+ All Categories
Home > Documents > 6-Electron Spin Resonance Studies of Clay Minerals

6-Electron Spin Resonance Studies of Clay Minerals

Date post: 14-Sep-2015
Category:
Upload: leizardeath64
View: 233 times
Download: 1 times
Share this document with a friend
Description:
book chapter
Popular Tags:
23
139 Chapter 6 ELECTRON SPIN RESONANCE STUDIES OF CLAY EINERALS Thomas J. PINNAVAIA Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. 6.1 INTRODUCTION In recent years, electron spin resonance (esr) spectroscopy has proven to be a powerful tool in studies of clay mineral chemistry. The orientations, dynamics, and reactions of a variety of intercalated paramagnetic species have been illucidated by esr spectroscopy. may be metal complexes such as Cu(en)2 , Cu(phen)3 . Adsorbed organic radicals, such as the perylene cation radical or organic molecules containing the paramagnetic nitroxide moiety (=N-O), also lend themselves to study by esr spectroscopy. esr spectra of certain transition metal ions (particularly Fe ) which substitute for aluminum or silicon in the oxygen framework can provide useful information on the nature of thermal processes and the state of order or disorder of the clay structure being probed. The intent of the present paper is to provide some recent examples of the kind of information that can be obtained through the application of esr to the study of clay minerals. spectroscopy t o clay minerals have appeared recently,which complement the present work (Hall, 1980a, 1980b; HcBride, 1980; Pinnavaia, 1980). by Che et al. (1974) and by Pinnavaia (1976a) are also available. do not allow for an adequate treatment of esr theory, but several excellent treatises are available (Wertz and Bolton, 1972; Abragam and Bleaney, 1970; Ingram, 1967) . The paramagnetic centers on the basal surfaces may be simple hydrated cations (*, CU(H~O)~ 2+ , CU(H*O)~~+, VO(H20),2+) or they 2+ 2+ . The 3+ Several review articles on the applications of esr Two earlier reviews Space limitations 6.2 HYDRATED EETAL IONS ON BASAL SURFACES 6.2.1 Copper( 11) Clementz et al. (1973) addressed the question of metal ion orientation on the interlamellar surfaces of smectite clays containing a restricted number of water layers. The copper(I1) ion was selected as an ideal esr probe, in part, because it has a single unpaired electron with a spin S = 1/2. where the metal ion is solvated by one, two or three molecular layers of water, the ion i s expected to possess tetragonal symmetry and to give rise to an aniso- tropic esr signal. In the absence of any interactions between the elctron spin and any neighboring nuclear spins, the spin-Hamiltonian for the ion under tetragonal Also, under conditions
Transcript
  • 1 3 9

    Chapter 6

    ELECTRON S P I N RESONANCE STUDIES OF CLAY EINERALS

    Thomas J . P I N N A V A I A Department o f Chemistry, M ich igan S t a t e U n i v e r s i t y , East Lansing, Mich igan 48824, USA.

    6.1 INTRODUCTION

    I n r e c e n t years , e l e c t r o n s p i n resonance ( e s r ) spec t roscopy has proven t o be

    a power fu l t o o l i n s t u d i e s o f c l a y m ine ra l chemis t r y . The o r i e n t a t i o n s , dynamics,

    and r e a c t i o n s o f a v a r i e t y o f i n t e r c a l a t e d paramagnet ic spec ies have been

    i l l u c i d a t e d by e s r spec t roscopy .

    may be metal complexes such as Cu(en)2 , Cu(phen)3 . Adsorbed o rgan ic r a d i c a l s , such as t h e pe ry lene c a t i o n r a d i c a l o r o rgan ic mo lecu les c o n t a i n i n g t h e paramagnetic

    n i t r o x i d e m o i e t y ( = N - O ) , a l s o l e n d themselves t o s t u d y by e s r spec t roscopy . es r spec t ra o f c e r t a i n t r a n s i t i o n meta l i o n s ( p a r t i c u l a r l y Fe ) which s u b s t i t u t e

    f o r aluminum o r s i l i c o n i n t h e oxygen framework can p r o v i d e u s e f u l i n f o r m a t i o n

    on t h e n a t u r e o f thermal processes and t h e s t a t e o f o rde r o r d i s o r d e r o f t h e

    c l a y s t r u c t u r e be ing probed.

    The i n t e n t o f t h e p resen t paper i s t o p r o v i d e some r e c e n t examples o f t h e

    k i n d o f i n f o r m a t i o n t h a t can be ob ta ined th rough t h e a p p l i c a t i o n o f es r t o t h e

    s tudy o f c l a y m i n e r a l s .

    spec t roscopy t o c l a y m i n e r a l s have appeared recen t l y ,wh ich complement t h e p resen t

    work ( H a l l , 1980a, 1980b; HcBride, 1980; P innava ia , 1980).

    by Che e t a l . (1974) and by P innava ia (1976a) a r e a l s o a v a i l a b l e .

    do n o t a l l o w f o r an adequate t rea tmen t o f es r t heo ry , b u t severa l e x c e l l e n t

    t r e a t i s e s a r e a v a i l a b l e (Wertz and Bo l ton , 1972; Abragam and Bleaney, 1970;

    Ingram, 1967) .

    The paramagnet ic cen te rs on t h e basal su r faces may be s imp le hydra ted c a t i o n s (*, C U ( H ~ O ) ~ 2+ , C U ( H * O ) ~ ~ + , VO(H20),2+) o r t hey

    2+ 2+

    . The

    3+

    Several rev iew a r t i c l e s on t h e a p p l i c a t i o n s o f e s r

    Two e a r l i e r rev iews

    Space l i m i t a t i o n s

    6.2 HYDRATED EETAL I O N S ON BASAL SURFACES

    6.2.1 Copper( 11)

    Clementz e t a l . (1973) addressed t h e ques t i on o f meta l i o n o r i e n t a t i o n on t h e

    i n t e r l a m e l l a r su r faces o f smec t i t e c l a y s c o n t a i n i n g a r e s t r i c t e d number o f water

    l a y e r s . The c o p p e r ( I 1 ) i o n was s e l e c t e d as an i d e a l e s r probe, i n p a r t , because

    i t has a s i n g l e unpa i red e l e c t r o n w i t h a s p i n S = 1/2.

    where t h e meta l i o n i s s o l v a t e d by one, two o r t h r e e mo lecu la r l a y e r s o f water ,

    t h e i o n i s expected t o possess t e t r a g o n a l symmetry and t o g i v e r i s e t o an an iso -

    t r o p i c e s r s i g n a l . I n t h e absence o f any i n t e r a c t i o n s between t h e e l c t r o n s p i n

    and any ne ighbor ing nuc lea r sp ins , t h e sp in -Hami l ton ian f o r t h e i o n under t e t r a g o n a l

    A lso , under c o n d i t i o n s

  • 1 4 0

    symmetry may be wr i t ten as

    + g1 s in 6 S z ) (1 1 cos 6 s, t h e Bohr magneton (eh/2mc), g I I and g l a r e spectroscopic s p l i t t i n g f a c t o r s ,

    H i s the magnetic f i e l d , and 6 i s the angle between the magnetic f i e l d d i rec t ion and t h e symmetry ax is of t h e te t ragonal ion , which i s a r b i t r a r i l y defined along z . Since two g tensors appear i n the Hamiltonian, two resonance components wil l appear in t h e e s r spectrum, one corresponding t o spin quant izat ion i n a d i r e c t i o n para l le l t o the symmetry ax is ( g ) and another corresponding t o spin quantiza- t i o n perpendicular t o the symmetry ax is .(g ) .

    I f we allow f o r coupling between the S = 1/2 electron spin and the I = 3/2

    I I 1

    nuclear spin of t h e copper nucleus, then two more t e r n s must be added t o the spin Hamiltonian:

    where A1 I and A a r e hyperfine s p l i t t i n g cons tan ts , usual ly expressed in cm-l o r in gauss.

    I n the presence of a n applied magnetic f i e l d , therefore , the S = 1 / 2 ground s t a t e i s s p l i t by an amount gBH in to two energy s t a t e s (corresponding t o quan- t ized or ien ta t ions of the e lec t ron spin components i n a d i rec t ion para l le l (!Is = -1/2) or a n t i p a r a l l e l ( M s = 1/2) t o the magnetic f i e l d . a r e s p l i t f u r t h e r by A h / 2 due t o coupling of the e lec t ron spin with the four quantized components of the I = 3/2 nuclear spin ( M I = +3/2, + 1 / 2 ) . level diagram i s i l l u s t r a t e d i n F i g u r e 6.1. The allowed t r a n s i t i o n s correspond t o AM^ = 0 , nMI = 1 . T h u s , we see t h a t both the g I I and g1 resonance components a r e s p l i t i n t o quar te t s due t o hyperfine coupling.

    From equation 1 we may conclude t h a t when 6 = o , only the g , I resonance com- ponent wil l be observed, a n d when e = 90 , only the g component wil l be observed. I n a random powder sample, however, a l l possible values of 6 occur , and both resonance components wil l be seen. Figures 6.2A and 6.28 i l l u s t r a t e t h e e s r s p e c t r a of a powder sample of Cu2'-hectorite under condi t ions where a s i n g l e molecular layer of water occupies the i n t e r l a y e r s (dool = 12.4 A ) . and 4 1 resonance components occur with g 1 I = 2.34, A

    A

    oriented film sample of Cu2+-hectorite with the magnetic f i e l d d i rec t ion or iented I I and L t o the s i l i c a t e shee ts . Since g and 91 I i s observed f o r the 1 o r i e n t a t i o n , we may conclude t h a t the symmetry a x i s of the planar C U ( H ~ O ) ~ ~ + ion i s or iented a t 90' t o the plane of t h e s i l i - c a t e shee ts .

