...... Scheduling Blocks in ..... Mhz

    ....... X ...... Mbps = ...... Mbps per antenna

    Hitunglah maksimum Peak untuk cell eNodeB dengan

    Bandwith 1.4 MHz dengan modulasi QPSK, normal/short CP

  • Quiz : LTE DL Peak Rate

    Hitunglah maksimum Peak Rate dari masing-masing Konfigurasi

    Lte dibawah ini dengan menggunakan extended/long CP.

    Bandwidth (MHz) Modulation

    QPSK 16 QAM 64 QAM

    1.4

    3

    5

    10

    15

    20

  • SC-FDMA

    58

  • 59

    LTE Uplink Transmission Scheme: SC-FDMA

    Pemilihan OFDMA dianggap optimum untuk memenuhi persyaratan LTE pada arah downlink, tetapi OFDMA memiliki properti yang kurang menguntungkan pada arah Uplink.

    Hal tsb terutama disebabkan oleh lemahnya peak-to-average power ratio (PAPR) dari sinyal OFDMA, yang mengakibatkan buruknya coverage uplink.

    Oleh karena itu, skema transmisi Uplink LTE untuk mode FDD maupun TDD didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik.

    Pemrosesan sinyal SC-FDMA memiliki beberapa kesamaan dengan pemrosesan sinyal OFDMA, sehingga parameter-parameter DL dan UL dapat diharmonisasi.

    Untuk membangkitkan sinyal SC-FDMA, E-UTRA telah memilih DFT-spread-OFDM (DFT-s-OFDM).

  • 60

    OFDMA and SC-FDMA The symbol mapping

    in OFDM happens in

    the frequency

    domain.

    In SC-FDMA, the

    symbol mapping is

    done in the time

    domain.

    Appropriate

    subscriber mapping in

    the frequency domain

    allows to control the

    PAPR.

    SC-FDMA enable

    frequency domain

    equalizer approaches

    like OFDMA

  • How does a SC-FDMA signal look like?

    Similar to OFDM signal, but

    in OFDMA, each sub-carrier only carries information related to one specific symbol,

    in SC-FDMA, each sub-carrier contains information of ALL transmitted symbols.

  • 62

    SC-FDMA parameterization (FDD and

    TDD)

    LTE FDD

    Same as in downlink

    TD-LTE

    Usage of UL depends on the selected UL-DL configuration (1 to 8), each configuration offers a different number of subframes (1ms) for uplink

    transmission,

    Parameterization for those subframes, means number of SC-FDMA symbols same as for FDD and depending on CP,

  • 63

    Improved UL Performance

    SC-FDMA compared to ordinary OFDM

    Single-carrier transmission in uplink enables low PAPR that gives more 4 dB

    better link budget and reduced power consumption compared to OFDM

  • 64

    LTE Uplink SC-FDMA Physical Layer

    Parameters

  • Quiz : LTE DL Peak Rate

    Hitunglah maksimum Peak Rate dari masing-masing

    Konfigurasi Antenna berikut.

    Bandwidth (MHz) Antenna

    SISO MIMO 2 x 2 MIMO 4 x 4

    1.4

    3

    5

    10

    15

    20

  • 66

  • A Game of Avoiding Extremes

  • Pendimensian Jaringan dalam Analisis Techno-Economics

    Cakupan sel

    Kapasitas sel

    Dimensi suatu jaringan

  • Memaksimalkan Coverage dan Capacity

    Memaksimalkan coverage

    Pilih teknologi akses

    Gunakan band frekuensi yang

    rendah

    Tingkatkan tinggi antena

    Naikan daya pancar

    Kurangi persyaratan kualitas

    Memaksimalkan kapasitas

    Pilih teknologi akses

    Perbesar band frekuensi

    Gunakan re-use frequency

    Kurangi persyaratan C/I

    Rendahkan tinggi antena

    Gunakan fitur software

    Gunakan antena adaptif

  • LTE Dimensioning Definition

    Parameters Value

    LTE Duplex FDD

    Frequency 2100 MHz (BAND 1)

