+ All Categories
Home > Documents > A Library of Prompt Detonation Reaction Zone Data/67531/metadc...distance behind the detonation...

A Library of Prompt Detonation Reaction Zone Data/67531/metadc...distance behind the detonation...

Date post: 18-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
35
UCRL-ID-130055 Rev 1 A Library of Prompt Detonation Reaction Zone Data P. Clark Souers June 1998 This ie an informal report intended primarily far internal or limited external distribution Theopinionsandconclusionsstatedare thoseoftheautharandmay or may not be those of the Laboratory Work performed under the auspices of the US Department of Energy by the Lavrence Livermare National Laboratory under Contract W-7405-Eng-48
Transcript
  • UCRL-ID-130055 Rev 1

    A Library of Prompt Detonation Reaction Zone Data

    P. Clark Souers

    June 1998

    This ie an informal report intended primarily far internal or limited external distribution Theopinionsandconclusionsstatedare thoseoftheautharandmay or may not be those of the Laboratory

    Work performed under the auspices of the US Department of Energy by the Lavrence Livermare National Laboratory under Contract W-7405-Eng-48

  • DISCLAIMER

    This document was prepared as an account of work sponsored by an agency of the United States Government. Neitherthe United States Government nor the University of California nor any of their employees, makes any warranty, expressor implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of anyinformation, apparatus, product, or process disclosed, or represents that its use would not infringe privately ownedrights. Reference herein to any specific commercial product, process, or service by trade name, trademark,manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring bythe United States Government or the University of California. The views and opinions of authors expressed herein donot necessarily state or reflect those of the United States Government or the University of California, and shall not beused for advertising or product endorsement purposes.

    This report has been reproduceddirectly from the best available copy.

    Available to DOE and DOE contractors from theOffice of Scientific and Technical Information

    P.O. Box 62, Oak Ridge, TN 37831Prices available from (615) 576-8401, FTS 626-8401

    Available to the public from theNational Technical Information Service

    U.S. Department of Commerce5285 Port Royal Rd.,

    Springfield, VA 22161

  • Abstract Tables are given listing literature data that allows calculation of sonic reaction zones at or near steady- state for promptly-detonating explosive cylinders The data COWIS homogeneous, heterogeneous, composite, inorganic and binary explosives and allows comparison across the entire explosive field Table I lists detonation front curvatures Table 2 lists Size Effect data, ie the change of detonation velocity with cylinder radius Table 3 lists failure radii and detonation velocities Table 4 lists explosive compositions A total of 51 references dating back into the 1950’s are given Calculated reaction zones, radii of cuvahue and growth rate coefficients are listed

    Table of Contents

    I Description ofthe Tables

    Table 1 Detonation Front Curvature Table 2 Size Effect Table 3 Failure Radius Table 4 Compositions of Explosives Table References

    I-3 I-4 I-4 I-5 I-5

    II Comparing the Data

    Tables

    II-1

    Table 1 Detonation Front Curvature T-l Table 2A Size Effect Homogeneous and Heterogeneous T-5 Table 2B Size Effect Composite and Inorganic T-12 Table 3 Failure Radius T-18 Table 4 Compositions of Explosives T-2 1