    When Cu i s par t of a two-water layer system a s in f u l l y hydrated Cu -

    A / l S Z I Z + A (SXIX + SYIY) (2) 1 L

    These two s t a t e s

    The energy

    0

    0

    L

    0

    I I As expected, both g ' g1 = 2 -08 . = 0.0165 cm-l

    i s too small t o be resolved. Figures 6.2C and 6.2D show the esr spec t ra o f an

    i s observed f o r the I I or ien ta t ion

    L

    1

    2+ . 2+ 0

    vermicul l i te (dool = 14.2 A ) , an iso t ropic spectra a r e observed f o r or iented f i lm

  • 1 4 1

    I f 112)

    Figure 6.1. Energy level diagram for C u 2+

    QII -H

    Figure 6 .2 . Esr spectra o f Cu2+-hectorite: A, B are for random powders; C , D are for oriented film.

  • 1 4 2

    1 = 2.16, A 0.0145 cm- ) , b u t the spec t ra a r e indepen- I I = samples ( g 1 1 = 2.38, g

    dent of sample or ien ta t ion in the magnetic f i e l d . This means t h a t t h e symmetry ax is of t h e in te rca la ted C U ( H ~ O ) ~ ~ + ion i s or iented near 45' t o the s i l i c a t e shee ts . However, when the Cu(H20l6 hydration s t a t e of MgZt-hectorite (doo l = 15.0 i), the or ien ta t ion dependent spectra shown i n Fiqure 6 . 3 a r e observed (McBride e t a l . , 1975a). From the observed or ien ta t ion dependence, i t may be concluded t h a t C U ( H ~ O ) ~ ~ + i s or iented on the basal surfaces with t h e symmetry a x i s near 90 t o the plane of t h e s i l i c a t e sheets .

    2 t ion i s doped i n t o the three-water layer

    Figure 6.4 summarizes the d i s t i n c t o r ien ta t ion of the Cu2+ ions hydrated by one, two, and three layers of in te r lamel la r water. smectites a r e f u l l y swollen with water (doo l = 21 A ) , qui te a d i f f e r e n t p ic ture emerges from the e s r spectrum. Under these l a t t e r condi t ions, a s ing le i so t ropic l i n e i s observed, s imi la r t o the resonance found f o r C U ( H ~ O ) ~ ~ + i n d i l u t e aqueous so lu t ion . cesses: ( 1 ) rapid tumbling of t h e ion may be occurring i n a highly mobile l i q u i d - l i k e i n t e r l a y e r environment or ( 2 ) a dynamic Jahn-Teller e f f e c t may be occurring in a r i g i d , i c e - l i k e arrangement of water molecules in t h e i n t e r l a y e r regions. The Jahn-Teller dynamic e f f e c t , which involves rapid interchange of the t h r e e pr incipal axes of the C U ( H ~ O ) ~ ~ + ion through coupling of the v ibra t ion modes of t h e aquo l igands , i s responsible f o r the i so t ropic e s r l i n e observed for C U ( H ~ O ) ~ ~ + in frozen aqueous so lu t ions ( H u d s o n , 1966). As we sha l l see l a t e r , based on e s r s t u d i e s of hydrated Mn do i n f a c t tumble rapidly in a so lu t ion- l ike environment when the i n t e r l a y e r s a r e swollen with mul t ip le layers of water.

    When the i n t e r l a y e r s of Cu2+- 0

    The averaging of g l I and g may a r i s e from two very d i f f e r e n t pro- 1

    2+ and V02+ ions i n smect i te , t h e ions

    6.2.2 Vanadyl , V02+ VO(H20)62+-hectorite in the f u l l y wetted s t a t e exhib i t s the blue co lor charac-

    t e r i s t i c of the ion i n aqueous so lu t ion . However, under c e r t a i n condi t ions of loading and hydration s t a t e , the blue color i s l o s t and a tan-brown color develops, indicat ing t h a t a surface reac t ion takes place which depends on moisture content . The surface react ions have been invest igated in p a r t by Pinnavaia e t a l . (1974) and by HcBride (1979a).

    1

    metry. I t s e s r proper t ies resemble those of C U ( H ~ O ) ~ . Under normal condi t ions, t h e ion exhib i t s g in to e ight hyperfine l i n e s due t o coupling of the S = 1/2 e lec t ron spin w i t h t h e I = 7 / 2 nuclear sp in . However, when dissolved in water , t h e ion exhib i t s only a time-averaged i so t ropic l i n e due t o rapid tumbling which averages t h e g

    components.

    The hydrated vanadyl ion has a d e l e c t r o n i c configurat ion and te t ragonal sym-

    and gL resonances with both resonance components being s p l i t

    2+

    I I and 91 Fully wetted V02+-hectorite a l s o gives a n i s o t r o p i c spectrum s imi la r

  • Figure 6.3. Esr spectra o f Cu2+ doped in to Plg*+-hectorite f i lm with H para l le l ( A ) and perpendicular ( B ) t o s i l i c a t e . sheets (from HcBride e t a1 . , 1975a).

  • 1 4 4

    Figure 6.4. Orientat ions of i n t e r l a y e r aquo copper( 11) ions formed by hydration with one, two, and t h r e e layers of water. oxygen atoms of the s i l i c a t e sheet and 1 igat ing water molecules (from Pinnavaia, 1976b).

    Open c i r c l e s a r e

  • 1 4 5

    t o t h e aqueous s o l u t i o n spectrum.

    l i k e spectrum i s r e t a i n e d when VO

    (see F igu re 6.5) However, when t h e i o n i s doped i n t o Mg2+-hec tor i te a t t h e 5%

    l e v e l , a tan-brown c o l o r develops and an a n i s o t r o p i c spectrum i s observed wh ich

    i s i n d i c a t i v e o f a h i g h l y o rdered, immobi le form. FIcBride has suggested t h a t

    t h i s o rdered tan-brown fo rm o f vanadyl i s VO(OH)2(H30)3.

    o r i e n t a t i o n independent o f t h e magnet ic f i e l d , t h e symnetry a x i s appears t o be

    i n c l i n e d near 45 t o t h e s i l i c a t e sheets.

    McBride (1979) has found t h a t t h e s o l u t i o n - 2+ i s doped i n t o Mg2+-hec tor i te a t t h e 50% l e v e l

    S ince t h e spectrum i s

    0

    A i r - d r i e d V02+-hec tor i te g i v e s t h e o r ien ta t i on -dependen t e s r spec t ra shown i n

    F igu re 6.6. S ince A l I (704 G) i s observed f o r t h e pe rpend icu la r o r i e n t a t i o n and A (81 G) i s observed f o r t h e p a r a l l e l o r i e n t a t i o n , t h e symmetry a x i s , wh ich i s c o l i n e a r w i t h t h e V=O bond, l i e s pe rpend icu la r t o t h e s i l i c a t e sheets.

    The above s t u d i e s have focused on t h e o r i e n t a t i o n o f meta l i o n s on t h e basal

    sur faces . Esr s t u d i e s have a l s o proven t o be u s e f u l i n c h a r a c t e r i z i n g mixed

    Nat-Cu2+ and mixed NR4+-Cu2+ s m e c t i t e systems (McBride, 1976a; NcBr ide and

    Mor t land, 1975).

    and on k a o l i n i t e su r faces have a l s o been examined (NcBr ide and t l o r t l and , 1974;

    McBride, 1976b; Clementz e t a l . , 1974).

    1

    The e s r spec t ra o f Cu2+ on reduced charge m o n t m o r i l l o n i t e

    6.3 MOBILITY OF INTERLAYER METAL IONS

    6.3.1 Manganese( I I)

    because e i t h e r dynamic Jahn-Te l l e r e f f e c t s o r r a p i d tumb l ing can l e a d t o averag ing

    O f 91 I and g components. However, f o r !In2+ and V02+, t h e dynamic Jahn-Te l le r e f f e c t does n o t a p p l y and b o t h i o n s a r e s u i t a b l e probes f o r t h i s purpose, t h e

    es r t h e o r y hav ing been w e l l developed (Bur lamacch i , 1971 ; Burlamacchi e t a l . ,

    1970, 1973; G a r r e t t and Morgan, 1966; Campbell and Hanna, 1976).

    The hyd ra ted $ln(H20)62+ i o n has a h i g h s p i n d e l e c t r o n i c c o n f i g u r a t i o n . I n

    most environments, a l l t h r e e g - tenso r components a r e equal and i s o t r o p i c spec t ra

    a r e observed. Because o f i t s i s o t r o p i c na ture , !h2+ i s n o t w e l l s u i t e d f o r e s r

    s t u d i e s o f meta l i o n o r d e r i n g on c l a y sur faces , b u t t h e e s r l i n e w i d t h s may be

    r e a d i l y r e l a t e d t o i o n m o b i l i t y .

    The spec t ra o f Mn2+ i n f u l l y hyd ra ted forms o f m o n t m o r i l l o n i t e , h e c t o r i t e ,

    v e r m i c u l i t e and n o n t r o n i t e resemble t h e spectrum o f t h e i o n i n homogeneous so lu -

    t i o n (McBride e t a l . , 1975b).

    t o c o u p l i n g o f t h e S = 5 / 2 e l e c t r o n s p i n w i t h t h e I = 5/2 nuc lea r sp in . hyper f ine component c o n s i s t s o f t h r e e superimposed L o r e n t z i a n l i n e s a r i s i n g f rom

    f i v e AM, = 1 t r a n s i t i o n s .

    t h e l i n e w i d t h s (AH) a r e t h e sum o f two c o n t r i b u t i o n s

    As no ted e a r l i e r , Cu2+ i s n o t an i d e a l probe f o r examining i n t e r l a y e r m o b i l i t y

    L

    5

    I n each case, s i x h y p e r f i n e l i n e s a r e observed due

    Each

    I n t h e absence o f inhonogeneous l i n e broadening e f f e c t s ,

    AH = AHI + AHD ( 3 )

  • 1 4 6

    I

    200 GAUSS c------1

    H -----t

    VO*+/ M$'- Hect.