    Frequency DL 2110-2170 MHz

    Frequency UL 1920-1980 MHz

    Bandwidth 10 MHz (50 Resource Block)

    Modulation &Coding

    Schemes

    AMC (QPSK,16QAM,64QAM)

    & ,

    Scheduling Proportional Fair

    LTE Spectrum Usage

  • LTE Dimensioning Definition

    Parameters Value

    PTx (dbm) 46 dbm

    Gain Antena Tx 18 dbi

    Jumper Cable 0.2 db/m

    Feeder Cable 0,4db/km

    Rx Sensitivity (dbm) -100 dbm

    Gain Antena Rx 18 dbi

    TMA / MHA 13 db

    Sector 3

    LTE eNodeB Configuration

  • Sistem Antena Base Station (BTS)

    Gain antenna,

    Beam antenna

    Feeder

    Loss

    Tx Power

    Receiver

    Sensitivity

    Noise Figure, dll

  • LTE Nominal Planning

  • COVERAGE PLANNING

    74

  • TXer RXer

    Txer

    component Rxer

    component

    link budget component

    path loss

    Link Budget

  • LINK BUDGET

    Gain Sistem

    Daya Pancar

    Gain Antena

    Sensitivitas Penerima

    SNR threshold tiap modulasi

    Margin Sistem

    Fading Margin

    Interference Margin

    Loss penetrasi bangunan

    Gain/loss sistem lainnya

    Radius Sel

    Model Propagasi

    Frekuensi Operasi

    Tinggi Antena pemancar/ penerima

    Jarak Referensi

  • Dasar Pemahaman Link Budget

  • Frequency range, MHz

    Mobile parameters

    - Tx PA output (max)

    - Cable loss

    - Antenna gain

    -------- (Subsc. ERP max, dB)

    Environmental margins

    - Fading margin

    - Environmental attenuation

    - Cell overlap

    -------------------- (dB)

    Base station parameters

    - Rx ant. gain Rx jumper loss

    - Rx tower top amp gain (net)

    - Rx cable loss

    - Rx ligthning arrester loss

    - Rx duplexer loss

    - Rx diversity gain

    - Rx coding gain

    - Rx sensitivity

    ------- Up-link budget, dB

    Link Budget: Up Link

  • Frequency range, MHz

    Base station parameters

    - Tx PA output power

    - Tx combiner loss

    - Tx duplexer loss

    - Tx ligthning arrester loss

    - Tx cable loss

    - Tx jumper loss

    - Tx tower top amp gain

    - Tx antenna gain

    (Cell ERP, dB)

    Environmental margins

    - Tx diversity gain

    - Fading margin

    - Environmental attenuation

    - Cell overlap

    (dB)

