+ All Categories
Home > Documents > 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with...

5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with...

Date post: 23-Sep-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
37
1 st st Oxy Oxyfuel combustion conference fuel combustion conference 8 th th 11 11 th th September 2009 September 2009 Radisson Hotel, Cottbus, Germany Radisson Hotel, Cottbus, Germany Seunghwan Seunghwan Lee, Lee, Karam Karam Han and Kang Y. Huh Han and Kang Y. Huh Combustion Laboratory Combustion Laboratory POSTECH, Korea POSTECH, Korea
Transcript
Page 1: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

11stst OxyOxy‐‐fuel combustion conferencefuel combustion conference88thth‐‐1111thth September 2009September 2009

Radisson Hotel, Cottbus, GermanyRadisson Hotel, Cottbus, Germany

SeunghwanSeunghwan Lee, Lee, KaramKaram Han and Kang Y. HuhHan and Kang Y. HuhCombustion LaboratoryCombustion Laboratory

POSTECH, KoreaPOSTECH, Korea

Page 2: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture
Page 3: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture
Page 4: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

• For a fluctuating variable Φ, there exists a fluctuating variablex which is closely related with fluctuation ofΦ. Flame Structurey

1 1

1 ,n n

i i ii i

P P X

Temperature(K)Temperature(K)

X Probability

1X

2X1X

2X

1P

2P

PDF

2X 22P

nX nP nX

Time

Page 5: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

• Steady Laminar Flamelet Model2

2 ( )sYN W Y

• Special case of CMC ignoring time derivative & transport terms

2s

• Computationally more tractable• Laminar flamelet structures pre‐calculated and tabulated into a flameletlibrary with mixture fraction and stoichiometric SDR as independentlibrary with mixture fraction and stoichiometric SDR as independent variables

• Accurate at the equilibrium condition with a small SDR

• Difficult to handle long time scale chemical reaction like NOx

Page 6: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

• Conditional Moment Closure• Conditional Moment Closure• Klimenko & Bilger [1993]• Key assumption:• Fluctuations of species mass fractions and temperature are primarily associated with fluctuation of the mixture fraction.

• Physically more general than LFM without the laminar flamelet assumption• Numerically more efficient than the PDF transport eq model• Numerically more efficient than the PDF transport eq model• No arbitrary tuning constants involved as in most phenomenological models 

Page 7: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

• Conditional species mean mass fractions

• Conditional mean reaction rate• Conditional mean reaction rate

• Conditional velocity 

Page 8: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

.

Optically Thin Limit

Case setupip Partial pressure of species i

,p ia Plank mean absorption coefficient

T Local flame temperature

Extinction limit

Page 9: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Components Primary, daf wt% Secondary, daf wt%Combustion time scale Combustion time scale

Tar 34.9 0

Soot 0 31.5

H2 1.57 4.08

CH4 1 5 0 21

Combustion time scale of devolatilisation product

Combustion time scale of char

CH4 1.5 0.21

C2H2 0 0

C2H4 0.67 0

C2H6 0.24 0

Dominant factor for turbulent combustion characteristics near the burner  

Reactant Oxidant

case1 devolatilization gas Air

C3H6 0.56 0

CO 2.5 5.2

CO2 2.5 2.5

H2O 5.2 5.2

Case setup

case2 devolatilization gas 20% O2, 80% CO2

case3 devolatilization gas 30% O2, 70% CO2

HCN 1.02 1.87

H2S 0.33 0.42

Char 49.1

P di t d l i d tPredicted pyrolysis products from a bituminous coal by FLASHCHAIN

[Niksa and others, 2003]

Page 10: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

• GRI 3.0 mechanism  – 53 species, 325 steps with NOx

• Combined with H2S oxidation mechanism• Combined with H2S oxidation mechanism

Chemical reaction mechanism

case1 Air 175

case2 20% O2, 80% CO2 247

Extinction limit (1/s) Oxidation mechanism of H2S [Kentaro Tsuchiya, The University of Tokyo]

case3 30% O2, 70% CO2 440

Page 11: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

OH mass fraction in the mixture fraction space wrt SDROH mass fraction in the mixture fraction space wrt SDR