    I-2

  • I. Description of the Tables

    The intent is to collect steady state, prompt

    detonation data that pertains to calcuation of the

    average sonic reaction zone length, ie the

    distance behind the detonation front that

    furnishes chemical energy to push the front WC

    hae present results on the detonation front

    curvature in cylinders and the Size Effect, ie the

    change of detonation velocity with cylinder

    radius The data is listed plus the calculated

    parameters that constitute the input to Larry

    Fried’s upcoming LLNL code KINETIC

    CHEETAH

    Table 1: Detonation Front Curvature

    A collection of cylinder detonation front

    curvature data , as obtained from streak camera

    measurements, follows, necessarily compressed

    from the original data files The data is divided

    into sections with attempts to create. families

    The 92 5-97 5 wt% TATB family is the only

    one where explosives from different sources are

    collected, because of the general agreement

    between samples The ANFO and PBXW-111

    families are separated not only as to where they

    came from but also whether they are confined or

    unconfined In each family, the data is ordered

    from small to large radii

    The sections may be seen to fall into larger

    groups Most of the table is made up of

    “quadratic” curvahxes, ie those where the

    radius-squared makes up half or more of the lag

    and where the curves are smooth across the

    I-3

    entire diameter The top sections are

    homogeneous and heterogenerous explosives, the

    bottom sections are composites Near the bottom

    comes the small set of “non-quadratic” curves,

    which have steep edge lags and ragged centers

    These occur only for explosives with short

    reaction zones We next have the extreme non-

    quadratic curves where defects of the order of

    100th the cylinder radius have severely broken

    up the front but steep edge effects are still clearly

    visible Finally, we have three quadratic slabs

    with a square cross section

    The columns contain the following

    1) the explosive name

    2) initial density, p0

    3) initial outer radius of the explosive, %,

    and inner radius of a metal sleeve if present, for a

    cylinder For the slabs, R, is the half-width

    4) measured edge lag, L,, where the data was

    taken all the way out to the edge

    5) calculated reaction zone lengths, in

    mm using the theory from P C Souers and R

    Garza, “Kinetic Information from Detonation

    Front Curvature, ” Eleventh Internatiorzal

    Defonofion Symposium, submitted

    6) measured detonation velocity, U,, for the

    radius R,

    7) infinite-radius/infinite containment

    detonation velocity, D, obtained by the

    extrapolation of the inverse radius to zero

  • 8) lag-fit coefficient of the radius-squared,

    A, which describes the sideways energy flow

    across the entire cylinder

    9) lag-fit coeffuzient of the radius to the sixth

    power, B, which describes the effects of the

    edge Note A quadratic cuve is fit by the lag

    equation L = AR* + BR6, a non-quadratic

    curve is fit by BR6

    10) measured edge angle, where the error is

    generally +5O to ilO0

    11) calculated edge angle, obtained from the

    derivitive ofthe lag tit equation

    12) growth rate coefficient, G, in the

    GP*(l-F) overall explosive reaction rate

    13) radius of curvature on the cylinder axis,

    h”, as obtained directly from the curvature fit

    coefficient A

    14) wall confinement material, if any

    15) wall confinement thickness in mm

    16) energy conductivity, K (in MWlmn?),

    as calculated from the quadratic coefficient, A,

    and which seeks to describe transverse energy

    flow across the cylinder

    17) length of cylinder in mm

    18) reference

    The material of confinement is listed where

    known, even though its effect might have been

    negligible The abbreviations are

    Br brass, 8 56 gicc

    Cb cardboard, 0 5 g/cc

    Cu copper, 8 93 g/cc

    PVC plastic, 1 5 g/cc

    Py pyrex glass, 2 2 g/cc

    SS stainless steel, 7 8 g/cc

    I-4

    Some explosive families have been studied

    in different places The abbreviations for these

    ax

    1) PBXN-111 N = U S Navy, A =

    Australia

    1) ANFO NM = New Mexico, SW =

    %veder

    Table 2. Size Effect

    The Size Effect is the change of detonation

    velocity with cylinder radius The data listed is

    1) name, density, pre-pressed explosive

    particle size and reference

    2) radius, R,, in mm

    3) measured detonation velocity in mm&s

    The first entry opposite R, = m is the

    extrapolated infinite radius detonation velocity

    4) calculated reaction zone length, ix*> in

    mm

    5) the first number is the C-J pressure as

    calculated by CHEETAH It is used to calculate

    the growth rate coefficient, G, listed below it

    6) radius of curvature, R,,,, on the cylinder

    axis as calculated from the detonation velocities

    Table 3. Failure Radius

    The failure radii of page 1 are mostly the

    subset of the Size Effect Listed are the

    following

    1) density in g/cc

  • 2) failure radius, Rf (mm) We use only

    data sets where it mentions that failure was

    observed The failure radius is the average of the

    smallest radius for which detonation was

    observed and the largest at which it was not

    The definition of failure is set by the researcher

    Campbell required propagation beyond four 50

    mm-long rate sticks for PBX-9502,26 which is

    undoubtedly far stricter than the average

    definition All samples are unconfined unless

    noted

    3) approximate detonation velocity at

    failure, U,f (mm@) This is usually the last

    measured value lowered to the nearest 0 1

    mm&

    4) infinite-radius/infinite containment

    detonation velocity, D, obtained by inverse-

    square extrapolation of the radius to zero

    5) extrapolated sonic reaction zone length at

    failure, ix& (mm)

    6) calculated growth coefficient G

    7) calculated radius of curvahue on the

    axis, %,, (mm)

    8) reference

    Page 2 has the void volume fraction, fv, and the

    inert material fraction ff and their sum

    Table 4. Compositions of Explosives

    All compositions are in wt %

    ACKNOWLEDGEMENTS

    We wish to thank Jerry Forbes, Per-Anders

    Person, John Bdzil, Damian Swift, Finn

    Ouchterlony and David Kennedy for their kind

    assistance in supplying curvature data from their

    laboratories This work was performed under

    the auspices of the U S Department of Energy

    by the Lawrence Livermore National Laboratory

    under contract number W-7405-ENG-48

    References

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    LLNL Cylinder Test

    John Bdzil, Los Alamos National Laboratory, Los Alamos, NM, private communication, 1996

    J B Bdzil, J Fluid Mech 108, 195-226 (1981)

    R Engleke and J B Bdzil, Phys Fluids 26, 1210 (1983)

    Alan Collyer and Damian Swift, AWE, Aldermaston, Great Britain, private communication, 1996

    H Moulard, J W Kury and A Delclos, “The Effect of RDX Particle Size on the Shock Sensitivity of Cast PBX Formulations,” Proceedings Eighth Symposium (International) on Detonation, Albuquerque, NM, July 1519, 198S, pp 902-913

    H Moulard, “‘Particular Aspect of the Explosive Particle Size Effect on Shock Sensitivity of Cast PBX Formulations,” Proceedings Nintk Symposium (International) on Detonation, Portland, OR, August 28- September I, 1989, pp 18. 24

    J W Forbes, E R. Lemar, G T Sutherland and R N Baker, Detonatim Wave Curvature, Corner Turning and G’nreacted Hugoniot of PBX’GI I I, Naval Surface Warfare Center Report NSWCDDITR-921164, Silver Spring, MD, 1992 PBXN-11 I was previously called PBXW-115

    David Kennedy, ICI Australia Operations, Kurri Kurri, New South Wales, Australia, private communications, 1995, 1997

    U Nyberg, J Deng and L Chen, M&zing av Detonationshastighet och Krokningsfront i Samband med Brinnmodellu~ecklillgfor Emulsionssprangamne KI, Swedish Rock

    I-5

  • Engineering Research, Stockholm, SveBeFo Report 6, 1995

    11 J Deng, S Nie and L Chen, Determination of Burning Rate Parameters for nn Emulsion Explosive, Swedish Rock Engineering Research, Stockholm, SveBeFo Report 17, 1995 Finn Ouchterlony kindly sent the Swedish Rock reports

    12 Jaimin Lee, Detonation Shock D.wamics of Composite Ewrgetic Mafer ials, PhD Thesis, New Mexico Institute of Mining and Technology, Socorro, New Mexico, 1990 Per-Anders Persson kindly lent us a copy of the thesis

    13 F Chaisse’ and J N Oeconomos, “The Shape Analysis of a Steady Detonation Front in Right Circular Cylinders of High Density Explosive Some Theoretical and Numerical Aspects,” Proceedings Tenth Symposium (International) on Detonation, Boston, MA, July 12-16, 1993, pp 50-57

    14 E R Lamar and J W Forbes, “Detonation Wave Curvature of Cast Comp B and PBXN- 111,” American Physical Society Topical Group on Shock Compression, Colorado Springs, CO, June 28.July 2. 1993, Proceedings, pp 13X5-1388

    15 J W Forbes and E R Lamar, “Detonation Wave Velocity and Curvature of Brass Encased PBXN-11 1,“American Physical Society Topical Group on Shock Compression, Seattle, KA, August 13-18, 1995, Proceedings, pp 787-790

    16 E R Lemar, J W Forbes and G T Sutherland, “Detonation Wave Velocity and Curvature of IRX-4 and PBXN- I IO,” American Physical Society Topical Group on Shock Compression, Seattle, WA, August 13-18, 1995, Proceedings, pp 791-794

    17 G T Sutherland, E R Lamar, J W Forbes, E Anderson, P Miller, K D Ashwell, R N Baker, and T P Liddiard, “Shock Wave and Detonation Wave Response of Selected HMX Based Research Explosives with HTPB Binder Systems,” Anwican Physical Society Topical Group on Shock Compression. Colorado Springs, CO, June 28-J+ 2, 1993, Proceedings, pp 1413.1416

    T-h

    18 W H Wilson, J W Forbes, P K Gustavson, E R Lemar and G T Sutherland, “Detonation Properties of the Non-Ideal Explosive PBXW-123,” American Physical Society Topical Group on Shock Conzpressiolt, Seattle, WA, August 13-18, 1995, Proceedings, pp 795-798

    19 J 0 E&man and D Price, Comparisorl of Curvature o/Detonation Front in AP with thatfound in some Conventional Explosives. U S Naval Ordnance Laboratory, White Oak, MD, report NOLTR 69-235 (1970) The listed lag axis has been multiplied by 100

    20 M J Urizar, E James, Jr and L C Smith, “The Detonation Velocity of Pressed TNT,” Third Symposium on Detonation. Princeton. NJ; ~Se&mber 26-28, 1960, bp 327-356

    21 E A Igel and L B Seely, Jr, “The Detonation Behavior of Liquid TNT,” Second ONR Symposium on Detonation, White Oak, MD, Februmy II, 1955, pp 439-453

    22 LASL Explosive Propeity Data, T R Gibbs and A Popolato, ed (University of California Press, Berkeley, 1980), section following p 236 The XTX-8003 “diameters” on p 249 are really radii (see ref 27)

    23 M E Malin, A W Campbell and G W Mautz, “Particle Size Effects in One- and Two-Component Explosives,” Second ONR Symposium on Detonntiou, White Oak, MD, February II. 1955, pp 478.493

    24 L B Chapman, “NT0 Development at Los Alamos,” Proceedings Ninth Symposium (International) on Detormtior~, Portland, OR, Augurt 28-Septmeber I, 1989, pp 1001-1006