    Mobile parameters

    - Antenna gain

    - Rx diversity gain

    - Antenna cable loss

    - Coding gain

    - Rx sensitivity

    ---------- Down-link budget, dB

    Link Budget: Down Link

  • Maximum Allowed Path Loss

  • Uplink Budget

  • MAPL Calculation (Uplink Link) Maximum Allowed Path Loss

    Uplink Link Budget LTE

    Unit Value Info

    Data Rate Kbps 1024

    Transmitter - UE

    a. Tx Power dBm 23 a

    b. Tx Antenna Gain dB 0 b

    c. Body Loss dB 0 c

    d. EIRP dBm 23 a+b+c

    Receiver - eNodeB

    e. Noise Figure dB 2.2 e

    f. Thermal Noise dBm -107.13 k*T*B

    g. SINR dB -1.95 g

    h. Receiver Sensitivity dBm -106.88 e+f+g

    i. Interference Margin dB 1.81 i

    j. TMA Gain dB 2 j

    k. Rx antenna gain dBi 18 k

    l. Loss System dB 0.4 l

    MAPL dB 147.67 d-h-i+j+k-l

    MAPL = 147.67

    Radius = 0.99 Km

  • Downlink Link Budget LTE

    Unit Value Info

    Data Rate kbps 1000

    Transmitter - eNodeB

    a. Tx Power dBm 46 a

    b. Tx Antenna Gain dB 18 b

    c. Loss System dB 3 c

    d. EIRP dBm 61 a+b+c

    Receiver - UE

    e. Ue Noise Figure dB 7 e

    f. Thermal Noise dBm -102.7 k*T*B

    g. SINR dB -5 g

    h. Receiver Sensitivity dBm -100.7 e+f+g

    i. Interference Margin dB 3 i

    j. Control Channel Overhead dB 1 j

    k. Rx antenna gain dBi 0 k

    l. Body Loss dB 0 l

    MAPL dB 157.7 d-h-i-j+k-l

    MAPL Calculation (Downlink Link) Maximum Allowed Path Loss

  • ENGINEERING MODEL

    Example of WCDMA RLB for Voice Link budget of AMR 12.2 kbps voice service (120 km/h, in-car users,

    Vehicular A type channel, with soft handover)

  • Example of WCDMA RLB for Data Link budget of 144 kbps real-time data service (3 km/h, indoor user

    covered by outdoor BS, Vehicular A type channel, with soft handover)

  • Link Budget Tipikal

  • Link Budget Tipikal

  • Contoh Perhitungan Link Budget

  • Quiz : Uplink Link Budget Hitunglah MAPL Masing-masing sistem berikut

    Uplink Link Budget

    GSM Voice HSPA LTE

    Data Rate (kbps) 12.2 64 64

    Transmitter - UE

    a. Tx Power (dBm) 33 23 23

    b. Tx Antenna Gain (dBi) 0 0 0

    c. Body Loss (dB) 3 0 0

    d. EIRP (dBm)

    Receiver BTS/NodeB/eNodeB

    e. Noise Figure (dB) - 2 2

    f. Thermal Noise (dB) - -108.2 -118.4

    g. Receiver Noise (dBm) - -106.2 -116.4

    h. SINR (dB) - -17.3 -7

    i. Receiver Sensitivity -114

    j. Interference Margin (dB) 0 3 1

    k. Cable Loss (dB) 0 0 0

    l. Rx antenna gain (dBi) 18 18 18

    m. Fast Fade margin (dB) 0 1.8 0

    n. Soft Handover gain (dB) 0 2 0

    MAPL

  • Quiz : Downlink Link Budget Hitunglah MAPL Masing-masing sistem berikut

    Downlink Link Budget

    GSM Voice HSPA LTE

    Data Rate (kbps) 12.2 1024 1024

    Transmitter - BTS/NodeB/eNodeB

    a. Tx Power (dBm) 44.5 46 46

    b. Tx Antenna Gain (dBi) 18 18 18

    c. Cable Loss (dB) 2 2 2

    d. EIRP (dBm)

    Receiver UE

    e. UE Noise Figure (dB) - 7 7

    f. Thermal Noise (dB) -119.7 -108.2 -104.5

    g. Receiver Noise floor (dBm) - -101.2 -97.5

    h. SINR (dB) - -5.2 -9

    i. Receiver Sensitivity -104

    j. Interference Margin (dB) 0 4 4

    k. Control channel overhead (%) 0 20 20

    l. Rx antenna gain (dBi) 0 0 0

    m. Body Loss(dB) 3 0 0

    MAPL

  • COVERAGE PLANNING MODEL PROPAGASI

    91

  • Model Propagasi

    Suatu model propagasi menggambarkan hubungan redaman jarak rata-rata yang terjadi yang sekaligus dapat digunakan untuk perhitungan radius/jangkauan sel.

    Model propagasi bergantung pada:

    Enironment: urban, rural, dense urban, suburban, open, forest, sea

    Jarak

    Frequency

    Kondisi atmosfer

    Indoor/outdoor

  • Contoh Model Propagasi

    Free space

    Wakfish-Ikegami

    Okumura-Hatta

    Longley-Rice

    Lee

  • Propagation Model

    LTE 700 MHz

    Okumura-Hatta

    LTE 2100 MHz

    Cost 231-Hatta

    LTE 2600 MHz

    SUI

    MTRTcp C)logd6,55logh(44,9)a(hlogh13,82)(logf33,946,3L

    (d/100) log 47.9 109.78 Lp

    d log hB] log 6,55 [44,9 CH - hB log 13,82 f log 26,16 69,55 Lp

  • Nominal Planning By Coverage PROPAGATION MODEL : COST231-Hata

    Element:

    Frequency A B

    150 - 1500 MHz 69.55 26.16

    1500 - 2000 MHz 46.3 33.9

    MTRTc C)logd6,55logh(44,9)a(hlogh13,82logf33,9 46,3L

    CM = 0 dB For Rural and suburban

    3 dB For Dense Urban and Urban

  • Pathloss SUI

    Lp = 109.78 + 47.9 log (d/100)

    78.109)100/log(9.47 Lpd

    9.47/)78.109()100/log( Lpd9.47/)78.109(10)100/( Lpd

    9.47/)78.109(10100 Lpxd9.47/)78.1097.157(10100 xd

    00042.110100xd

    966.1000d meters

  • Quiz : Model Propagasi

    Temukan jarak d jarak maksimum antara eNodeB

    dengan MS apabila sebuah operator menggunakan

    frekuensi Lte pada 700 MHz, 1800 MHz dan 2300

    MHz. Tinggi antenna = 30 meter, tinggi MS = 1,7

    meter dan nilai MAPL sudah diketahui pada Quiz

    sebelumnya.

  • COVERAGE PLANNING CELL RADIUS

    98

  • Radius Calculation

    L = 2,6 d2

    L = 1,95 . 2,6 . d2

    L = 1,3 . 2,6 . d2

    For 3-sectoral

    For 2-sectoral

  • Radius Calculation

    L = 2,6 d2 L = 1,95 . 2,6 . d2

    2(1) x 2.6 L

    2.6 L

    2(1) x 2.6 x 1.95 L

    5.07 L 2km 2km

    For Omni directional For trisectoral

  • Number of eNodeB

    Urban Area (3 sector)

    total area 242.928

    2km

    07.5/928.242eNodeBN

    48eNodeBN

  • Nominal Planning By Coverage Balance Site Radius

    R = 0.98 km

    Coverage Site = 4.98 KM

    Coverage Area = 125 KM

    L = 1,95 . 2.6 . d2

    L = 2,6 d2 L = 1,3. 2.6 . d2

    25 Site

    For 3-sectoral

    For 2-sectoral

  • Quiz : LTE Nominal Planning

    Sebuah operator seluler berencana untuk menggelar jaringan

    Lte di 5 kota besar di Indonesia yaitu : Jakarta, Bandung,

    Yogyakarta, Surabaya dan Denpasar. Apabila diketahui

    luas daerah kota besar tersebut, hitung berapa

    jumlah eNodeB 3 sektor yang dibutuhkan pada

    setiap kota? (f = 1800 MHz)

    Kota Luasan*

    Jakarta 662,33 km2

    Bandung 167,67 km2

    Yogyakarta 32,5 km2

    Surabaya 374,78 km2

    Denpasar 123,98 km2

    *Sumber : wikipedia

  • CAPACITY PLANNING

    104

  • Nominal Planning By Capacity: Number of user

    Where:

    Un : num of user on year n Uo : initial num of user (based on urban/sub-urban) a : percent of cellular user (%) b : penetration of operator A (%) d : Percent of LTE user N : num of civilian in the object area gf : num of user growth factor n : planned year u/sub : urban or sub-urban penetration (%)

    Uo is Uou or Uosub Uosub = sub x UoN

    Uou = u x UoN

    Un = Uo (1 + gf)n

    UoN = a x b x d x N

  • Nominal Planning By Capacity:

    Number of user Ex :

    Population = 1445892 people

    Cellular penetration = assumption 80%

    LTE penetration = assumption 10 %

    LTE provider A penetration = assumption 50 %

    User prediction in 5th years

    U5 = 57835 ( 1 + 0.05 )5 assumption fp=5%

    = 73814 user

    Population 1445892 people

    Customer cellular (80%) 1156713 user

    Customer LTE (10%) 115671 user

    Customer LTE provider A (50%) 57835 user

  • Nominal Planning By Capacity: User Density

    Lu : urban area wide

    L : object area wide

    Lu = L x u

    Cu = Un/ Lu

    Cu : Urban area density

    Csub : sub-urban area density

    Ex : urban area penetration = assumption 40 %

    =>

    Urban area wide (Lu) : 242,928 km2

    =>

    Cu = 44288 / 242,928 = 182,31232 user/km2

  • Nominal Planning By Capacity:

    Traffic user prediction

  • Nominal Planning By Capacity :

    Traffic user prediction

    - Avg. Traffic user / BH

    = 10 MB

    - Avg. Traffic user /

    Sub

    = 10 MB / 3600 s *8 bit

    = 22.75 Kbps

    - Total Offered Traffic

    = 73814 * 22.75

    = 1679268.5 Kbps

    = (1680 Mbps)

  • Nominal Planning By Capacity

    Calculate Cell by Capacity

    No. Of Site = 25 Site

    Element Value Unit Cell Capacity 18 Mbps

    Sector 3 sector

    enodeB Capacity 54 Mbps Congestion Control 80 % Total Offered Traffic 1680 Mbps

    No. Of Site 24.88889 Site

  • Number of User

    Where:

    Un : num of user on year n

    Uo : initial num of user (based on urban/sub-urban)

    a : percent of cellular user (%)

    b : penetration of operator A (%)

    d : Percent of LTE user

    N : num of civilian in the object area

    gf : num of user growth factor

    n : planned year

    u/sub : urban or sub-urban penetration (%)

    Uo is Uou or Uosub Uosub = sub x UoN

    Uou = u x UoN

    Un = Uo (1 + gf)n

    UoN = a x b x d x N

    Nominal Planning By Capacity

  • Customer Prediction Parameter

    Ex :

    Population = 1445892 people

    Cellular penetration = assumption 80%

    LTE penetration = assumption 10 %

    LTE provider A penetration = assumption 50 %

    User prediction in 5th years

    U5 = 57835 ( 1 + 0.05 )5 assumption fp=5%

    = 73814 user

    Population 1445892 people

    Customer cellular (80%) 1156713 user

    Customer LTE (10%) 115671 user

    Customer LTE provider A (50%) 57835 user

    Nominal Planning By Capacity

  • Example User Calculation

    Ex : urban penetration = assumption 60 %

    suburban penetration = assumption 40 %

    Urban user = 73814 x 60 % = 44288 user

    Suburban user = 73814 x 40 % = 29525 user

  • User Density

    Lu : urban area wide

    Lsub : sub-urban area wide

    L : object area wide

    Cu : Urban area density

    Csub : sub-urban area density

    Lu = L x u

    Lsub = L x sub

    Cu = Un/ Lu

    Csub = Un/Lsub

  • Example User Density Calculation

    Ex : urban area penetration = assumption 40 %

    suburban area penetration = assumption 40 %

    Openarea = assumption 20 %

    =>

    Urban area wide (Lu) : 242,928 km2

    Sub-urban area wide (Lsub) : 242,928 km2

    =>

    Cu = 44288 / 242,928 = 182,31232 user/km2

    Csub = 29525 / 242,928 = 121,54155 user/km2

  • Services and Type

    Services (Rb)

    VoIP : 64 kbps

    FTP : 1000 kbps

    Video : 384 kbps

    Type (c)

    Building : 50 %

    Vehicular : 30 %

    Pedestrian : 20 %

  • Penetration (p) per type per service

    e.g: BUILDING VoIP usage penetration = 0.5

    BUILDING FTP usage penetration = 0.4

    PEDESTRIAN Video usage penetration = 0.3

    BHCA (B) per type per service

    e.g: BUILDING VoIP usage penetration = 0.008

    BUILDING FTP usage penetration = 0.009

    PEDESTRIAN Video usage penetration = 0.008

    Call duration (h) per type per service (ms)

    e.g: BUILDING VoIP usage penetration = 60

    BUILDING FTP usage penetration = 50

    PEDESTRIAN Video usage penetration = 50

  • service net user bit rate

    (Rb)