Air(Extc SDR ‐ 175)

20% O2, 80% CO2(Extc SDR ‐ 247)

30% O2, 70% CO2(Extc SDR ‐ 440)

Page 12: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

CO mass fraction in the mixture fraction space wrt SDRCO mass fraction in the mixture fraction space wrt SDR

Air(Extc SDR ‐ 175)

20% O2, 80% CO2(Extc SDR ‐ 247)

30% O2, 70% CO2(Extc SDR ‐ 440)

Page 13: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Temperature in the mixture fraction space wrt SDRTemperature in the mixture fraction space wrt SDR

Air(Extc SDR ‐ 175)

20% O2, 80% CO2(Extc SDR ‐ 247)

30% O2, 70% CO2(Extc SDR ‐ 440)

Page 14: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Maximum temperature : adiabatic and radiation lossMaximum temperature : adiabatic and radiation loss  

Air 20% O2, 80% CO2 30% O2, 70% CO2

Page 15: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Sandia flame D swirl burner

Specification

Case setup for CMC calculation

Page 16: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Sandia flame D ‐ CMC, x/d = 15

0.0020

0.0025

0.0030

0.0035

0.0040

actio

n of

OH

SANDIA FLAMES D calculation

SANDIA FLAMES D exp

0.04

0.05

0.06

0.07ct

ion

of C

O

SANDIA FLAMES D calculation

SANDIA FLAMES D exp

120014001600180020002200

erat

ure

SANDIA FLAMES D calculation

SANDIA FLAMES D exp

0.0 0.2 0.4 0.6 0.8 1.00.0000

0.0005

0.0010

0.0015

Mas

s Fr

a

Mixture Fraction 0.0 0.2 0.4 0.6 0.8 1.00.00

0.01

0.02

0.03

Mas

s Fr

ac

Mi t F ti

0.0 0.2 0.4 0.6 0.8 1.0

200400600800

10001200

Tem

pe

Mixture Fraction

Mass fraction of OH 

in mixture fraction space

Mass fraction of CO 

in mixture fraction spaceTemperature in mixture fraction space

Mixture Fraction Mixture Fraction

Page 17: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Sandia flame D ‐ CMC, x/d = 15

0.025

0.030

0.035

0.040 SANDIA FLAMES D

calculation SANDIA FLAMES D

exp

n of

CO

0 0010

0.0012

0.0014

0.0016

0.0018

0.0020 SANDIA FLAMES D calculation

SANDIA FLAMES D exp

on o

f OH

1200

1400

1600

1800

atur

e

SANDIA FLAMES D calculation

SANDIA FLAMES D exp

0.000

0.005

0.010

0.015

0.020

0 1 2 3 4 5

Mas

s Fr

actio

n

0 1 2 3 4 50.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Mas

s Fr

actio

r/d200

400

600

800

1000

0 1 2 3 4 5

Tem

pera

r/d

Mass fraction of CO 

in mixture fraction spaceTemperature in mixture fraction space

r/d

Mass fraction of OH 

in mixture fraction space

Page 18: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Sandia flame D ‐ CMC, x/d = 30

0.03

0.04

air 40% O2, 60% CO2 60% O2, 40% CO2 80% O2, 20% CO2

on o

f OH

100% O2

0.25

0.30

0.35

0.40 air 40% O2, 60% CO2 60% O2, 40% CO2 80% O2, 20% CO2

on o

f CO

100% O2

2000

2500

3000 air 40% O2, 60% CO2 60% O2, 40% CO2 80% O2, 20% CO2

atur

e

100% O2

0.00

0.01

0.02

0 1 2 3 4 5

Mas

s Fr

actio

/

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5

Mas

s Fr

actio

0 1 2 3 4 50

500

1000

1500

Tem

pera

Mass fraction of OH 

by radial distance

Mass fraction of CO 

by radial distanceTemperature by radial distance

r/d r/d r/d

Page 19: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Sandia flame D ‐ CMC, x/d = 30