    25 P Gimenez, P Chabin, J Mala and C Spyckerelle, “An Extensive Experimental Study of Pressed NTO,” Proceedings Tenth Zntetnational Detonatiorl Symposium, Boston, MA, July 12-16, 1993, pp 276.283

    26 A W Campbell, “Diameter Effect and Failure Diameter of a TATB-Based Explosive,” Propellants, Explosives, Pyrotechnics, 9, 183-187 (1984)

  • 27

    28

    29

    30

    31

    32

    33

    34

    35

    A W Campbell and R Engelke, “The Diameter Effect in High-Density Heterogeneous Explosives,” Proceedings S&h Symposium (Intetnational) on Detonation. Coronado, CA, August 24-27, 1976, pp 642- 652

    R H Dinegar, “Detonation Velocity of PETN in Small Confined Cylindrical Charges,” Propellants, Explosives, Pyrotechnics, 1,97-100 (1976)

    C D Hutchinson, G C W Foan, H R Lawn and A G Jones, “Initiation and Detonation Properties of the Insensitive High Explosive TATB/Kel-F 800 95/5”, Proceedings Ninth Symposium (International) on Detonation. Portland, OR, August 28-Septmeber 1, 1989, pp 123. 132

    M A Cook, E B Mayfield and W S Partridge, “Reaction Rates of Ammonium Nitrate in Detonation,” J Phys Chem 59, 675-680 (1955)

    P C Sows, D B Larson and C M Tarter, Performance Calculations on fhe ANFO Explosive Ry-HD, LLNL report UCRJ-ID-118969(1995) TheRX-HDwas from Dyno Nobel

    F Helm, M Finger, B Hayes, E Lee, H Cheung and J Walton, High Explosive Characterization for the Dice Throw Event, LLNL report UCRL-52042 (1976)

    Hino and Yakogawa, data scanned from W E Gordon, “Detonation Limits in Condensed High Explosives,” Proceedings Four tk Symposium (International) on Detonation, white Oak, MD, October 12. 15, 1965, pp 179-197, see Fig lc

    R H Hales, Final Repot t for the QM-IOOR Program, IRECO Inc , West Jordan UT, submitted to New Mexico Engineering Institute, Albuquerque, NM, March 19, 1993

    QM-100 obtained with some data from Clark Banner of IRECO Inc , West Jordan UT, 1993 Also supporting data from R Simpson, LLNL, in conjunction with the QM-100 cylinder shots at LLNL, 1992

    36

    31

    38

    39

    40

    41

    42

    43

    I-7

    M A Cook and W S Partridge, “Detonation Properties and Reaction Kinetics of 2,4-Dinitrotoluene,” J Pkys Ckem, 59, 673-675 (1955)

    L N Stesik and L N Akimova, “An Indirect Method of Estimating the Reaction

    Zone Width of a Detonation Wave,” Russ J Pkys Ckem. 33, 14% 151 (1959)

    M A Cook, R T Keyes, W S Partridge and W 0 Ursenback, “Velocity-Diameter Curves, Velocity Transients and Reaction Rates in PETN, RDX, EDNA and Tetryl,” J Amei Ckem Sot, 79, 32-37 (1957)

    P Deneuville, C Gaudin, Y de Longueville and .I Mala, “Comparison of TATB and DINGU Explosive Properties,” Proceedings Seventh Symposium (International) on Detonation, Annapolis, MD, June 16-19, 1981, pp 540-546

    Y De Longueville, A Delclos, C Gaudin and J Mala, “Influence of Inert Binders on Detonation Properties of Cast-Cured PBX,” Proceedings Seventh Symposium (International) on Detomtion, Annapolis, MD. Jnne 16-19, 1981, pp 560-565

    A W Campbell, H L Flaugh, A Popolato and J BI Ramsay, “Customized Explosives Based on Plastic-Bonded Mixtures to TATB and HMX,” Proceedings %venth Symposium (Inteinationnl) on Detonation, Annapolis, MD, June 16-19, 1981, pp 566.574

    V M Titov, V V Sil’vestrov, V V Kravtsov and I A Stadnitschenko, “Investigation of Some Cast TNT Properties at Low Temperatures,” Proceedings Sixth Symposim (InternationalJ on Detonation, Coronado, CA, August 24-27, 1976, pp 36-45

    R J Spear and M G Wolfson, Determination ofDetonation Parameters of Booster Explosives at Small Diameter Charges, DSTO Materials Research Laboratory MRL-TR-89-45, Cordite Avenue, Maribymong, Victoria 3032, Australia (1990), from Defense Center Information Center, Ft Belvoir, VA, AL- A220 352, Ar-006-287 (1990)

  • 44 M E Evans, B 0 Reese, L B Seely and E L Lee, “Shock Initiation of Low-Density Pressings of Ammonium Perchlorate,” Proceedings Fourth Symposium (International) on Detonation, White Oak, MD, Octobel 12.15. 1965, pp 359-311

    45 A R Clairmont, Jr, I Jaffe and D Price, The Detonation Behavio? ofAmmonium Perchlorate as a Function of Charge Density and Diameter, U S Naval O?dnance Labomtoiy NOLTR-67.71, White Oak, MD (1967) p 24

    46 M L Pandow, K F Ockert and H M Shuey, “Studies of the Diameter- Dependence of Detonation Velocity in Solid Composite Propellants,” Proceedings Foul th Symposium (International) on Detonation, White Oak, MD, October 12- 15. 1965. pp 96-101

    47 D Price, A R Clainnont, Jr and J 0 Erkman, “Explosive Behavior of Aluminized Ammonium Perchlorate,” Combustion & Flame, 20, 389-400 (1973)

    I-8

    48 J D Renick, P A Persson and J A Sanchez, “Detonation Properties of Mixtures of HMX and Emulsion Explosives,” Proceedings Ninth Symposium (International) on Detonation, Portland, OR, August Z&September 1. 1989, I, 54s 552

    49 H Eyring, R E Powell, G H Duffey and R B Parlin, “The Stability of Detonation,” Chem Rev 45, 69-l 82 (1949), s,me data taken from A Parisot and P Laffitte, Congr chim ind. Compt rend l&e congr, Nancy, pp Y30-936 (1938), also from MacDougall, uncited

    50 G V Dimza, “Critical Detonation Diameter for an Explosive containing an Inert Additive,” Combustion, Explosives & Shock Waves (Russian) I2,216-218 (1976)

    51 R Kb Kurbangalina and L I Patronova, “Effect of a Steel Sheath on the Critical Detonation Diameter of Condensed Explosives,” Combustion, Explosives & Shock Waves (Russian) 12, 587.590 (1976)

  • II. Comparing the Data

    We now consider some simple comparisons

    of the data Figure 1 shows a detonation

    velocity, U,, -inverse radius plot, where the

    widest possible spread of data has bee” taken

    Infinite radius is at the left, moving to the right

    ca”ses shrinking of the cylinder Ultimately, the

    lines die o”t because of failure, ie the cylinder

    no longer propagates the detonation because too

    much energy is lost out the sides Large size

    cylinders lie to the left, tiny ones to the right

    PBLU ---s.