    VoIP 64000

    FTP 1000000

    Video 384000

    type call duration (h)

    voip video ftp

    building 60 40 50

    pedestrian 60 50 70

    vehicular 60 40 80

    BHCA (B)

    Service Building Pedestrian Vehicular

    Voip 0,008 0,008 0,009

    Video 0,007 0,008 0,009

    FTP 0,009 0,008 0,008

    Penetrasi User (p)

    Building Pedestrian Vehicula

    r

    Voip 0,5 0,5 0,2

    Video 0,3 0,3 0,2

    FTP 0,4 0,4 0,3

  • OBQ (Offered Bit Quantity) VoIP

    OBQT = cT x Cu; T x pT x RbVoIP x BT x hT

    FTP

    OBQT = cT x Cu; T x pT x RbFTP x BT x hT

    Video

    OBQT = cT x Cu; T x pT x RbVid x BT x hT

    Note: if T= pedestrian, then OBQT is pedestrian OBQ, BT is pedestrian BHCA, etc.

    T : Type (Building; Vehicular; Pedestrian)

  • OBQ contd

    Where:

    OBQVoIP = OBQvehicular + OBQbuilding + OBQ pedestrian

    OBQFTP = OBQvehicular + OBQbuilding + OBQ pedestrian

    OBQVideo = OBQvehicular + OBQbuilding + OBQ pedestrian

    OBQ total = OBQVoIP + OBQFTP + OBQVideo

  • OBQtotal= 20,74860049 + 13,97825 + 8,260936 = 42,98779

    OBQ

    Service Building Pedestrian Vehicular

    Voip 1,400158616 0,5600634 0,252029

    Video 2,940333094 5,2505948 1,008114

    FTP 16,40810878 8,1675919 7,000793

    20,74860049 13,97825 8,260936

    OBQ contd

  • Site Calculation

    Site (L) L = (50.4 x 3) / OBQtotal

    = (50.4 x 3) / 42,98779 = 3,5172778 km2

    Radius (d)

    d = (L / 2.6 / 1.95) ^ 0.5 = (3,5172778 / 2.6 / 1.95) ^ 0.5 = 0,832912489 km

    50.4 Mbps ---> (asumption: using 64 QAM 1/1, BW = 10 MHz)

  • Site Calculation Cont

    Number of eNodeB (M)

    M = Lu / L

    = 242,928 km2 / 3,5172778 km2

    = 69,06704366

    We use Lu JUST IN

    CASE we count urban

    capacity only

  • Perhitungan Dimensioning Capacity: Traffic volume based approach

    Hitung dimensioning capacity

    (subscriber/site) dengan pendekatan traffic

    volume pada sistem LTE dengan 3 sector/site

    dengan performansi minimum (a) dan sistem

    LTE dengan performansi maksimum(b);

    dengan kondisi:

    Busy hour average loading is 50%.

    Busy hour is assumed to carry 15% of the daily traffic

    Offering Monthly Package to subscriber: 5 GBps

    124

  • Contoh Perhitungan Dimensioning Capacity: Traffic volume based approach

    Cell capacity (biasanya dalam Mbps)

    Rubah cell capacity ke GBps (1k = 1024, 1Byte = 8 bits).

    Rubah ke satuan waktu (detik, jam, waktu)

    Perhatikan statistic/prediksi/asumsi traffic volume yang ada, seperti:

    Busy hour average loading is 50%.

    Busy hour is assumed to carry 15% of the daily traffic

    Hitung kemampuan dalam setiap sector dan site.

    125

  • Contoh Perhitungan Dimensioning Capacity: Traffic volume based approach

    126

  • Quiz 1

    Hitung dimensioning capacity

    (subscriber/site) dengan pendekatan

    traffic volume pada sistem LTE pada

    kondisi di contoh perhitungan dengan

    performansi minimum (a) dan sistem LTE

    dengan performansi maksimum(b)

    127

  • Contoh Perhitungan Dimensioning Capacity Data rate based approach

    128

  • Quiz 2

    Hitung dimensioning capacity

    (subscriber/site) dengan pendekatan data

    rate pada sistem LTE pada kondisi di

    contoh perhitungan sebelumnya dengan

    performansi minimum (a) dan sistem LTE

    dengan performansi maksimum(b)

    129

  • Peak capacity of LTE

    LTE cell will provide 100 Mbps of throughput while in reality can only do 50 Mbps, the operator will be short by 50% of capacity in the access network resulting in poor user experience (e.g. slow download, blocking, etc.) and will be 50% over the required capacity for backhaul in which case its investment in capacity thats sitting idle. This is why it is important to get capacity expectations right.