0.05

0.06

0.07

0.08 air 40% O2, 60% CO2 60% O2, 40% CO2 80% O2, 20% CO2

on o

f OH

100% O2

0.4

0.5

0.6 air 40% O2, 60% CO2 60% O2, 40% CO2 80% O2, 20% CO2

on o

f CO

100% O2

2000

2500

3000

air 40% O2, 60% CO2 60% O2, 40% CO2 80% O2, 20% CO2

atur

e

100% O2

0.00

0.01

0.02

0.03

0.04

0.0 0.2 0.4 0.6 0.8 1.0

Mas

s Fr

actio

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

Mas

s Fr

actio

0

500

1000

1500

0.0 0.2 0.4 0.6 0.8 1.0

Tem

pera

Mass fraction of OH 

in mixture fraction space

Mass fraction of CO 

in mixture fraction spaceTemperature in mixture fraction space

Mixture Fraction Mixture Fraction Mixture Fraction

Page 20: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

k e high Reynolds number model

Turbulent kinetic energy Turbulent dissipation rate

k‐e high Reynolds number model

Turbulence model

Page 21: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Constant rate model Single step modelConstant rate model g p

Specify the time for complete devolatilisation. A constant rate is used to compute the weight loss of coal particles during the specified time.

Reaction rate proportional to the amount of volatile matter

*( )dV K V V*

devol

dV Vdt T

*

0

( )

1 exp

exp

v

t

v

vv v

V K V Vdt

V V K dt

EK ART

* : the volatile matter content (kg) after Q-factor adjustmentV

: devolatilisation timedevolT

pv vPRT

1

: rate constant

: pre-exponential factor(s ): activation energy for devolatilisation(J/kmol)

v

v

K

AE

Devolatilization model ‐ Aachen Devolatilization model ‐ KITECH

: activation energy for devolatilisation(J/kmol)vE

Page 22: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

0.7512 2 2 124 5 06 10 ( )mTDK kgm Nm

1st order combined model5.06 10 ( )m

dp m p

K kgm Nmd RT d

: diffusion rate coefficient : mechanism factor (1 for CO2 & 2 for CO)T : mean particle/gas temperature

d

m

K

( )K P P

d : particle diameter

D : diffusion coefficientp

exp( )charc char

P

EK ART

( )d g sq K P P

: consumption rate per unit external surface areaq

: partial pressure of oxygen in the bulk gasgP

A : pre-exponential factorE : activation energy for char oxidation

char

char

( ) : overall ratec dg

c d

K Kq PK K

Char combustion model

: partial pressure of oxygen at the char surfacesP2 : char burning rate

c d

pdchar q d

dt

Page 23: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

EBU 2‐step

Eddy Break-Up by Magnussen

Assumption

3min , , /

: fuel consumption rate

O PF ebu F ebu

O P

F

Y YR A Y B kg m sk s s

R

Assumption- The reaction is a single-step irreversible one

involving fuel, oxidant and product, plusbackground inert species

- The reaction time scale is so small that the rate-

p

//

F

O O O F F

P P P F F

s n M n Ms n M n M

controlling mechanism is turbulent mixing , : dimensionless empirical coefficientsebu ebuA B

Gas combustion model

Page 24: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Radiative transfer equationDiscrete Ordinate Method

Solves field equations for radiation i t it i t d ith fi d

4

( ) ( )4

sa s p a b p p

dI kk k k I k I k I I dds

Boundary conditionintensity associated with fixed directions s, represented by discrete solid angles. (24 directions)

Gas emissivity by WSGGM ( ' 0)

( ) ( ') ' bn s

I s I I s n s d

Discretized RTE

y y

Constant temp wall bounaries

1( )