    XTX- 8003

    Failure Region

    001 01 1 10 Inverse Radius, l/R, (mm-‘)

    Fig 1 Detonation velocity vs inverse radius for the widest possible spread of explosive data

    The most obvious thing about Fig 1 is the

    huge spread “ver orders of magnitude It would

    be nice to reduce to nornmlized coordinates The

    most obvious choice for detonation velocity is

    U,iD or 1 - U,iD, where D is the infinite radius

    detonation velocity It is not possible, however,

    to select a standard radius because there is no

    overlap in many cases The only apparent fixed

    radius is that for failure, Rf, but this is a fwction

    of continement

    From Fig 1, we see varying changes of

    slope XTX-8003 barely changes its detonation

    velocity before it fails, whereas the composite

    explosives can detonate at extremely reduced

    velocities

    The same broad spread appears in Figure 2

    when we plot the calculated reaction z”“e lengths

    versus cylinder radius The short zones of XTX-

    8003 lie at the lower left and the long zones of

    HANFO at the upper right

    [ 10 160 Radius, R, (mm)

    Figure 2 The broad spread of calculated reaction z”“e lengths The smallest belongs to XTX- 8003 and the longest to HANFO

    Figure 3 shows a family of TNT samples,

    taken at various densities We see that adding

    void volume increases both the reaction zone

    length and the failure radius Also, the reaction

    II- 1

  • zone length at a given density increases with

    radius with a power between 0 5 and 1 0

    o:- , I 0 5 1” 15 20

    Radius, R, (mm)

    Figure 3 Reaction zone-radius for a family of TNT samples of different densities All work was done by the same researchers The densities are listed

    Many other effects appear Figure 4 shows

    two high-HMX explosives PBX-9501 (95%)

    and PBX-9404 (94%) The two cures overlie

    each other but the different binders produce

    different failure radii The binders are PBX-

    9404- NC and CEF and PBX-9501- estane and

    BDNPA-F

    \ 1 I

    PBX-9404 :

    Figure 5 shows an inverse radius plot for

    PBXN-111, the only explosive with comparable

    confined and unconfhxd data The failure radius

    is shorter for the unconfined data The reaction

    zone lengths are about the fame The infinite

    radius detonation velocities are the same

    Figure 4 Inverse radius plot for two high-HMX explosives showing that binder affects the failure radius

    II-2

    Confined

    I

    I

    I 0 0 05 01

    Inverse Radius (mm-l)

    Figure 5 Inverse radius plot of confined (solid symbols) and unconfined (open) PBXN-111 Data is from the U S Navy and Australia Confinement also decreases the failure radius

    Figure 6 shows B dramatic reaction zone

    effect in 70% RDX-urethane, where particle sizes

    were carefully set and the explosive was pressed

    near full density, so there would be almost no

    hot spots This last feature makes this an

    unusual explosive in the ranks of those listed in

    this report The data is also different in that no

    radius effect is seen The measurements were

    unfortunately not extended to failure With radius

    not a factor, the reaction zone lengths are roughly

    given by

    - 0 5 + 0 006d(pm) (1)

  • where d is the RDX particle size NM and liquid

    TNT show a weak dependence on radius, so that

    hot spots may be the cause of the radius effect

    01 , I 5 IO 15 20 25

    Radius (mm)

    Figure 6 The reaction zone length varies dramatically in these 70%RDX-urethane samples with well-sieved sizes and almost no hot spots

    II-3

    r

  • Table 1 Detonatxon front curvature data.

    Sectlo”

    Quad- ratlc TATB Family

    Quad- ram NM Families

    Explowe

    PBX-9502 PBX-9502 PBX-9502 PBX-9502 T2 LX-17 T2 PBX-9502 PBX-9502 EDC-35 EDC-35 EDC-35 EDC-35 EDC-35 EDC-35 NM NM NM NM NM NM-silica NM-silica NM-silica

    Den- Rad- Edge Det Velocity CUNdUI~ Mea. Calc. sty 1”s Lag, talc. u, D fit parameters Edge Edge G RCUr K Len-

    R, Lo

  • SectKJn

    Misc.

    Table 1, page 2 Exploswe po Ro Lo xe U, D A B Angle Calc. G Rcu mat (mm) K(A) L ref

    PBX-9404 1.840 12.7 0.46 1.9 8.750 8.80 l.OlE-03 5.68&08 16 8 0.012 495 254 3 QUXk~tlC LX-04 Homo- and LX-04 Heterc- LX-04 geneous LX-04

    PBXN-110 m-1 PBXW-131 PBXW-131 TNT pressed Ult. TATB NQ Comp B Comp B Octal RX-OX-HD RX-52-AD RX-52-AE Pentolite AP, 15 ~“m AP, 9 pm

    1.854 12.7 0.53 1.0 8.455 1.853 12.7 0.54 2.1 8.420 1.863 12.7 0.58 0 4 8.476 1.863 12.7 0.59 0.3 8.480 1.680 24.95 2.35 8.390 1430 25 2.38 4.X 7491 1740 25 4 0.96 8.644 1 740 25 4 1.01 8.652 1.621 12.7 0 49 6.915 1.808 12.7 1.02 7.503 1.66 12.7 143 8.032

    1.670 25 43 174 0.3 7.860 1.670 25 43 1.85 0.3 7.860 1.809 12.7 0.61 1 7 8.415 1718 12.7 115 8.147 1770 25 4 169 7.546 1780 25 4 173 7.570 1.560 254 570 7 190 0.927 26.04 4 14 3.390 1.020 25.0 4.72 6 3 600

    8.49 8.49 8.49 8.49

    7 67

    7.87 7.87 8.49

    3.80

    1.58E.03 6.22E.08 2.18E-03 3.32&08 1.3 1 E-03 7.65&08 2.1 PE-03 4.84B08 2.04E.03 4.22&09 2.42E-03 3 74&09 l.O2E-03 6.46E-10 2.07E-04 2.57&09 1.82&03 4.12E-OX 3 76&03 7.97E-08 7.24&03 5.9lE-08 2.40E.03 1 43E-09 2.48&03 S.OOE-10 2.24&03 6.97&08 7.21&03 not used l.PlE-03 1.54E-09 1 73E-03 2.31E.09 8.88E-03 not used 6.47&03 not used 6.65&03 7.25E-10

    9 14 16 12 24 21 26 38 16 18 23 9

    12 11 12 13 13 22 17 33 51

    9 7

    10 9 19 19 5

    10 7 14 10 12 10 11 10 11 13 24 19 21 41

    0.025 0.013 0.063 0.099

    CU 3.2 105 CU 3.2 151 CU 3.2 51 CU 3.2 22

    305 305 305 305 178

    0.0080

    316 229 382 228 245 207 490 2413 274 133 69

    20x 202 223 69

    262 289 56 77 75 49

    0 108 0 104 0.015

    73 cu 51 cu 51 CU 3.2 CU 3.2 cu 31

    19 SS 12.7 18 CU 2.6 166 CU 3.2 cu 2.7 CU 2.7

    cu 40

    1 1 1 1

    16 17 I 1 1 1

    508 508 289 305 298

    305 305 305 305

    0 173

    14 14 1 1 1 1

    16 1

    19 19

    1067 229 114 AI’, 26 pm 1435 254 5.93 2.400 l.O3E-02 5.30E-09

    Quad- PBXN-111-N 1 790 24.22 2.85 7 5.611 5.90 4.63E-03 9.86&IO 16 15 0.0056 108 Br 171 59 305 8,15 mtlc PBXNlll-N 1 790 33.96 4.00 5 5 757 5.90 2.90E-03 3.52E-10 15 16 0.0077 172 Br 7.3 48 305 8 PBXN- PBXN-I 11-A 1 79 12.60 1.60 10 5.130 5.96 975&03 1.98E-08 19 16 0.0037 51 Br 5 1 73 177 9 111 PBXN-111-A 179 18.94 2.10 12 5406 5.96 4.86B03 7.81&09 19 17 0.0033 103 Br 50 102 217 9 Families PBXh-111-A 179 23 49 2.50 12 5.513 5.96 3.68E.03 345E-09 20 18 0.0033 136 Br 5 1 111 253 9