    F i g u r e 6.5. Esr spec t ra o f V02+ i n aqueous so lu t ion ( 2 x VO2+/Mg2+-Kectorite f i l m ( f r o m McBride, 1979a).

    M, pH = 1.5) and i n a 50:50

  • 1 4 7

    where AHI i s t h e i n t r i n s i c l i n e w i d t h due t o c o l l i s i o n a l r e l a x a t i o n processes and

    nHD i s t h e l i n e w i d t h due t o d i p o l a r i n t e r a c t i o n s between ne ighbor ing Mn2+ i o n s ( H i n c k l e y and Morgan, 1966).

    t h e d i p o l a r i n t e r a c t i o n s a r e p r o p o r t i o n a l t o r-3, where r i s t h e average Hn

    Mn2+ d i s tance .

    and de termined e x c l u s i v e l y by aHI.

    h e c t o r i t e a r e a p p r e c i a b l y b roader than those o f Nn2+ i n d i l u t e s o l u t i o n , as can

    be seen by comparing F igu res 6.7a and 6.7b. A s i m i l a r obse rva t i on has been made by Furuhata and Kuwata (1969). D ry ing t h e m ine ra l decreases t h e m o b i l i t y o f t h e

    i n t e r l a y e r and broadens t h e l i n e s even more ( c f . F i g u r e 6 . 7 ~ and 6.7d). It i s

    c l e a r t h a t t h e l i n e w id ths o f f u l l y s a t u r a t e d En

    m a i n l y by d i p o l a r r e l a x a t i o n processes.

    removed b y dop ing t h e i o n a t t h e 5% l e v e l i n t h e t l g2+-hec to r i t e . The average

    Mn -Mn2+ i n t h e doped m ine ra l i s 'L 55 i versus 'L 12 i i n t h e f u l l y s a t u r a t e d 2+ m i n e r a l . Theory i n d i c a t e s t h a t T, t h e c o r r e l a t i o n t i m e f o r c o l l i s i o n o f Fn

    i o n w i t h b u l k water mo lecu les , i s d i r e c t l y p r o p o r t i o n a l t o t h e w i d t h o f t h e ?I1 =

    -1/2 t r a n s i t i o n (s, t h e f o u r t h - h i g h e s t f i e l d 1 i n e ) p rov ided t h a t d i p o l a r i n t e r a c t i o n s a r e absent.

    h e c t o r i t e i s 28.6 G E. 22 G f o r Mn2+ i n d i l u t e s o l u t i o n , T i s o n l y % 30% longer i n t h e i n t e r l a y e r o f f u l l y we t ted F1g2+-hectorite (dool = 21 i) than i n d i l u t e s o l u t i o n , where i t has been es t ima ted t o be 3.2 x sec. ( R u b i n s t e i n e t a l . ,

    1971).

    even when t h e i n t e r l a y e r s a r e o n l y 'i, 12 A t h i c k .

    The AHD te rm i s c o n c e n t r a t i o n dependent because 2+ -

    In d i l u t e s o l u t i o n ( < 0.01 11, r > 55 i), t h e e s r l i n e s a r e narrow 2+ - The l i n e w id ths o f f u l l y hydra ted Fln

    2+ - h e c t o r i t e a r e determined

    However, t h e d i p o l a r e f f e c t s may be

    2+

    2+ Since t h e l i n e w i d t h f o r Mn2+ doped i n t o Mg -

    We may conclude, t h e r e f o r e , t h a t t h e i n t e r l a y e r s a r e v e r y s o l u t i o n - l i k e 0

    6.3.2 Vanadyl i o n

    The m o b i l i t y o f hyd ra ted V02+ doped i n t o Mg2+-hec tor i te has a l s o been inves -

    t i g a t e d by e s r l i n e broaden ing methods (ElcBride, 1979).

    MI = 7 /2 t r a n s i t i o n i s p r o p o r t i o n a l t o T (Chasteen and Hanna, 1972).

    l i n e w i d t h o f f u l l y hyd ra ted V02+/Mg2+-hectorite i s 35 G E. 23 G f o r V02+ i n d i l u t e s o l u t i o n , T i s 1.5 t imes l a r g e r i n t h e c l a y than i n d i l u t e s o l u t i o n .

    S ince t h e c o r r e l a t i o n t i m e i s 5 x 16" sec. i n d i l u t e s o l u t i o n , T f o r t h e c l a y

    environment i s 7.5 x

    i n f u l l y we t ted #g2+-hec to r i t e i n a s o l u t i o n - l i k e environment.

    o f t h e V02+ i o n i s decreased.

    es r t i m e sca le , t h e mo t ion o f t h e i o n i s n o t s u f f i c i e n t l y f a s t t o comp le te l y

    average A l l and A l l i n d i c a t i n g an i n t e r m e d i a t e r a t e o f t umb l ing . decrease i n m o b i l i t y i s i n d i c a t e d when t h e water i n Mn2+ s m e c t i t e i s rep laced by

    l a r g e r o rgan ic mo lecu les such as p y r i d i n e (Pafamov e t a l . , 1971; Tarasev ich and

    Ovcharenko, 1973).

    I n t h i s system, t h e

    S ince t h e

    sec. Thus, t h e V02+ ion , l i k e !In2+, tumbles r a p i d l y

    When t h e water i n V02+-t lg2+-hector i te i s rep laced by methanol , t h e m o b i l i t y

    Though t h e i o n i s n o t comp le te l y o r i e n t e d on t h e

    A s i m i l a r

  • 1 4 8

    VQ2*- Hectorite n Ill (air-dry)

    F igu re 6.6. Es r spec t ra o f an a i r - d r y VO*+-hec tor i te f i l m ( f r o m McBride, 1979a).

    F i g u r e 6.7. Mn2+ i n methanol ( A ) and i n h e c t o r i t e f u l l y hyd ra ted (B), a i r d r i e d ( C ) , and d r i e d a t 200" (D) ( f r o m I l cB r ide e t a l . , 1975b).

  • 1 4 9

    6.4 INTERLAMELLAR METAL COFIPLEXES

    Esr can be an e x c e p t i o n a l l y power fu l t o o l f o r obse rv ing t h e f o r m a t i o n o f metal

    The e s r parameters o f t h e com- complexes on t h e i n t e r l a m e l l a r su r faces o f c l a y s .

    p lex should be d i f f e r e n t f rom those o f t h e s imp le s o l v a t e d i o n , p r o v i d i n g t h a t

    r a p i d tumb l ing o f t h e complex does n o t average these parameters. S tud ies o f t h e

    o r i e n t a t i o n dependence o f f i l m samples can p r o v i d e i n f o r m a t i o n on t h e o r i e n t a t i o n

    o f t h e complex.

    Be rkhe ise r and F lo r t land (1975) have i n v e s t i g a t e d t h e r e a c t i o n s o f Cu2+-

    m o n t m o r i l l o n i t e w i t h p y r i d i n e . F i g u r e 6.8 i l l u s t r a t e s t h e spectrum o f t h e m ine ra l

    so l va ted by d i m e t h y l s u l f o x i d e b e f o r e and a f t e r t h e a d d i t i o n o f p y r i d i n e .

    t h e m ine ra l i s s o l v a t e d o n l y by DHSO, an i s o t r o p i c spectrum, = 2.15, i s observed

    due t o r a p i d tumb l ing o f t h e i o n .

    and A l I = 0.0139 cm-l . Nagai e t a l . (1974) a l s o observed by e s r spectroscopy t h e fo rma t ion o f Cu2+ complexes on m o n t m o r i l l o n i t e f o l l o w i n g t h e a d s o r p t i o n o f

    p y r i d i n e and c e r t a i n amino a c i d s .

    Meta l complexes can be i n t e r c a l a t e d i n smec t i t es by d i r e c t i o n exchange reac-

    t i o n (Berkhe ise r and Mor t land, 1977; Velghe e t a l . , 1977; Traynor e t a l . , 1978).

    Berkhe iser and Mor t l and (1977) have shown t h a t t h e spectrum ofiCu( phen)32+-hec to r i t e

    depends on t h e degree o f h y d r a t i o n .

    n e a r l y i s o t r o p i c spectrum, i n d i c a t i n g cons ide rab le i n t e r l a y e r m o b i l i t y . As t h e

    degree o f h y d r a t i o n o f t h e c l a y was decreased, an a n i s o t r o p i c spectrum was ob-

    served which i n d i c a t e d t h a t t h e complex became o r i e n t e d on t h e su r face . Heat ing

    t h e Cu( p h e n ) 3 - h e c t o r i t e t o 200 gave an e s r spectrum c h a r a c t e r i s t i c o f Cu(phen)2

    ( g l I = 2.240; gL = 2.058; A , I = 0.0172 cm- l ) . That i s , t h e e s r da ta c l e a r l y showed t h e 1 igand d i s s o c i a t i o n r e a c t i o n Cu(phen)32t - Cu( phen)22t + phen occu r red on t h e i n t e r l a y e r su r faces .

    formed on h e c t o r i t e by i o n exchange r e a c t i o n .

    con ta ined m a i n l y Cu(en)'+, t h e e s r spectrum o f t h e c l a y i n d i c a t e d t h e presence

    o f two complex spec ies , Cu(en)22+ w i t h g 1 I = 2.181, A , I = 0.0204 cm-l, gl =

    When

    However, when p y r i d i n e i s added, t h e spectrum

    o f an o r i e n t e d C u ( p ~ ) ~ ~ + complex i s c l e a r l y i n d i c a t e d w i t h g 1 1 = 2.24, 9 1 = 2.06