4

ns

i i a s p i a b p p i ii

ks I k k k I k I k I I

Radiation model

1i

Page 25: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

RWTH Aachen 0.1MW OXY‐PC pilot furnace – 170,000 polyhedral cells

Specification

Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere, D. Toporov, P. Bocian, P.Heil, Combustion and Flame 155 (2008) 605 ‐ 618

Specification

Page 26: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

#1 #2 #3 #4 #5 #6 #7

Swirl rato 1.2 1.2 1.2 1.2 1.2 1.5 2.0

EBU Amix 4.0 6 3 4.0 4.0 4.0 4.0

EBU Bmix 0.5 0.75 0.375 0.5 0.5 0.5 0.5

Devolatilization ‐ 0.0833 0.0833 0.0708 0.0958 0.0833 0.0833

ReferenceHigh EBU  Low EBU  Fast  Slow

High swirl High swirlReferenceg

constants constants devolatilisation devolatilisation High swirl High swirl

Effect of EBU constant

Effect of devolatilization Effect of swirl ratio

Page 27: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

0.05 m 0.3 m 0.5 m

Page 28: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

1500 0.05 m

1200

Exp

0.05 m

900

Tempe

rature 'C

Exp

Ref

case2

case3

case4Higher devolatilization speed 

600case5

case6

case7

& higher EBU constants

Higher swirl ratio

300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Radius

Temperature distribution in radial direction at 0.05m from burner

Page 29: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

13001500

0 3 m 0 5 m

1200

1300

1200

0.3 m 0.5 mHigher swirl ratio

1100

mpe

rature 'C

900

empe

rature 'C

1000

Tem

600Te

Higher devolatilization speed & higher EBU constant s

900

0 0.05 0.1 0.15 0.2

Radius

300

0 0.05 0.1 0.15 0.2

RadiusRadius RadiusTemperature distribution in radial direction 

at 0.3m from burnerTemperature distribution in radial direction 

at 0.5m from burner

Page 30: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Korea institute of industrial technology (KITECH) 0.4MW OXY‐PC furnace

Excess air ratio 1.2

Temperature of the primary oxidizer (oC) 150

Temperature of the secondary oxidizer (oC) 300

Ratio of the primary oxidizer (%) 20Ratio of the primary oxidizer (%) 20

Ratio of the secondary oxidizer(%) 80

Flowrate of the primary oxidizer (Nm3/hr) 89.89

Flowrate of the secondary oxidizer (Nm3/hr) 359.6

LHV (kcal/kg) 5258.99

Coal consumption rate (kg/sec) 0.018

C 58.220 % water 18 %

H 4.100 %

O 15.580 %

N 0.820 %

S 0.410 %

Ash 2.87 %

Combustible 

matter79.13 %

Specification CAD data of KITECH 0.4MW OXY‐PC furnace

Page 31: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

• RANS simulation by STAR‐CD 4.08• 150,000 polyhedral cells• dense mesh near the burner

Model

Swirl vane angle 2nd inlet 30 degree

Particle size  80 um

Turbulence  K‐ε high reynolds number 

Devolatilization Single step

Ch b ti 1st dChar combustion 1st order

Gas combustion EBU 2 step

Radiation DOM

Page 32: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

#1 #2 #3 #4 #5 #6

Flow rate ofFlow rate of primary oxidizer (Nm3/hr)

89.89 62.62 89.89 92.62 32.62 69.58

Flow rate of secondary 

359 6 250 5 359 6 220 5 280 5 278 3y

oxidizer(Nm3/hr)

359.6 250.5 359.6 220.5 280.5 278.3

O2 (vol %) 20.9 30 30 30 30 27

N2 (vol %) 79.1 ‐ ‐ ‐ ‐ ‐

CO2 ‐ 70 70 70 70 73

Air Reference Oxy Reference Same flow rate with Air Ref case

Flow rate ratio Flow rate ratio

Effect of Air & Oxy combustion Effect of inlet flow Effect of oxygen

concentration

Page 33: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Case 1 Air reference Case 2 Oxy reference