    PBXi’-111-A 179 50.00 20 5 747 5.96 l.O6E-03 4.27E-11 9 11 0.0021 471 Br 50 378 9 PBXN-111-N 1790 34 12 574 7 5.572 5.81 3.57E-03 l.OOE-09 25 28 0.0061 140 64 305 8,14 PBXN-111-N 1 790 24.01 4.75 8 5.309 5.81 X.21&03 2.66E-09 25 28 0.0051 61 56 305 8,14 PBXN-11 I-N 1 790 20.52 4.29 9 5 158 5.81 8.49E.03 1.15E-08 22 31 0.0044 59 68 305 8,14 PBXN-111-N 1 790 24.06 4.87 8 5.311 5.81 6.46&03 6.16E-09 27 31 0.0047 77 71 305 8,14

    T-2

  • Table 1, Page 3 Sectmn Explowe P0 R, L, xe Us D A B Angle Calc. G Rcu mat (mm) K(A) L xf

    PBXN-111-N 1790 2045 4.81 8 5 154 5.81 9.58E-03 1.24E-08 29 33 0.0047 52 61 30s 8,14 PBXN-111-A 1 79 49.95 6.60 17 5.688 6.04 1.58E-03 178E-10 31 26 0.0024 317 208 378 9 PBXN-111-A 179 34.13 5.60 14 5.527 6.04 3.38E-03 l.l3E-09 29 29 0.0029 148 138 306 9 PBXN-111-A 179 24.06 5.00 11 5.313 6.04 6.50E-03 6.24E-09 33 32 0.0034 77 98 367 9 PBXi’-111-A 179 24.01 5.30 11 5.312 6.04 7.19&03 6.39E-09 40 33 0.0037 70 89 329 9 PBXh-111-A 179 20.45 4.90 10 5 186 6.04 9.62&03 1.27E-0X 32 34 0.0039 52 76 326 9

    Ouad- ANFO-SW I 16 6.8 10 3 740 5.88 2.47&02 173E-06 26 0.0061 20 130 700 10.11 ratlc ANFO Famihes

    ANFO-SW 1 16 8.5 9 4.350 5.88 2.0lE-02 6.76E-07 28 0.0082 25 132 700 10;11 ANFO-SW 1 16 10.6 9 4.530 5.88 1.58&02 3.53E-07 32 0.0081 32 155 700 IO,11 ANFO-SW 1 16 10.85 10 4.530 5.88 1.63E-02 8.85E-OX 23 0.0073 31 150 700 10,ll ANFO-SW 1 16 16.8 2.80 7 5.370 5.88 8.35&03 1.89E-08 22 23 0.013 60 131 700 IO,11 ANFO-SW 1 16 19.0 7 5.350 5.88 8.19&03 9.63E-09 24 0.012 61 138 520 10,ll ,ANFO-SW 1 16 2X.3 10 5 450 5.88 4.65E-03 1.39E-09 23 0.0087 108 201 600 10,ll ANFO-SW 1 16 39.3 9 5.640 5.88 2.74&03 4.lXE-10 24 0.0107 182 197 600 10,ll ANFO-NM 1.248 2045 4.05 20 4.870 6.46 8.19E-03 8.28E-09 21 27 0.0040 61 PVC 3 7 373 762 12

    IANFO-NM 1.248 38.95 7 15 23 5.580 6.46 3.84E-03 378E-10 20 27 0.0040 130 PVC 5.5 505 915 12 ANFO-NM 1.248 51 15 8.67 23 5.840 6.46 2.66B03 8.77E-11 19 25 0.0042 188 PVC 6.0 537 1220 12 HANFO 1.061 60.05 13.00 65 2.900 442 3.08E-03 1.2lE-10 24 43 0.0010 162 Cb 10 711 1000 9 HANFO 1.061 76.35 17.30 68 3.280 442 2.52&03 I77E-11 26 33 00011 198 Cb 1.0 738 1000 9 HANFO 1.069 126.8 29.80 12 4.300 442 1.58E-03 8.8X&13 32 30 0.0079 316 Cb 1.0 162 1000 9 HANFO 1070 40.2 12.20 2.386 442 Cb 10 1000 9

    Quad- IIRX-3A 1.580 25 1.87 3 7 787 787 2.82E-03 3.36E-10 19 9 0.024 177 44 17 ratlc QMlOOR 1.509 SO.8 2.91 13 7429 7.59 9.91%04 3.llE-11 9 9 0.004s 505 Cu 106 477 1016 1 Misc. QMlOOR 1.509 50.8 3.29 12 7 420 7.59 1.26B03 X.23E.12 14 8 0.0048 397 cu 10 6 396 1016 1 comp- PBXW-126 1.800 50.8 3.00 6.470 8.8OE-04 4.24E-11 8 10 568 Cu 106 1016 I os1te Rx4 1.500 25 3 76 16 5.620 6.42 3.83E-03 6.47E-09 30 30 0.0023 131 274 178 16

    PBXW-123 1.920 38.5 6.55 5.560 3.69E-03 6.26&10 21 31 136 Br 64 152 18 Non- PETN 1743 12.7 0 10 8.201 NA 2.36E-0X 3 3 CU 3.2 305 1 QU&dlC LX-14 1.825 12.7 0 16 8.778 NA 4.llE-08 4 5 CU 3.2 305 1

    HM.X 1739 12.7 0 19 8.550 NA 3 72E-0X 7 4 CU 305 1 LX-10 1.87 25 4 0.26 8.820 NA 8.93E-10 6 3 CU 6.1 305 1 LX-04 1.X7 25 4 0.39 8.470 NA 1.5lE-09 7 5 CU 6.1 305 1

    T-3

  • Table ?.a Size Effect Data for Pure and Heterogeneous Explosives

    P”@ 1 HOMOGENEOUS EXPLOSIVES- TNT

    Radius Us talc G Radius Us talc G Ro (mm/ (P-I* Rcur Ro (mm/

  • Table *a, page 2 TNT OTHER HOMOGENEOUS EXPLOSIVES

    Ro Us G RCUI Ro Us G Rw TNT - 5 23 70 TNT m 7 09 194 pressed 1500 471 71 0 04 71 cast 29 0 700 35 0 274 1 00 1000 453 58 0 05 43 unconf 20 0 698 28 0 02 176 g/cc 750 418 57 0 05 28 77 K 17 5 700 2, 0 03 165 unconf 5 00 394 43 0 06 17 ref 42 16 0 699 2, 0 03 144