    The f u l l y we t ted exchange fo rm g i v e s a

    D 2+ 2+

    Velghe e t a1 . (1977) i n v e s t i g a t e d t h e n a t u r e o f Cu2+-ethylenediamine complexes A l though t h e exchange s o l u t i o n

    = 0.0019 cm-' and Cu(en)'+ w i t h g 1 I = 2.261, A , I = 0.0182 cm-l, 'JI = I= A 0.0013. T h i s o b s e r v a t i o n i n d i c a t e s t h a t l i g a n d r e d i s t r i b u t i o n

    r e a c t i o n s occu r on t h e c l a y su r face wh ich f a v o r s t h e Cu(enIz2+ r e l a t i v e t o

    homogeneous s o l u t i o n . The a d d i t i o n o f excess en vapor t o Cu(en)22t-saturated

    h e c t o r i t e gave an e s r spectrum i n d i c a t i v e o f Cu(en)3

    cm

    was o r i e n t a t i o n independent, i n d i c a t i n g t h a t t h e symmetry a x i s i s i n c l i n e d near

    45O t o t h e s i l i c a t e sheets. The e s r parameters o f Cu(en)

    Cu(en)32+ on h e c t o r i t e su r faces a r e v e r y s i m i l a r t o those f o r t h e i o n s i n

    2+ ( g , , = 2.20, A l I = 0.0183 -1 1 2t

    , gL = 2.048, A 0.0007 cm- ) . The spectrum o f a f i l m sample o f Cu(en)3

    2+

    I= , Cu(en)22+ and

  • 1 5 0

    F i g u r e 6.8. Esr spec t ra o f Cu2'-hector i te s o l v a t e d by d i m e t h y l s u l f o x i d e and p y r i d i n e ( f r o m Berkhe ise r and Mor t land, 1975).

    F i g u r e 6.9. The Fe3+ s i g n a l s o f K', Na', L i ' and Ca2+ m o n t m o r i l l o n i t e s a t va r ious r e l a t i v e h u m i d i t i e s . Arrows i n d i c a t e t h e weak Fe3+ resonance ( f r o m HcBr ide e t a1 . , 1 9 7 5 ~ ) .

  • 1 5 1

    d i l u t e s o l u t i o n . Us ing d i f f e r e n t t h e o r e t i c a l models, Schoonheydt (1978) has con-

    c luded t h a t t h e e x t e n t o f ou t -o f -p lane ?I bonding i n Cu -en complexes i s s l i g h t l y

    inc reased on c l a y su r faces .

    2+

    6.5 FRAMEWORK PARAMAGNETIC CENTERS

    Na tu ra l c l a y s may c o n t a i n a v a r i e t y o f paramagnet ic i o n s . Some o f t h e i ons

    may be p resen t on t h e exchange s i t e s o r i n oc tahedra l o r t e t r a h e d r a l p o s i t i o n s

    i n t h e oxygen framework.

    i m p u r i t y phase, such as i r o n o x i d e s (Goodman, 1978). I m p u r i t y phases can some-

    t imes be removed by a s e l e c t i v e e x t r a c t i o n techn ique, such as t h e c i t r a t e

    d i t h i o n i t e method o f Mehra and Jackson (1960) f o r t h e removal o f i r o n ox ides .

    Other paramagnet ic cen te rs may be p resen t as a separa te

    3 t Fe i s by f a r t h e most abundant e s r observab le paramagnet ic i o n i n n a t u r a l

    2t c lays . Other i o n s such as Mn

    magnet ic spec ies (a, Fez' and T i under most c o n d i t i o n s . Among t h e r e a d i l y a v a i l a b l e n a t u r a l c l a y s , h e c t o r i t e con-

    t a i n s one o f t h e l o w e s t concen t ra t i ons o f framework Fe3+.

    i n t e r a c t i o n s which broaden t h e l i n e s o f su r face exchange i o n s a r e min ima l i n t h i s

    c l a y . T h i s i s one reason why h e c t o r i t e has been most f r e q u e n t l y used i n e s r

    s t u d i e s o f su r face bound spec ies . It must be no ted , however, t h a t some h e c t o r i t e

    samples, depending on exac t l o c a t i o n , can c o n t a i n e s p e c i a l l y h i g h concen t ra t i ons

    o f i r o n ox ides wh ich g i v e r i s e t o a v e r y broad l i n e (AH > 1000 G) cen tered near

    and V02' a r e a l s o es r observab le , b u t some para-

    a r e non-Kramers spec ies and a r e e s r s i l e n t 2+

    There fore , d i p o l a r

    g = 2.0.

    6.5.1 Smect i t e s

    O l i v i e r e t a l . (1975) have examined t h e e s r spec t ra o f seve ra l smec t i t es . All 3 t samples e x h i b i t e d prominent f e a t u r e s near g = 4.3 wh ich were a t t r i b u t e d t o Fe

    i n two d i s t i n c t oc tahedra l s i t e s and two d i f f e r e n t t e t r a h e d r a l s i t e s . S i m i l a r

    resonances have been observed f o r micas and v e r m i c u l i t e (01 i v i e r e t a1 . , 1976a, 1976b, 1977). The non-equ iva len t oc tahedra l environments were a t t r i b u t e d t o t h e

    two a l t e r n a t i v e ( c i s and t r a n s ) arrangements o f hyd roxy l groups i n t h e Fe04(0H)2

    c a v i t y .

    e x p l a n a t i o n f o r non -equ iva len t oc tahedra l Fe3'.

    resonance near g = 4.3 was found t o be s e n s i t i v e t o t h e p o s i t i o n o f t h e exchange

    c a t i o n i n smec t i t es (McBride e t a1 ., 1975c, 1975d; Be rkhe ise r and Mor t l and , 1975). As can be seen from F i g u r e 6.9, K+ and Nat exchange i o n s cause s i g n i f i c a n t decreases

    i n t h e i n t e n s i t y o f t h e h i g h - f i e l d a n i s o t r o p i c resonance when t h e r e l a t i v e

    h u m i d i t y i s reduced t o 08, whereas t h e s t r o n g l y hyd ra ted L i

    i o n s under t h e same c o n d i t i o n s do n o t i n f l u e n c e t h i s resonance l i n e . Moreover,

    thermal m i g r a t i o n o f L i

    a l s o causes a r e d u c t i o n i n s i g n a l i n t e n s i t y wh ich i s n o t r e s t o r e d upon r e s o l u -

    t i o n o f t h e m i n e r a l .

    However, McBride e t a l . (1975c, 1975d) have o f f e r e d an a l t e r n a t i v e

    The h i g h f i e l d a n i s o t r o p i c

    + and Ca2+ exchange

    + i n t o t h e vacant oc tahedra l p o s i t i o n o f t h e m i n e r a l ,

    The l o w f i e l d i s o t r o p i c Fe3' component remains u n a f f e c t e d

  • 1 5 2

    under t h e above c o n d i t i o n s . These obse rva t i ons suggest t h a t t h e h i g h f i e l d

    a n i s o t r o p i c Fe3+ resonance component i s assoc ia ted w i t h cen te rs o f n e g a t i v e

    charge i n t h e s i l i c a t e framework.

    may a r i s e f rom oc tahedra l Fe3+ i o n s ad jacen t t o c h a r g e - d e f i c i e n t Hg

    n o n - d e f i c i e n t A13+ s i t e s .

    s i t e s w i t h c i s OH c o n f i g u r a t i o n .

    There fo re , t h e two non-equ iva len t Fe3+ s i t e s

    s i t e s and

    Th is model a l l o w s a l l Fe3+ i o n s t o occupy oc tahedra l

    2+

    6.5.2 K a o l i n i t e s

    The e s r spec t ra o f k a o l i n i t e s v a r y marked ly , depending on l o c a l i t y . However,

    a l l n a t u r a l k a o l i n i t e s have two e s r f e a t u r e s i n common wh ich a r e independent o f

    i m p u r i t y phases.

    b l e t o l a t t i c e Fe3+ and a second s e t o f l i n e s near g = 2 wh ich a r i s e f rom l a t t i c e

    d e f e c t s (Heads and Malden, 1975; Jones e t a l . , 1974). Three Fe3+ c e n t e r s have

    been d i s t i n g u i s h e d and des ignated c e n t e r s I, I I a and I I b . Center I g i v e s r i s e

    t o an i s o t r o p i c l i n e a t g = 4.2, w h i l e cen te rs I I a and I I b g i v e a l i n e near g =

    4.9 and two f r e q u e n t l y un reso lved l i n e s a t g = 3.7 and 3.5. Based on c o r r e l a -

    t i o n s o f l i n e i n t e n s i t i e s w i t h t h e degree o f c r y s t a l l i n i t y and t h e e f f e c t s of

    OMSO and o t h e r i n t e r c a l a n t s on s i g n a l i n t e n s i t y , c e n t e r I has been ass igned t o

    oc tahedra l Fe3+ i n a s t r o n g c r y s t a l f i e l d i n l a y e r s w i t h l a y e r s t a c k i n g d i s o r d e r

    such as 3 d isp lacements o r 120" r o t a t i o n s . w i t h oc tahedra l Fe3+ i n s i t e s o f h i g h c r y s t a l l i n i t y and o rde red s t a c k i n g .

    d i f f e r e n c e between c e n t e r s I I a and I I b may r e s u l t f rom two d i s t i n c t o r i e n t a t i o n s

    o f su r face OH groups ad jacen t t o t h e o rde red Fe3+ s i t e s (G iese and Da t ta , 1973) .