    Peak capacity of LTE is the maximum possible capacity which in reality can only be achieved in lab conditions. To understand the calculations below, one needs to be familiar with the technology

    130

  • Review on Data Rate (MIMO 2X2)

    25 MHz LTE system.:

    Number of resource elements (RE) in a subframe (a subframe is 1 msec):

    12 Subcarriers x 7 OFDMA Symbols x 25 Resource Blocks x 2 slots = 4,200 REs

    Calculate the data rate assuming 64 QAM with no coding (64QAM is the highest modulation for downlink LTE):

    6 bits per 64QAM symbol x 4,200 Res / 1 msec = 25.2 Mbps

    The MIMO data rate is then 2 x 25.2 = 50.4 Mbps.

    131

  • Overhead

    Overhead related to control signaling such as channels, reference & synchronization signals, and coding.

    The channels such as:

    PSS (primary synchronization signal)

    SSS (secondary synchronization signal)

    PDCCH (Physical Downlink Control Channel)

    PBCH(Physical Broadcast Channel)

    PCFICH (Physical Control Format Indicator Channel)

    PHICH (Physical Hybrid-ARQ Indicator Channel)

    132

  • Overhead Estimation (1/2)

    20MHz band, so the number of PRBs in the frequency domain is: PRB no = 100

    1 OFDM symbol for control region (for PHICH, PCFICH and PDCCH) in each subframe, number of OFDM symbols per subframe for user plane

    data (PDSCH) is: No OFDMSymbols = 13 (for normal CP)

    SISO case (one antenna), number of Cell RS for the PDSCH per 2PRBs is: NoRS = 6

    the number of subcarriers per PRB is: NoSubcarriers = 12

    The number of RE (resource elements) available for carrying PDSCH per 2PRBs is: NoREs = NoOFDMSymbols * NoSubcarriers NoRS = 13 * 12 6 = 150

    133

  • Overhead Estimation (2/2)

    The number of RE (resource elements) : 150

    The number of REs for subframe is: NoREPDSCH = NoREs * PRBno = 150 * 100 = 15000

    For peak datarate we use 64QAM, which gives the number of bits per RE: bitsRE = 6

    The number of bits for the whole subframe is: NoBitsPDSCH = NoREPDSCH * bitsRE = 15000 * 6 = 90 000

    The number of subframes in one sec is: NoSFs = 1000 [SFs/Sec]

    The max throughput then (raw, ie. without FEC) is: RawThrpt = NoBitsPDSCH [bits/SF] * NoSFs [SFs/Sec] = 90 000 * 1000 = 90 000 000 bits/sec = 90 Mbits/s

    If we add then the typical FEC rate for good channel conditions of: FECrate = 5/6

    We end up at: PHYThrpt = RawThrpt * FECrate = 90 Mbits/s * 5/6 = 75Mbit/s

    134

  • Overhead Estimation in percentage

    (MIMO 2X2) PDCCH channel can take 1 to 3 symbols out of 14 in a

    subframe. Assuming that on average it is 2.5 symbols, the amount of overhead due to PDCCH becomes 2.5/14 = 17.86 %.

    Downlink RS signal uses 4 symbols in every third subcarrier resulting in 16/336 = 4.76% overhead for 22 MIMO configuration

    The other channels (PSS, SSS, PBCH, PCFICH, PHICH) added together amount to ~2.6% of overhead

    The total approximate overhead for the 5 MHz channel is 17.86% + 4.76% + 2.6% = 25.22%.

    The peak data rate is then 0.75 x 50.4 Mbps = 37.8 Mbps.