  • 1 I

    F c 0

    8 6 r,

    P ” 1

    g c 1 2 T,

    P ” 0

    g c 3 4 r<

    R ” 1

    g, I w I[

    R “: 0 rc

    ‘able 2a. page 3 IOMOGENEOUS EXPLOSIVES

    Ro Us G Rcur ‘ETN - 5 277 78 onf 8 25 514 16 017 61

    95 7 00 506 18 015 45

    /cc 7 00 511 15 018 49 55 pm 5 70 50’ ‘7 016 34 ef 28 5 70 502 17 016 34

    3 81 488 15 017 20 3 81 486 15 017 20 2 03 456 ‘2 02’ 9 2 03 458 12 02’ 9 2 03 460 11 622 9 2 03 458 I2 021 9

    ‘ETN m 5 53 86 nconf II 10 557 157 00 9 50 550 07 0 34 113

    +o 01 9 50 547 1’ 023 94 /CC 7 95 542 13 018 65 OrI us 6 35 540 11 021 49 50. 4 77 540 09 027 37 10pl 4 77 537 10 023 34 :f 38 3 I8 529 09 026 20

    3 18 5’8 ‘1 020 I7 I 59 510 06 035 8 I 59 494 08 027 7

    ‘ETN - 5 53 79 nconf 12 70 523 40 007 74 96 9 50 520 32 008 53

    +oo, 7 95 541 13 021 64 ICC 6 35 527 18 015 39 on us 6 35 5.35 14 019 44 oo- 4 77 529 I3 021 30 20 Km 4 77 531 12 022 30 :f 38 3 18 517 II 024 17

    3 18 513 12 022 17 DX - 6 69 14 5 nconf 1270 624 46 002 69 I9 11 10 638 3 I 003 68

    to 04 II IO 642 29 003 71 kc 9 50 643 24 004 61 50-210 9 50 641 25 004 61 m 7 95 6 70 58 :f 38 7 95 644 20 005 53

    6 35 6 83 47 6 35 6 83 47 4 77 660 06 018 45 4 77 649 10 010 34 3 18 644 08 013 21 3 18 647 07 0’4 22 1 58 588 08 011 7 I 58 571 10 009 7

    DX - 583 82 nconf 3 45 550 ‘1 024 20 90 g/cc 2 83 550 09 028 ‘6 :f 49 2 28 533 10 026 1’

    1 78 520 09 028 8 1 76 505 10 024 8

    R

    T

    ” 0

    T “I 0 L! & 31 4( re

    Ro Us G RCUl DX 14’ 509 08 031 6

    ‘etryl w 5 86 77

    nconf 3770 577 5 ?-f%- 342 94 21 95 528 IO 0 03 105

    +o 02 15 90 486 II 002 64 /cc 1270 525 6 005 60 oo- 1270 527 6 005 61 40 w*m 1270 497 8 003 53 :f 38 1270 502 8 004 53

    11 II 5 16 6 005 50 ‘11’ 507 6 004 48 III’ 493 7 004 46 11 1’ 497 7 004 46 953 534 4 007 47 953 502 6 005 40 9 53 4 84 7 004 37 795 452 7 004 29 635 428 6 004 21 635 434 6 004 22 4 67 I 52 8 001 ‘1 4 67 199 8 00’ 12 467 201 8 001 12 3 18 failed

    my’ cs 5 85 83 nconf 3770 561 10 -i???- 24’ 98 3770 544 ‘4 .o 03 3150 560 9 ‘cc 3150 566 7 30. 2520 576 3 IO pm 25 20 5 59 7 zf 38 21 95 5 67 5

    21 95 5 73 4 1590 533 7 1270 533 6 1270 510 7 1270 520 6 II ‘1 495 7 11 II 497 7 1111 519 6 II 1’ 5 12 6 953 542 4 953 507 5 953 5 15 5 7 95 536 3 7 95 545 3 635 538 3 635 527 3 467 5 ‘9 2 467 523 2 467 482 3 4 67 5 04 3 318 488 2 1 59 failed

    0 02 202 0 03 199 0 04 216 0 08 225 0 04 156 0 06 156 0 07 174 004 78 004 62 003 56 004 58 003 46 003 46 004 51 004 49 007 51 004 41 005 43 007 40 009 43 010 33 008 30 010 21 011 22 007 18 009 20 0” 13

    1 T-7

  • Table 2% page 4 I HOMOGENEOUS EXPLOSIVES

    Ro Us G RCW ADNBF m 8 23 25 3 E 171 298 781 09 0 04 ‘8 c

    1 g/cc 203 772 07 006 1’ uncanf 101 709 06 006 4

    638 742 09 005 55 298 741 04 0’1 25 203 745 03 019 19 203 731 04 011 14

    638 762 12 003 49 298 754 07 006 20 298 758 06 007 21 203 746 06 007 I3 101 679 06 006 4

    DNBF m 765 25 5 1 69 203 752 03 013 18 g/cc 101 748 02 021 8 unconf 076 733 02 018 5 ref 43 2.4. - 433 48 DNT 1000 389 5 011 47 unconf 800 378 4 012 36 0 95 625 359 4 012 25 g/cc 5 00 3 27 4 011 17 ref 313 288 3 012 IO 36 250 245 3 011 7 DINGU - 45 48 unconf 30 40 15 004 138

    r3; 6 67 3 0018 28

    Ro Us G RCUl IM - 6210 119 onf 4763 6210

    u: I i g, 1, 2 re

    I

    033 1270 6201 04 039 247 /cc 1269 6200 04 037 238

    3oc 6395 6188 03 043 92 sf 22 6350 6190 03 046 94

    3’65 6169 02 057 37 3215 6 166 03 053 37 ‘525 6 125 02 072 14 1500 6128 02 075 ‘4 I21 faikd

    IM - 6236 II 9 L

    nconf ‘842 6233 02 0 57 517 ‘30 ‘842 6227 05 0 27 360

    ICC 1546 6233 02 0 67 434 :f 4 1378 6228 04 0 39 279

    1370 6229 03 0 43 291 1106 6226 03 0 42 208 967 6220 04 0 35 156 958 6221 04 037 157 957 6 196 07 0 I9 113 8 63 6212 05 0 30 120 8 33 6199 06 0 23 10’ 8 32 6220 03 0 41 134

    DNA - 62 94 nconf 9945 613 980 00 9945 6 ‘6 1’73

    9 03 9945 kc 9945 50. 99 45 IOpm 99 45 :f 38 3770

    3770 1270 I2 70 ‘1 10 11 IO 950 950 795 7 95 635 6 35 4 77 4 77 3 ‘8 3 18 356 4 003 9

    DNA cs 6, 95 1conf 1270 549 6 003 60

    608 I6 0 014 8’0 6 13 971 5 70 512 575 532 638 277 630 277 543 7 003 56 552 6 003 58 532 7 003 47 538 6 003 48 516 6 003 38 537 5 004 41 537 5 004 34 545 4 005 35 534 4 005 27 547 3 006 29 499 4 005 18 521 3 006 20 414 3 004 IO

    99 1270 544 6 003 58 002 12 70 561 5 004 65

    'cc 1270 568 5 004 69 lo- 1110 514 7 003 46 !O wrn 1110 539 6 003 50 f 38 II IO 556 5 004 54