    The resonances near g = 2.0 u s u a l l y c o n s i s t o f two asymmetr ic l i n e s w i t h g

    2.05 and 9 1 = 2.0 (Angel and H a l l , 1973; Meads and Nalden, 1975).

    r e s p o n s i b l e f o r these l i n e s has been des ignated c e n t e r A.

    p a r a l l e l t o t h e k a o l i n i t e c - a x i s . Schwartz e t a l . (1979) have used t h i s observa-

    t i o n t o de termine t h e o r i e n t a t i o n d i s t r i b u t i o n o f t h e p l a t e l e t s i n a k a o l i n i t e

    p e l l e t prepared under a x i a l s t r e s s . As expected, t h e p l a t e l e t s tend t o o r i e n t

    w i t h t h e s i l i c a t e l a y e r s pe rpend icu la r t o t h e s t r e s s d i r e c t i o n .

    a l s o c o l l a p s e s t h e Fe3+ l i n e s t o a s i n g l e l i n e a t g = 4.2.

    absent i n Fe3+-doped s y n t h e t i c k a o l i n i t e s , b u t s y n t h e t i c k a o l i n i t e s doped w i t h

    Mg2+ o f Fez+ and subsequent ly x - i r r a d i a t e d e x h i b i t t h e A c e n t e r resonance (Angel

    e t a l . , 1974, 1976, 1977). The e f f e c t s of Fe3+ and 11g2+ on t h e e s r s p e c t r a o f s y n t h e t i c k a o l i n i t e a r e i l l u s t r a t e d i n F i g u r e 6.10. The A c e n t e r has been

    a t t r i b u t e d t o an 0' c e n t e r bound t o Mg2+(or Fez+) s u b s t i t u t i n g f o r A13+, a l t h o u g h

    a t rapped 02- i o n has been suggested as an a l t e r n a t i v e e x p l a n a t i o n (Jones e t a l . ,

    1974) .

    Mg2+ ( o r Fe

    They a l l e x h i b i t a group o f l i n e s near g = 4 wh ich a r e a t t r i b u t a -

    nb Centers I I a and I I b a r e assoc ia ted

    The

    I I = The spec ies

    The un ique a x i s l i e s

    The A c e n t e r i n k a o l i n i t e can be e l i m i n a t e d by annea l i ng a t 400". Annea l ing The A c e n t e r i s

    H a l l (1980a) has es t ima ted t h a t replacement o f one A13+ pe r thousand by 2+

    ) i s s u f f i c i e n t t o account f o r t h e c o n c e n t r a t i o n o f A cen te rs .

  • 1 5 3

    I g=4.0

    6 '

    D

    E

    I g= 2.0

    Natural kaol ini te

    Mg doped kaolinite (no signals)

    Fe3+ doDed kaol inite

    Mg doped kaolinite X-irradiated

    Mg doped kaolinite X-irradiated and annea 1 ed

    Fe3+ and Flg doped kaolinite X-irradiated and annea 1 ed

    Figure 6.10. Esr spectra of synthetic kaolinites (from Angel e t al, 1976).

  • 1 5 4

    Two o t h e r d e f e c t cen te rs (B1 and B 2 ) have been observed i n k a o l i n i t e , b u t t h e es r s i g n a l s a r e weak and d i f f i c u l t t o r e s o l v e (Angel and H a l l , 1973; Pleads and

    I la lden, 1975). These cen te rs e x h i b i t g va lues near 2.0, b u t t h e y a r e d i s t i n g u i s h e d

    from t h e A cen te rs by t h e presence o f h y p e r f i n e s p l i t t i n g due t o c o u p l i n g o f t h e

    unpa i red sp ins w i t h t h e nuc lea r s p i n o f A1 w i t h I = 5 / 2 . The c o n c e n t r a t i o n o f B

    cen te rs can be g r e a t l y inc reased by X - i r r a d i a t i o n . They a r e s t a b l e t o 200" and

    can be r e v e r s i b l y c r e a t e d and des t royed by i r r a d i a t i o n and annea l i ng (Angel and

    H a l l , 1973) . The B cen te rs a r e c l e a r l y assoc ia ted w i t h A1 cen te rs . The most

    l i k e l y assignments a r e 0

    l a t t i c e . Many o t h e r e s r a c t i v e spec ies have been observed i n n a t u r a l k a o l i n i t e

    samples, i n c l u d i n g adsorbed o r g a n i c f r e e r a d i c a l s i n l o w c o n c e n t r a t i o n ( H a l l e t

    a1 . , 1974), framework V4+ i o n s ( H a l l ,(1930a), l ln2+-conta in ing phases (Meads and Halden, 1975), i r o n ox ides , and i r o n - r i c h i m p u r i t y phases such as

    mica (Meads and Malden, 1975; Angel and V incen t , 1978).

    + cen te rs wh ich b r i d g e A l , Si and A1 , A1 p a i r s i n t h e

    6.6 ORGANIC RADICALS AND NITROXIDE S P I N PROBES

    6.6.1 Arene Radical Cat ions

    Esr has been v e r y u s e f u l i n e l u c i d a t i n g e l e c t r o n t r a n s f e r r e a c t i o n s between

    aromat ic mo lecu les and c e r t a i n t r a n s i t i o n meta l i o n s i n t h e i n t e r l a y e r s o f smec-

    t i t e s .

    f o r Cu2+ and benzene on m o n t m o r i l l o n i t e . The most s t r i k i n g f e a t u r e o f t h e reac-

    t i o n was t h e development o f an i n t e n s e l y r e d complex wh ich e x h i b i t e d anomalous

    a b s o r p t i o n bands i n t h e ir r e g i o n t h a t i n d i c a t e d t h e a r o m a t i c i t y o f t h e benzene

    r i n g was l o s t o r g r e a t l y pe r tu rbed . F u r t h e r s t u d i e s (F lo r t land and Pinnavaia;

    1971; P innava ia and Mor t land, 1971) o f t h e r e a c t i o n i n d i c a t e d t h a t t h e develop-

    ment o f t h e r e d "Type 11" benzene spec ies was preceeded by t h e l o s s o f wa te r

    f rom t h e s i l i c a t e su r face and phys i ca l a d s o r p t i o n o f benzene. The removal o f

    water f rom t h e c o o r d i n a t i o n sphere o f t h e Eu

    edge-bonded form o f coo rd ina ted benzene, wh ich was des ignated "Type I" benzene.

    The removal o f s t i l l more i n n e r sphere water l e d t o t h e f o r m a t i o n o f some C6H6+

    a long w i t h t h e r e d Type I 1 spec ies . Fu r the r s low r e a c t i o n o f t h e Type I 1 spec ies

    and/or t h e r a d i c a l c a t i o n e v e n t u a l l y a f f o r d e d polymer, p robab ly parapo lypheny l

    (Mor t l and and Ha l l o ran , 1976; S toesse l e t a l . , 1977).

    Type I spec ies g i v e s a s t rong , broad Cu2+ resonance, i n d i c a t i n g t h a t t h e ox ida -

    t i o n s t a t e o f t h e meta l remains unchanged a t t h i s s tage o f t h e r e a c t i o n . Reduc-

    t i o n o f Cu2+ t o Cu and t h e fo rma t ion o f C6H6 and Type I 1 benzene i s accompanied

    by t h e replacement o f t h e Cu2+ resonance by a sharp i s o t r o p i c resonance near g =

    2.0 t h a t may be ass igned t o C H l e s s than % 3% o f t h e i n i t i a l Cu

    obse rva t i on suggests t h a t most o f t h e sp ins a r e l o s t th rough s p i n p a i r i n g i n t h e

    The f i r s t r e a c t i o n o f t h i s t y p e was r e p o r t e d by Donor and Mor t l and (1969)

    2+ i o n s a f f o r d e d a ye l low-green

    The o v e r a l l r e a c t i o n scheme f o r Cu2+-benzene i s summarized i n F igu re 6.11. The

    + +

    + (Ruper t , 1973; P innava ia e t a l , 1974) . However,

    62+ + sp ins a r e recovered as C6H6 . Th is l a t t e r

  • 1 5 5

    +cuL;

    //

    polymer

    F i g u r e 6.11. React ions of benzene w i t h Cu2+ i n s rnec t i te ( f rom P innava ia , 1977) .

    F i g u r e 6.12. Proposed s t r u c t u r e for t y p e I 1 benzene.

    0

    F i g u r e 6.13. S t r u c t u r e o f Ternpamine+.

  • 1 5 6

    Type I 1 species. The n a t u r e o f t h e Type I 1 spec ies i s s t i l l u n c e r t a i n , b u t a

    model based on th rough space p a i r i n g o f r a d i c a l c a t i o n s has been proposed e a r l i e r

    (P innava ia , 1976b).

    F igu re 6.12. D i s t o r s i o n s i n t h e p a i r e d Jahn-Te l le r C6H6

    t o t h e unusual i r absorp t i ons i n t h e C=C s t r e t c h i n g r e g i o n .

    sur faces has

    1973; Van de Poel e t a l . , 1973; Cloos e t a l . , 1973; T r i c k e r e t a l . , 1976). S ince

    t h e r o l e o f t h e Cu i o n i s t o f u n c t i o n as an o x i d i z i n g agent f o r r a d i c a l c a t i o n

    fo rmat ion , o t h e r o x i d i z i n g agents such a s V02+ and Fe3+ may be used as rep lace -

    ments f o r Cu

    A schematic r e p r e s e n t a t i o n o f t h e p a i r i n g model i s g i ven i n +

    spec ies may c o n t r i b u t e

    The r e a c t i o n o f a v a r i e t y o f o t h e r a romat i c mo lecu les w i t h Cu2+ on s m e c t i t e

    been i n v e s t i g a t e d (Matsunaga, 1972; P innava ia , 1976b; Fenn e t a l . ,

    2+

    2+ (P innava ia e t a l . , 1974).