    Note that the uplink would have lower throughput because the modulation scheme for most device classes is 16QAM in SISO mode only.

    135

  • Overhead Estimation in percentage

    (MIMO 4X4) There is another technique to calculate the peak

    capacity which I include here as well for a 220 MHz LTE system with 44 MIMO configuration and 64QAM code rate 1:

    Overhead at Downlink: Pilot overhead (4 Tx antennas) = 14.29% Common channel overhead (adequate to serve 1

    UE/subframe) = 10%

    CP overhead = 6.66% Guard band overhead = 10%

    Downlink data rate = 4 x 6 bps/Hz x 20 MHz x (1-14.29%) x (1-10%) x (1-6.66%) x (1-10%) = 298 Mbps

    136

  • Quiz: Overhead at Uplink

    Tx antenna (no MIMO), 64 QAM (Note

    that typical UEs can support only

    16QAM)

    Pilot overhead = 14.3%

    Random access overhead = 0.625%

    CP overhead = 6.66%

    Guard band overhead = 10%

    Uplink Data Rate Estimation ?

    137

  • DEPLOYMENT PLANNING

    138

  • LTE Deployment Options: Backhaul

  • Bandwidth Efficiency

    700 MHz LTE

    Available Licensed Bandwidth (MHz) 6 + 6

    Usable Bandwidth (MHz) 5 + 5

    Spectral efficiency, downlink (bps/Hz) 1.67

    Spectral efficiency, uplink (bps/Hz) 0.89

    Average Throughput per 3-sector site, downlink (Mbps) 25.05

    Average Throughput per 3-sector site, uplink (Mbps) 13.35

    Loading Factor, downlink 70%

    Loading Factor, uplink 60%

    * Performance data is averaged from various vendors claims as of 2011.

  • Traffic Forecasting: Subscriber Traffic

    Model

    700 MHz LTE

    Traffic per Subscriber per Month (GB) 30

    Downlink Traffic (%) 70%

    Uplink Traffic (%) 30%

    Hours in the Busy Period per Day 4

    Percent of Daily Traffic Carried in Busy Period 25%

    Downlink Busy Hour Traffic per Subscriber 97 kbps

    Uplink Busy Hour Traffic per Subscriber 42 kbps

    Subscribers Supported per Sector 60

    Subscribers Supported per Base Station (3 sectors) 180

    * Performance data is averaged from various vendors claims as of 2011.

  • Estimate of Investment

    700 MHz LTE

    Access Network

    3-Sector Single-5MHz-Carrier Macro Cell $55,000

    Investment per Subscriber $306

    Core Network

    Broadband Data-Only Core Network $3,000,000

    Incremental for VoIP Core Network $1,400,000

    CPE Terminals

    Desktop/Fixed CPE $395

    USB Dongle $200

    * Pricing data is averaged from various vendors proposals as of 2011.

  • Pricing - Example Network #1

    700 MHz LTE

    Base Stations 50

    Subscribers Supported 9000

    Total Investment $9,827,500

    Investment per Subscriber $1,092

    * Pricing data is averaged from various vendors proposals as of 2011.

  • Pricing - Example Network #2

    700 MHz LTE

    Base Stations 100

    Subscribers Supported 18,000

    Total Investment $15,255,000

    Investment per Subscriber $848

    * Pricing data is averaged from various vendors proposals as of 2011.

  • Pricing - Example Network #3

    700 MHz LTE

    Base Stations 200

    Subscribers Supported 36,000

    Total Investment $26,110,000

    Investment per Subscriber $725 * Pricing data is averaged from various vendors proposals as of 2011.

  • LTE Deployment Business Consideration: When &

    How?

  • Relative Adoption of Technologies

    Rysavy Research projection based on historical data.

    2G

    3G

    3.9G

  • The reuse of existing 2G and 3G sites for NGMN will

    keep site cost flat

  • LTE Deployment Scenario

  • 150

    Femtocell @ LTE

  • 151

    Femtocell Motivation

  • 152

    Most Mobile Data Use Occurs Indoors

    Source: Informas Mobile Access at Home Report

  • End of Training

    Day One


Recommended