    ,110 564 4 005 58

    T-X

  • T:

    H

    E “I

    I 0

    w “1 3’ 4:

    able Za, page 5 ‘OMOGENEOUS EXPLOSIVES

    Ro Us G Rcur DNA 9 50 539 5 004 43 1conf 9 50 532 5 004 42 99 9 50 556 4 005 46 ‘cc 9 50 558 4 005 47 wmf 7 95 500 6 003 31 70. 7 95 522 5 004 34 LO pm 7 95 547 4 005 37 f 38 7 95 534 4 004 35

    6 35 52’ 4 005 27 6 35 477 5 003 24 635 520 4 005 26 6 35 524 4 005 26 4 17 409 5 003 15 4 77 486 4 005 18 4 77 486 4 005 18 4 II 498 3 005 19

    unconf IO 765 15 003 85 zl

  • Table Za, page 6 I I HETEROGENEOUS-

  • Table *a, page I HETEROGENEOUS-

  • ‘able 2b Size Effect Data for Binary and Composite Explosives BINARY EXLOSIVES I

    PW 1

    Ro Us G RCUI Ro Us G Rcur !ompB - 7 92 26 8 Octal ce 8 472 32 2 ‘YPe I 1275 7 868 10 0 04 149 uncanr 2540 8452 IO 0 03 418 400um 12 75 7 887 07 0 05 175 11 82 1906 845 08 0 03 305 .DX 71

    /cc :f 23

    1240 7869 09 0 04 I46 g/cc 1145 8415 09 0 03 134 1240 7864 IO 0 03 143 ref 22 1145 8421 08 0 03 144 1240 7847 12 0 03 130 815 8402 07 004 89 635 7816 08 004 59 815 84 07 003 88 635 7819 08 005 59 636 8357 08 003 59 500 7787 07 005 43 317 8161 08 003 21 5 00 7 792 0 7 0 05 44 x-0341 c.3 1 82 7.8 1 5 00 7 755 0 8 0 04 40 19Oglcc 25 0 175 24 001 265 424 7738 08 0 05 33 unconf 9 0 764 16 0019 69 4 24 7 742 0 7 0 05 33 ref 41 45 748 12 0025 28 398 7738 07 0 05 31 HMX 40 741 12 0024 23 398 7725 07 0 05 30 15~rn 398 7746 07 0 05 32 TATB 3 18 7648 07 0 05 22 60wm 318 7650 07 0 05 22 X-0342 ca 7 87 28 5 2.81 7572 08 0 04 18 1 90 g/cc 25 0 782 19 3-r 296 281 7561 08 0 04 18 unconf 9 0 772 14 002 73 255 7476 08 0 04 15 ref 41 45 759 11 003 30 254 7416 08 004 14 40 756 10 003 26

    214 6709 13 0 02 9 lref 41 45 770 09 003 33 2 14

    _I “*

    375 7372 14 0 02 20 ref 4j I 54 633 10 007 6 375 7458 I2 0 03 21 PBXW-7 - 192 23 0 358 7233 15 0 02 I8 TypeII 6 38 778 09 005 54 360 7268 15 0 02 19 1 70 g/cc 6 38 769 I3 0 04 46 356 1369 13 0 02 19 unconf 6 38 789 03 015 94 356 7273 I5 0 02 I8 ref 43 2 96 749 09 005 I7

    yclatol w 8208 29 4 2 96 740 II 004 16 - 1conf 5080 8 217 2 96 760 08 006 19 74 25 40 8 204 2 01 740 07 006 I1

    3 20 7 664 12 0 02 I7 ““&f 1000 778 I3 0030 89 2 80 failed ref 43 6 35 770 12 0 033 47

    T-17

  • Table 2b, page 2 COMPOSITES - ANFO

    Ro Us G RClX QM-100 - 6 53 10 unconf 15240 629 37 0006 1008 1 26 7620 605 29 0 007 407 g/cc 5080 581 26 0 008 233 ref I, 3810 558 23 0 008 159 35 3048 538 21 0 009 120

    2540 5 IO 20 0009 92

    1905 462 18 0009 62 NFO - 5 88 92 w 4400 562 12 0 017 272 ,conf 4400 561 12 0 017 269 I6 3930 564 10 0 021 251

    ‘cc 2830 545 1, 0 019 15, f 10, 2400 538 IO 0 020 120 I 1900 535 8 0024 93

    1700 52, 9 0022 76 1700 507 10 0019 74 1680 537 7 0028 84 1085 453 9 0019 39 1060 453 9 0020 38

    3030 1917 50 0 003 77 2900 1932 47 0 003 74

    1025 465 8 0022 37 10 25 4 74 8 0024 39 X0-20/6 375 498 38 b 123 8 50 432 8 0021 29 I41 g/CC 315 423 38 0002 94 850 438 8 0 022 30 fresh 25 0 fail 6 80 374 8 0019 21 unconf 19 0 fail

    Ro Us G RC!l .NFO cs 4 74 46 80 s/cc 1460 456 36 0019 944

    nconf, 1460 455 38 0018 933 :f 32 510 389 36 0016 200

    25 5 3 25 26 0019 81 IANFO - 5 350 62 069 1268 4302 94 0004 487

    5 ICC 9240 3 732 92 0 003 302 :f 9 9240 3512 100 0003 285

    76 35 3 277 89 0 003 228 6005 2904 78 0003 174 5040 2581 7, 0003 139 5040 2 657 70 0 003 141 4485 2364 67 0003 123 40 I5 2386 60 0003 110 35 10 2288 53 0004 9, 35 IO 2164 55 0003 90

    T

    6 50 367 7 0 019 2” Id 74

    3937 427 12 0 028 3679 430 10 0 033 3515 416 14 0 023 375 605 9 0009 251 3125 406 15 0 022 IO 0008 179 3005 413 12 0 026 250 591 8 0010 142 2660 408 I2 0 026 190 577 8 0010 98 2401 397 13 0 024 21 17 3 84 13 0023 90 19 11 376 13 0023 77

    750 726 2, 0 004 463 625 722 19 0005 374 500 706 19 0004 265 375 706 14 0 006 200 315 668 17 0005 139 250 635 17 0005 100 190 620 14 0005 75 160 605 12 0006 60

    mnf 2625 5 275 19 0 010 102 125 552 12 0006 43 f I2 2045 4862 IS 0010 71 95 fa ii-

    15 95 4 044 18 0008 49 K-HO - 5 5 12 5

    486 34 8438 52 27 0 004 cc 8438 4 78 0 001 285 1

    6250 44 47 0 002 238 F1.31 5080 failure

  • Table 2b, page 3 COMPOSITES - ANFO

    Ro Us G Rcur 1 Ro Us G Rcur QM-IOOR - 7 74 16 5 HMX20, - 7 59 15 5 60-40/B 625 715 25 0 003 328 emulsion 2745 545 26 00028 95 I 48 g/cc 60 days old unconf ref 34

    125 529 13 0005 40 emulsion 2804 696 IO 00077 154 OM-IOOR m 7 86 17 2 un&conf I3 44 6 25 9 00077 55