    6.6.2 N i t r o x i d e Sp in Probes

    McBride (1976c, 1976d, 1977a, 1977b, 1979b, 1980) s t u d i e d t h e m o b i l i t y and

    o r i e n t a t i o n o f n i t r o x i d e s p i n probes on smec t i t e c l a y su r faces . The p ro tona ted

    form o f 4-amino-Z,2,6,6- t e t r a m e t h y l p ipe r id ine -N-ox ide (Ternpami ne ) has been

    e s p e c i a l l y u s e f u l i n these s t u d i e s . The s t r u c t u r e o f Tempamine i s i l l u s t r a t e d

    i n F i g u r e 6.13.

    l o w v i s c o s i t y , r a p i d tumb l ing averages t h e p r i n c i p a l components o f t h e g tenso r

    and t h e h y p e r f i n e c o u p l i n g tenso r , A. Thus, a t h r e e - l i n e e s r spectrum i s observed

    + +

    4 When t h e s p i n probe i s d i s s o l v e d i n low c o n c e n t r a t i o n (10- 1) i n s o l v e n t s o f

    1 = + g2,) and A,, = - (Axx + A + A ) i s observed. I f t h e w i t h go = 3 (gxx

    v i s c o s i t y i s l o w and t h e c o r r e l a t i o n t i m e f o r t umb l ing i s v e r y s h o r t ( T ~ < 2, 10:

    1 gYY 3 Yy zz

    sec), t h e t h r e e h y p e r f i n e l i n e s a r e o f equal h e i g h t and w id th .

    t i o n t i m e increases i n t h e r e g i o n o f modera te ly f a s t t umb l ing ( T ~ < 5 x l o - sec), t h e l i n e s remain equal i n i n t e g r a l i n t e n s i t y b u t t h e w id ths and h e i g h t s o f t h e

    t h r e e l i n e s beg in t o d i f f e r because o f i n c o m p l e t e l y averaged a n i s o t r o p i c terms

    i n t h e magnet ic Hami l t on ian .

    f rom t h i s l i n e broaden ing phenomenon (Smi th , 1972; Nord io , 1976; Sachs and L a t o r r e ,

    1974).

    t h e spectrum becomes more complex.

    - < T~ 5 s e c - l , t h e s o - c a l l e d s low mot iona l r e g i o n , t h e shape o f t h e spectrum tends toward two w e l l - r e s o l v e d o u t e r h y p e r f i n e l i n e s and a c e n t r a l over lapped

    reg ion . The a n a l y s i s o f c o r r e l a t i o n t imes i n t h i s t i m e domain i s d i f f i c u l t , b u t

    an a p p r o p r i a t e t h e o r y has been developed (Freed, 1976; Hwang e t a l . , 1975).

    S ince t h e c o r r e l a t i o n t i m e can be r e l a t e d t o t h e v i s c o s i t y o f t h e medium

    th rough Stokes law,

    As t h e c o r r e l a - -

    The c o r r e l a t i o n t i m e f o r t umb l ing may be c a l c u l a t e d

    As t h e m o b i l i t y o f t h e n i t r o x i d e decreases f u r t h e r i n v i scous f l u i d media,

    I n t h e range o f c o r r e l a t i o n t imes, l o p 9 sec

    3 4nqr Tc =3kT ( 4 ) e s r s t u d i e s o f s p i n probes on c l a y su r faces m i g h t be expected t o y i e l d t h e

    m ic roscop ic v i s c o s i t y i n t h e c l a y i n t e r l a y e r s . However, McBride (1976d, 1977a)

  • 1 5 7

    F igu re 6.14. Esr spect ra o f Ternpamine+ doped a t t h e 1% l e v e l i n t o f u l l y wet ted K+-hec to r i t e f i l m ( f rom McBride, 1980).

    #

    , 20 GAUSS , n .

    + F igu re 6.15. Esr spect ra o f Tempamine doped a t t h e 1% l e v e l i n t o

    K+-hector i te d r i e d a t 110" ( f rom McBride, 1980).

  • 1 5 8

    has found t h a t s t r o n g i n t e r a c t i o n s w i t h t h e c l a y su r faces n o t o n l y reduces t h e

    r o t a t i o n a l m o b i l i t y , b u t a l s o p a r t i a l l y o r i e n t t h e probe i n t h e i n t e r l a y e r s ;

    t h a t i s , t h e probe does n o t tumble randomly i n t h e i n t e r l a y e r s even when f u l l y

    hydra ted . F i g u r e 6.14 i l l u s t r a t e s t h e e s r spec t ra o f Ternpamine+ on a f u l l y we t ted

    f i l m sample o f K - h e c t o r i t e w i t h t h e magnet ic f i e l d d i r e c t i o n o r i e n t e d p a r a l l e l and pe rpend icu la r t o t h e s i l i c a t e sheets. For t h e pe rpend icu la r o r i e n t a t i o n ,

    Al = 20.5 gauss, and f o r t h e p a r a l l e l o r i e n t a t i o n A l l = 15.2 gauss. Based on

    t h e observed o r i e n t a t i o n dependence, t h e z - a x i s o f t h e probe, wh ich i s d e f i n e d

    as be ing c o l i n e a r w i t h t h e p o r b i t a l on n i t r o g e n , i s o r i e n t e d w i t h r e s p e c t t o

    t h e s i l i c a t e sheets a t an apparent ang le o f 45".

    sample o f K + - h e c t o r i t e d r i e d a t 110".

    approximate p o s i t i o n s o f t h e t h r e e resonances f o r t h e pe rpend icu la r and p a r a l l e l

    o r i e n t a t i o n o f t h e h e c t o r i t e f i l m r e l a t i v e t o t h e magnet ic f i e l d d i r e c t i o n .

    The spec t ra shapes a r e those expected f o r n i t r o x i d e probe i n t h e s low mot iona l

    r e g i o n . C l e a r l y , t h e a l ignment o f t h e probe i n t h e i n t e r l a y e r s i s g r e a t l y

    enhanced by removing wa te r and c o l l a p s i n g t h e i n t e r l a y e r s .

    probe i s app rox ima te l y a t r i g h t angles t o t h e s i l i c a t e sheets .

    f o r t umb l ing i n t h e f u l l y we t ted K - h e c t o r i t e , va lues o f 1-3 x lo - ' sec a r e ob ta ined (McBride, 1977b).

    than t h e r a t e o f r o t a t i o n i n t h e s o l u t i o n s t a t e . La rge r va lues o f T~ a r e found

    f o r t h e pe rpend icu la r o r i e n t a t i o n o f t h e c l a y f i l m s i n t h e magnet ic f i e l d com-

    pared t o t h e p a r a l l e l o r i e n t a t i o n , a r e s u l t o f a n i s o t r o p i c r o t a t i o n . H - h e c t o r i t e s e x h i b i t T~ va lues about t w i c e as l o n g as M - h e c t o r i t e s , perhaps due

    t o t h e more l i m i t e d i n t e r l a m e l l a r volume f o r t h e M -exchange forms. A l so ,

    e thano l s o l v a t e d M - h e c t o r i t e s c o n t a i n i n g s p i n probe e x h i b i t c o r r e l a t i o n t imes

    which a r e approx ima te l y two o rde rs o f magnitude l o n g e r t h a n t h e hyd ra ted systems,

    d e s p i t e t h e r e l a t i v e l y more i s o t r o p i c mo t ion i n t h e fo rmer case.

    +

    F i g u r e 6.15 shows t h e e s r s p e c t r a l p r o p e r t i e s o f Tempatnine+ adsorbed on a f i l m

    The arrows i n t h e f i g u r e s i n d i c a t e t h e

    The z - a x i s o f t h e

    I f t h e l i n e w i d t h s o f Ternpamine' a r e used t o c a l c u l a t e t h e c o r r e l a t i o n t i m e +

    The va lues i n t h i s range a r e 20 t o 60 t imes lower

    2+

    + 2+

    +

    RE FE RE WC ES

    Abragam, A. and Bleaney, B., 1970. E l e c t r o n Paramagnetic Resonance o f T r a n s i t i o n Metal Ions . Oxford U n i v e r s i t y Press, London, 911 pp.

    Angel, B.R. and H a l l , P.L., 1973. E l e c t r o n s p i n resonance s t u d i e s o f k a o l i n s . Proc. I n t e r n . C lay Conf., Madrid, 1972, pp. 47-60.

    Angel, B.R., Jones, J.P.E. and H a l l , P.L., 1974. E l e c t r o n s p i n resonance s t u d i e s o f doped s y n t h e t i c k a o l i n i t e I. Clay H ine r . , 10: 247.

    Angel, B.R., Richards, K. and Jones, J.P.E., 1976. The syn thes i s , morphology, and genera l p r o p e r t i e s o f k a o l i n i t e s s p e c i f i c a l l y doped w i t h m e t a l l i c i ons and defects generated by i r r a d i a t i o n . Proc. I n t e r n . C lay Conf., Mexico, 1975, pp. 297-304.

    Angel , B.R., C u t t l e r , A.H., R ichards , K. and V incent , W.E.J., 1977. S y n t h e t i c k a o l i n i t e s doped w i t h Fez+ and Fe3+ ions .

    Angel, B.R. and V incent , W.E.J., 1978. E l e c t r o n s p i n resonance s t u d i e s o f i r o n ox ides assoc ia ted w i t h t h e su r face o f k a o l i n s .

    Clays and C lay Miner. , 25: 381-383.

    Clays and C lay Miner. , 26: 263-272.

  • 1 5 9

    Berkheiser, V . and Mort land, M.M., 1975. V a r i a b i l i t y o f exchange i o n p o s i t i o n i n smec t i t e : dependence on i n t e r l a y e r s o l v e n t . Clays and Clay Miner . , 23: 404-410.

    Berkheiser , V . and Mort land, M.M., 1977. 1 , lo-phenanthro l ine che la tes . Clays and Clay Miner . , 25: 105-112.

    Burlamacchi, L., 1971. Mot ional c o r r e l a t i o n t i m e i n t h e e l e c t r o n s p i n r e l a x a t i o n o f 6S s p i n s t a t e i o n s i n s o l u t i o n . J. Chem. Phys., 55: 1205-1212.