Case 4 High primary inlet flow rateCase 3 same flow rate with Air Ref

Case 6 Low oxygen concentrationCase 5 High secondary inlet flow rate

Page 34: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Case 1 Air reference Case 2 Oxy reference

Case 4 high primary inlet flow rateCase 3 same flow rate with Air Ref

Case 6 Low oxygen concentrationCase 5 High secondary inlet flow rate

Page 35: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

Case 1 Air reference Case 2 Oxy reference

Case 4 High primary inlet flow rateCase 3 Same flow rate with Air Ref

Case 6 Low oxygen concentrationCase 5 High secondary inlet flow rate

Page 36: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

•• Flame Stability Flame Stability ‐‐Methane Methane –– Stability of air combustion is similar to that of aboutStability of air combustion is similar to that of about 70% CO2 fraction.70% CO2 fraction.

–– Peak flame temperature of air combustion is similar to that of 80% CO2 fraction.Peak flame temperature of air combustion is similar to that of 80% CO2 fraction.

•• Flame Stability Flame Stability –– DevolatilizationDevolatilization gasgas–– Negligible difference in the SDR extinction limit between adiabatic and radiation heat loss.Negligible difference in the SDR extinction limit between adiabatic and radiation heat loss.

–– With CO2 recirculation the maximum  With CO2 recirculation the maximum  stoichiometricstoichiometric temperature decreases and flames temperature decreases and flames b bl h l l lb bl h l l lbecome more unstable with a lower extinction limit  SDR In general. become more unstable with a lower extinction limit  SDR In general. 

•• Sandia Flame D  ValidationSandia Flame D  Validation–– The CMC modelThe CMC model validated against Sandia Flame D data.validated against Sandia Flame D data.

–– SLFM results are generally similar with those by CMC, however, CMC is more accurate for slow SLFM results are generally similar with those by CMC, however, CMC is more accurate for slow species such as OH and NO.species such as OH and NO.

•• Parametric Study Parametric Study –– Aachen BurnerAachen Burneryy–– Temperature profile  underestimated near the burner, but not due to model constants. Temperature profile  underestimated near the burner, but not due to model constants. 

–– When the When the devolatilizatondevolatilizaton rate and the EBU constants increase, the temperature profile is rate and the EBU constants increase, the temperature profile is shifted to the left at the burner exit as expected.  Tuning required for any given data set. shifted to the left at the burner exit as expected.  Tuning required for any given data set. 

Hi h i l l d t b d fl i ith h d i i b t b lHi h i l l d t b d fl i ith h d i i b t b l–– Higher swirl leads to a broader flame region with enhanced mixing by turbulence.Higher swirl leads to a broader flame region with enhanced mixing by turbulence.

Page 37: 5 1st Oxy-fuel conference Huh POSTECH 5_C/5...POSTECH, Korea • For a fluctuating ... library with mixture fraction and ... 0.00.2 0.40.6 0.81.0 200 400 600 800 Temp 1000 Mixture

•• KITECH Burner KITECH Burner SimulationSimulation–– Flame stabilized by swirl and recirculation in the upstream  regionFlame stabilized by swirl and recirculation in the upstream  region

–– Mixing with oxidizer increases by swirl. The flame length decreasesMixing with oxidizer increases by swirl. The flame length decreases and the flame radius and the flame radius g y gg y gincreases.increases.

–– OxyOxy‐‐fuel combustion has a shorter flame length due to a smaller flow rate in Case2. fuel combustion has a shorter flame length due to a smaller flow rate in Case2. 

–– The primary inlet flow influences the flame length whileThe primary inlet flow influences the flame length while thethe secondary inlet flow secondary inlet flow influences the flame radiusinfluences the flame radiusinfluences the flame radius.influences the flame radius.

–– The highThe high temperature region and PC region do not match with each other. temperature region and PC region do not match with each other. 

–– TheThe PCPC region seems to be primarily influenced by turbulent mixing due to high inlet region seems to be primarily influenced by turbulent mixing due to high inlet velocity and swirl.  velocity and swirl.  


Recommended