    Bur lamacchi . L. , M a r t i n i , G. and T i e z z i , E., 1970. So lven t and l i g a n d dependence o f e l e c t r o n s p i n r e l a x a t i o n o f manganese(I1) i n s o l u t i o n . J. Phys. Chem.,

    Bur lamacchi , L., M a r t i n i , G. and Romanell i, M. , 1973. E l e c t r o n s p i n r e l a x a t i o n and h y p e r f i n e l i n e shape o f manganese(I1) i n mixed-so lvent systems.

    Campbell, R.F. and Hanna, M . W . , 1976. The vanadyl i o n as an e l e c t r o n paramagnetic resonance probe o f m i c e l l e - l i q u i d c r y s t a l systems. J. Phys. Chem., 80: 1892-1098.

    Chasteen, N.D. and Hanna, M.W., 1972. E l e c t r o n paramagnet ic resonance l i n e widths o f vanadyl ( I V ) a-hydroxycarboxy lates. J. Phys. Chem., 76: 3951-3958.

    Che, M., F ra i ssa rd , J. and Vedrine, J.C., 1974. A p p l i c a t i o n s de l a resonance paramagnetique e l e c t r o n i q u e e t de l a resonance magnetique n u c l e a i r e a l ' e t u d e des s i l i c a t e s e t des a r g i l e s . B u l l . Groupe Franc. A r g i l e s , 26: 1-53.

    Clementz, D.M., Mor t land, M.M. and Pinnavaia, T.J. , 1973. Stereochemist ry o f hydrated copper ( I1 ) i ons on t h e i n t e r l a m e l l a r su r faces o f l a y e r s i l i c a t e s : an e l e c t r o n s p i n resonance s tudy. J. Phys. Chem., 77: 196-200.

    Clementz, D.M., Mor t land, f1.H. and Pinnavaia, T.J., 1974. P roper t i es o f reduced charge m o n t m o r i l l o n i t e s : hyd ra ted Cu( 11) i o n s as a spect roscopic probe. Clays and Clay Miner., 22: 49-57.

    Cloos, P., Van de Poel, D. and Camerlynck, J., 1973. Thiophene complexes on mont- m o r i l l o n i t e sa tu ra ted w i t h d i f f e r e n t i ons . Nature Phys. Sc i . , 243: 54-55.

    Donor, H.E. and Mort land, M . M . , 1969. Benzene complexes w i t h copper( 11) mont- mor i 11 o n i t e . Science, 166 : 1406-1 407.

    Fenn, D., Ho r t l and , M.W. and Pinnavaia, T.J. , 1973. The chemisorpt ion o f a n i s o l e on Cu(I1) h e c t o r i t e .

    Freed, J.H., 1976. In: L .J .Ber l i ne r , E d i t o r , Spin Label ing-Theory and Appl ica- t i o n s . Academic Press, New York, pp. 53-132.

    Furuhata, A. and Kuzwata, K. , 1969. E l e c t r o n s p i n resonance spec t ra o f manga- nese( 11) and copper ( I1 ) adsorbed on c l a y m ine ra l s and s i l i c a - a l u m i n a m ix tu res . Nendo Kagaku, 9, 19. (CA. 72: 105744k).

    Giese, R.F. and Dat ta , P., 1973. Hydroxyl o r i e n t a t i o n i n k a o l i n i t e , d i c k i t e , and n a c r i t e . Amer. f l i ne ra l . , 58: 471-479.

    Goodman, B.A., 1978. I n v e s t i g a t i o n by Mdssbauer and ep r spectroscopy o f p o s s i b l e presence o f i r o n - r i c h i m p u r i t y phases i n some m o n t m o r i l l o n i t e s . Clay Minera ls , 13: 351-356.

    H a l l , P.L., 1980a. The a p p l i c a t i o n o f e l e c t r o n s p i n resonance spectroscopy t o s tud ies o f c l a y m i n e r a l s . I. Isomorphous s u b s t i t u t i o n s and ex te rna l su r face p r o p e r t i e s . Clay Miner., 15: 321-336.

    H a l l , P.L., 1980b. The a p p l i c a t i o n o f e l e c t r o n s p i n resonance spectroscopy t o s t u d i e s o f c l a y m ine ra l s . 11. I n t e r l a m e l l a r complexes-st ructure dynamics and r e a c t i o n s . Clay Miner. , 15: 337.

    H a l l , P.L., Angel, B.R. and Braven, J., 1974. E l e c t r o n s p i n resonance and r e l a t e d s t u d i e s o f l i g n i t e and b a l l c l a y f rom South-Devon, England. Chem. Geol.,

    H inck l y , C.C. and Morgan, L.O., 1966. E l e c t r o n s p i n resonance l i n e w i d t h s o f manga- nese( I1) i o n s i n concentrated aqueous s o l u t i o n s . J. Chem. Phys., 44: 898.

    Hudson, A., 1966. l i n e shapes o f octahedra l copper( 11) complexes. Hol . Phys. , 10: 575-581.

    Hwang, J.S., Mason, R.P., Hwang, L.P. and Freed, J.H., 1975. Esr s t u d i e s o f a n i s o t r o p i c r o t a t i o n a l r e o r i e n t a t i o ! and slow tumb l ing i n l i q u i d and f rozen media. 111: Perdeuterotempone and an a n a l y s i s o f f l u c t u a t i n g torques. J. Phys. Chem., 79: 489-511.

    Ingrarn, D.J.E., 1967. Spectroscopy a t Radio and Microwave Frequencies. B u t t e r - worths, London.

    H e c t o r i t e complexes w i t h Cu( I1) and F e ( I 1 ) -

    74: 3980-3987.

    J. Chem. Phys. , 59: 3008-301 4.

    Clays and Clay Miner. , 21: 315-322.

    13: 97-113.

    The e f f e c t s o f dynamic exchange on t h e e l e c t r o n s p i n resonance

  • 1 6 0

    Jones, J.P.E., Angel , B.R. and H a l l , P.L., 1974. E l e c t r o n s p i n resonance s t u d i e s o f doped s y n t h e t i c k a o l i n i t e 11. C lay !liner., 10: 257-270.

    Matsunaga, Y., 1972. The d i f f u s e r e f l e c t i o n spec t ra o f b e n t o n i t e s c o l o r e d w i t h v a r i o u s aromat ic compounds and r e l a t e d i o n - r a d i c a l s a l t s . B u l l . Chem. SOC.

    McBride, M.B. , 1976a. Exchange and h y d r a t i o n p r o p e r t i e s o f c o p p e r ( I 1 ) on mixed i o n sodium-copper smec t i t es . S o i l Sc i . SOC. Amer. J., 40: 452-456.

    NcBride, M.B., 1976b. O r i g i n and p o s i t i o n o f exchange s i t e s i n k a o l i n i t e - e s r s tudy . Clays and C lay Miner. , 24: 88-92.

    McBride, M.B., 1976c. Use o f n i t r o x i d e s p i n probes i n e s r s t u d i e s of adsorbed molecules on s o l v a t e d l a y e r s i l i c a t e s . Amer. Chem. SOC., Symp. Ser. , 34: 123-140.

    McBride, M.B., 1976d. N i t r o x i d e s p i n probes on s m e c t i t e su r faces : tempera ture and s o l v a t i o n e f f e c t s on t h e m o b i l i t y o f exchange c a t i o n s . J . Phys. Chem.,

    McBride, M.B., 1977a. Adsorbed molecu les on s o l v a t e d l a y e r s i l i c a t e s : su r face m o b i l i t y and o r i e n t a t i o n f rom e s r s t u d i e s . Clays and C lay Miper. , 25: 6-13.

    McBride, M.B., 1977b. M o b i l i t y and o r i e n t a t i o n o f charged molecu les a t s i l i c a t e sur faces . C lay Miner . , 12:273-277.

    McBride, M.B., 1979a. M o b i l i t y and r e a c t i o n s o f V02+ on hyd ra ted s m e c t i t e su r - faces . Clays and C lay M ine r . , 27: 91-96.

    McBride, fl.B., 1979b. C a t i o n i c s p i n probes on h e c t o r i t e su r faces : demix ing and m o b i l i t y as a f u n c t i o n o f a d s o r p t i o n l e v e l . C lays and C lay Miner. , 27: 97-104.

    McBride, M.B., 1980. A p p l i c a t i o n o f s p i n probes t o e s r s t u d i e s o f o r g a n i c - c l a y systems. Chapter 9. In: J.W. S t u c k i and W.L. Banwart ( E d i t o r s ) , Advanced Chemical Methods f o r S o i l and C lay M ine ra l Research, Re ide l P u b l i s h i n g Co., Ho l land, pp. 423-450.

    l o n i t e : ev idence f rom p h y s i c a l methods. S o i l S c i . SOC. Amer. Proc. , 38: 408-415.

    t e t r a a l kylamnonium m o n t m o r i l l o n i t e s . C lay Miner. , 10: 357-368.

    s t u d i e s o f c a t i o n o r i e n t a t i o n i n r e s t r i c t e d wa te r l a y e r s on p h y l l o s i l i c a t e ( s m e c t i t e ) sur faces . J . Phys. Chem., 79: 2430-2435.

    t i o n and t h e m o b i l i t y o f manganese(I1) exchange i o n s i n smec t i t e . M ine ra l . , 60: 66-72.

    McBride, M.B., Pir lnavaia, T.J. and Mor t l and , M.M., 1975c. P e r t u r b a t i o n o f s t r u c t u r a l Fe3+ i n smec t i t es by exchange ions .

    McBride, M.B., P innava ia , T.J. and Mor t l and , t1.M. , 1975d. Exchange i o n p o s i t i o n s i n smec t i t e : e f f e c t s on e l e c t r o n s p i n resonance o f s t r u c t u r a l i r o n . Clays and C lay Miner. , 23: 162-163.

    fleads, R.E. and Malden, O.J., 1975. E l e c t r o n s p i n resonance i n n a t u r a l k a o l i n i t e s c o n t a i n i n g Fe3+ and o t h e r t r a n s i t i o n meta l i o n s .

    Mehra, O.P. and Jackson, M.L., 1960. I r o n o x i d e removal f rom s o i l s and c l a y s by a d i t h i o n i t e - c i t r a t e system b u f f e r e d w i t h sodium b i ca rbona te . Clays and C lay Miner. , 7 : 317-327.

    Mor t land, M.M. and P innava ia , T.J., 1971. on t h e i n t e r l a m e l l a r su r faces o f m o n t m o r i l l o n i t e . Nature Phys. Sc i . , 229: 75-77.

    Mor t land, M.M. and Ha l l o ran , L.J. , 1976. Po lymer i za t i on o f a romat i c mo lecu les on smec t i t e . S o i l S c i . SOC. Amer. J., 40: 367-370.

    Nordio, P.L., 1976. General magnet ic resonance theo ry . Chapter 2. I n : L.J. B e r l i n e r ( E d i t o r ) , Sp in Label ing-Theory and A p p l i c a t i o n s . Academic Press, New York, pp. 5-52.

    O l i v i e r , D., Vedrine, J.C. and Pezera t , H., 1975. A p p l i c a t i o n de l a resonance paramagnetique e l e c t r o n i q u e a l a l o c a l i s a t i o n du Fe3' dans l e s smec t i t e . B u l l . Group Franc. A r g i l e s , 27: 153-165.

    O l i v i e r , O., Vedr ine, J.C. and Pezera t , H., 1976a. Resonance paramagnet ique e l e c t r o n i q u e du Fe3' dans l e s a r g i l e s a l t e r e s a r t i f i c i e l l e m e n t e t dans l e m i l i e u n a t u r e l . Proc. I n t e r n . C lay Conf., Mexico, 1975, 231-238.

    Jap., 45: 770-775.

    80: 196-203.

    McBride, M.B. and Mor t l and , M . M . , 1974.

    McBride, M.B. and Mor t l and , M.M., 1975.

    McBride, M.B. , P innava ia , T.J. and Elort land, H.M., 1975a. E l e c t r o n s p i n resonance

    McBride, M.B., P innava ia , T .J . and Plort land, H.M., 1975b. E l e c t r o n s p i n r e l a x a -

    Copper( 11) i n t e r a c t i o n s w i t h montmor i l -

    Su r face p r o p e r t i e s of mixed c o p p e r ( I 1 ) -

    Am.

    Clays and C lay Miner. , 23: 103-107

    C lay Miner . , 10 : 313-345.

    Format ion o f copper ( 11) arene complexes

  • 1 6 1

    01

    01

    v i e r , D., Laugin ie , P. and F r i p i a t , J . J . , 1976b. R e l a t i o n s h i p between l o n g i - t u d i n a l r e l a x a t i o n r a t e s o f water protons and o f w e l l d e f i n e d paramagnetic cen- t e r s a t low temperature i n hydrated v e r m i c u l i t e . Chem. Phys. L e t t . , 40: 131-133. v i e r , D., Vedr ine, J.C. and Pezerat , H., 1977. A p p l i c a t i o n de l a r p e a l a l o c a l i s a t i o n des s u b s t i t u t i o n s isomorphiques dans l e s mica: l o c a l i s a t i o n du Fe3+ dans l e s muscovi tes e t l e s ph logop i tes .

    Y.A., 1971. A s tudy o f t h e s t a t e o f exchanged copper ( I1 ) and manganese(I1) c a t i o n s i n m o n t m o r i l l o n i t e sa tu ra ted w i t h a c e t o n i t r i l e and p y r i d i n e by the e s r method. Sov ie t Prog. Chem., 37: 36-38.

    Pinnavaia, T.J., 1976a. O r i e n t a t i o n and m o b i l i t y o f hydrated metal i ons i n l a y e r l a t t i c e s i l i c a t e s . I n : H.A. Resing and C.G. Wade ( E d i t o r s ) , Magnetic Resonance i n C o l l o i d and I n t e r f a c e Sci . , ACS Symposium Ser ies No. 34, pp. 94-108.

    Pinnavaia, T,.J., 1976b. bletal c a t a l y z e d r e a c t i o n s i n the i n t r a c r y s t a l space o f l a y e r l a t t i c e s i l i c a t e s . In: C a t a l y s i s i n Organic Synthes is 1977, G . V . Smith ( E d i t o r ) , Academic Press, New York, pp. 131-138.

    Pinnavaia, T.J. and Mort land, M.Fl., 1971. I n t e r l a m e l l a r metal complexes on l a y e r s i l i c a t e s . I. Copper(I1) arene complexes on m o n t m o r i l l o n i t e . J . Phys. Chem.,

    J . S o l i d S ta te Chem., 20: 267-279. Pafomov, N.N., S i l ' chenko , V.A., Tarasevick, Y . I . , Te l ichkun, V .P . and B ra tashevsk i i ,

    75: 3957-3962. Pinnavaia, T.J., H a l l , P.L., Cady, S.S. and Mort land, M.M., 1974. Aromat ic r a d i -

    c a l c a t i o n fo rma t ion on t h e i n t r a c r y s t a l su r faces o f t r a n s i t i o n metal l a y e r l a t t i c e s i l i c a t e s . J. Phys. Chem., 78: 994-999.

    Pinnavaia, T.J., 1980. A p p l i c a t i o n s o f e s r spectroscopy t o i n o r g a n i c - c l a y systems. Chapter 8. In: J.W. S t u c k i and W.L. Banwart ( E d i t o r s ) , Advanced Chemical Methods f o r S o i l and Clay M ine ra l Research, Reidel P u b l i s h i n g Co., Hol land,

    Rubinste in , M., Barum, A. and Lug, Z., 1971. E l e c t r o n i c and nuc lea r r e l a x a t i o n i n s o l u t i o n s o f t r a n s i t i o n meta l i o n s w i t h s p i n = 3/2 and 5/2. Mol. Phys., 20: 67.

    Rupert , J.P., 1973. arene complexes on m o n t m o r i l l o n i t e . J . Phys. Chem., 77: 784-790.

    Sachs, F. and La to r re , R., 1974. Cytoplasmic s o l v e n t s t r u c t u r e of s i n g l e barnac le muscle c e l l s s t u d i e s by e l e c t r o n s p i n resonance. Biophys. J . , 14: 316-326.

    Schoonheydt, R.A., 1978. Ana lys i s o f t h e e l e c t r o n paramagnetic resonance spect ra o f bis(ethylenediamine)copper(II) on t h e su r faces o f z e o l i t e s X and Y and o f a Camp Ber teau m o n t m o r i l l o n i t e . J . Phys. Chem., 82: 497-498.

    Schwartz, J.C., Hoffman, B.H., K r i zek , R.J. and Atmatzides, D.K., 1979. A general prodecure f o r s i m u l a t i n g ep r spec t ra o f p a r t i a l l y o r i e n t e d paramagnetic centers . J . Mag. Res., 36: 259-268.

    Smith, I.C.P., 1972. The s p i n l a b e l method. Chapter 11. I n : H.M. Schwartz, J. R. B o l t o n and D.C. Borg ( E d i t o r s ) , B i o l o g i c a l A p p l i c a t i o n s of E l e c t r o n Spin Resonance, Wiley:Interscience, New York, pp. 483-539.

    Stoessel , F., Guth, L.J. and Wey, R., 1977. Po lymer i za t i on o f benzene i n t o po l y - paraphenylene on copper m o n t m o r i l l o n i t e . Clay Miner. , 12: 255-259.

    T ra rsev i ch , Y . I . and Ovcharenko, F.D., 1973. On t h e mechanism o f i n t e r a c t i o n between n i t rogenous o rgan ic substances and m o n t m o r i l l o n i t e sur faces. Proc. I n t e r n . Clay Conf., Madrid, 1972, pp. 627-636.

    Traynor, M.F., Mor t land, II.11. and Pinnavaia, T.J., 1978. I o n exchange and i n t e r s a - l a t i o n r e a c t i o n s o f h e c t o r i t e w i t h t r i s - b i p y r i d y l metal complexes. Clays and Clay Miner. , 26: 318-326.

    T r i c k e r , M.J., Tennakoon, D.T.B., Thomas, J.Mv and Graham, S.H., 1975. Novel r e a c t i o n s o f hydrocarbon complexes o f m e t a l - s u b s t i t u t e d sheet s i l i c a t e s : thermal d i m e r i z a t i o n o f t r a n s - s t i l b e n e . Nature Phys. Sc i . , 253: 110-111.

    Van De Poel , D. , Cloos, P., Helsen, J. and Hannin i , E. , 1973. S p e c i f i c behavior of benzene adsorbed on copper( 11) m o n t m o r i l l o n i t e . B u l l . Groupe Franc. A r g i l e s , 25, 115.

    Velghe, F . , Schoonheydt, R.A., Uytterhoeven,J.B., Peigneur, P. and Lunsford, J.H., 1977. Spect roscopic c h a r a c t e r i z a t i o n and thermal s t a b i l i t y o f copper( 11) e thy lenediamine complexes on s o l i d sur faces 2. M o n t m o r i l l o n i t e .

    Wertz, J.E. and Bo l ton , J.R., 1972. E l e c t r o n Spin Resonance: Elementary Theory and P r a c t i c a l A p p l i c a t i o n s . Mc-Graw H i l l Book Co., New York.

    pp. 391-422.

    E l e c t r o n s p i n resonance spec t ra o f i n t e r l a m e l l a r copper( 11)-


Recommended