    Lo-4016 37 5 706 18 0004 177 151 g/cc !3 44 60! !O 0 0066 5! I 47 g/cc 315 668 20 0004 130 rcf 48 10 93 632 7 00101 46 fresh 250 668 I6 0005 103 9 2, 617 6 00106 37 unconf 190 591 17 0004 66 8 22 585 6 00097 31 ref 34 160 591 I4 0005 56 7 09 502 7 00073 23

    125 fail 6 14 510 6 00088 20 QM-IOOR - 7 62 17 2 5 51 340 8 00045 15 60-4016 375 706 14 0005 200 4 96 253 8 00033 12 I 50 g/cc 315 668 17 0004 139 5 00 failed 60 davs 250 651 15 0005 105 HMX40. w 7 51 196 old 190 620 I4 0005 75 emulsion 1344 708 4 0013 76 unconf I60 605 I2 0 005 60 un&conf 6 29 664 3 0017 28 ref 34 125 fail 1 55 g/cc 6 32 652 4 0 015 27 QM-IOOR - 7 58 18 I ref 48 50-50/B 750 747 10 0 007 674 HMX50, 8 74 21 7 1 48 g/cc 625 747 8 0 009 562 emulsion 1330 775 7 0008 60 fresh 500 733 II 0 006 347 un&conf 6 26 747 4 0013 27 unconf 375 727 10 0007 240 16Oglcc 6 32 721 4 0 012 25 ref 34 315 706 12 0006 170 ref 48 4 80 664 4 0011 17

    25 0 7 06 9 0007 135 3 66 585 4 0010 12 190 687 9 0008 92 3 28 383 5 0005 9 160 668 9 0008 72 3 13 failed 125 651 7 0009 53 95 635 6 0010 38

    QM-IOOR m 7 74 I8 I 50-50/E 62 5 7 62 9 0009 549 I 50 g/cc 500 747 I2 0006 335 60 days 375 726 13 0005 209 old 315 706 I4 0005 154 unconf 250 687 I3 0005 115 ref 34 190 668 11 0006 82

    160 668 9 0007 69 125 605 10 0006 47 95 605 8 0008 35

    I----- T-14

  • 5

    A 51 “1 1 tY A 8‘ CL re

    ‘able 2b, page 4 I :OMPOS,TES - NON-ALUMINIZED

    Ro Us G RC” Ro Us G RC” ,matol - 6 71 I84 hmatol - 5 22 78 O/50 88 9 635 28 0002 515 0 123 471 58 0 004 59‘ nconf 63 5 628 22 0003 350 53 g/cc 635 648 15 0004 430

    IP 1 63 5 630 22 0003 353 LN un- 63 5 626 23 0003 343 ieved, 635 623 24 0002 339 ast 50 8 646 12 0005 336 :f 30 50 8 601 25 0002 24,

    50 8 643 14 0004 321 50 8 654 IO 0006 381 5” 8 600 25 OU02 235 50 8 622 I9 0003 272 38 1 627 14 0004 210 38 1 612 17 0003 187 38 I 595 20 0003 176 38 I 581 22 0003 165 38 I 602 18 0 003 179 25 2 554 17 0003 99 25 2 546 18 0003 96 25 2 541 19 0003 96 25 2 520 21 0002 91 25 2 522 20 0002 90 25 2 559 I7 0003 101 25 2 509 21 0002 88 25 2 560 17 0003 I01 1905 489 18 0003 65 1905 451 20 0002 61 I7 5 failed

    ,matol - 6 62 184 o/50 9950 637 25 0002 643 nconf 9950 637 25 0002 658 53 g/cc 889 632 25 ‘pe 2 79 0 628 24 N 600. 79 0 632 22 $0 km 63 5 630 I8 St 63 5 635 I7 f 30 510 625 16

    51 0 624 17 44 5 614 I7 44 5 616 I6 38 I 607 16 38 1 609 16 315 5847 I7 315 5847 I7 252 5405 I8 25 2 5 19 20 252 5199 20 252 5207 20 25 2 5 195 20

    0 002 0 002 0 003 0 003 0 004 0 004 0 004 0 003 0 004 0 004 0 004 0 003 0 003 0 003 0 002 0 002 0 002 0 002

    543 467 488 388 406 295 289 235 240 189 196 142 142 97 94 94 94 94

    1905 4765 IS 0 003 65 19 05 failed

    17 failed

    Og/cc 80 431 55 0004 311 ‘NT150. 636 418 48 0 005 24: 00 pm 636 427 45 0 005 25C LN 840. 636 430 44 0005 251 200 ,lm 497 415 38 0006 18, acked, nconf :f 30

    49 7 49 7 44 I 44 I 44 I 37 7 37 7 37 7 31 5 31 5 31 5 25 2 25 2 25 2

    I9 15 19 15 I2 65 12 65

    403 41 0005 I,! 405 40 0 005 18: 388 39 0005 15‘ 391 39 0005 15‘ 400 37 0006 152 375 36 0006 12: 399 32 0007 l3( 397 32 0007 13: 382 29 0007 IOf 375 30 0007 IOf 386 28 0007 106 372 24 0008 82 3 89 22 0009 88 3 75 24 0008 85 379 18 0011 65 358 19 0010 62 295 I6 0010 37 305 15 0010 37 283 I2 0012 28 327 II 0016 29 273 I3 0011 27 268 13 0011 27 232 I2 0010 22 241 I2 0011 22 177 1, 0009 16 187 10 0009 I6 183 II 0009 I6

    95 95 95 95

    8 8

    64 64 64 64 182 II 0009 16

    6 25 failed matex m 7 00 177 1 50 8 694 5 0015 553 ,conr 254 684 4 0016 198 6 1 g/cc 127 653 5 0015 69 f 22 85 603 5 0012 37 ,mpB- c., 175 22 8 N 64 751 14 0 003 450 p-21 64 753 13 0003 461 59 g/cc 505 754 IO 0005 369 N 840. 505 751 II 0.004 355 !OO p’m 37 8 7 43 10 0005 239 lconf 378 757 7 0007 291 f 30 378 751 8 0006 266

    254 755 5 0009 188 254 776 298 254 761 4 0012 212 254 749 6 0008 172 254 753 5 0009 I83 19 I 727 7 0007 106 191 736 6 0008 112

    T-15

  • Table 2, page 5 I COMPOSITES: NON-ALUMINIZED & PBXN-III

    Ro Us G Rcur 1 Ro Us G RCU Comp B- 19 I 728 7 0 007 106 PBXN- cs 5 95 20 5 AN I9 1 738 6 0 008 I,7 11, 5001 5637 15 0003 296 79-21 I9 I 721 I 0 006 102 Navy 2422 5 611 8 0005 137

    124 705 5 0008 61 conf, 33 96 5 757 8 0006 233 124 705 5 0008 61 sizes(pm) 23 44 5 600 8 0005 133 124 700 6 0 007 60 RDX60 1894 5499 7 0006 99 124 713 5 0 009 64 AP 200 1266 5 123 7 0005 54 124 714 5 0 009 64 Al 5 I2 47 5 098 8 0005 53 12 4 714 5 0 009 64 179 1241 5 112 7 0005 53 8 55 687 4 0 010 39 g/cc 9 55 4 840 7 0005 37 8 55 678 5 0 009 38 ref 8 950 4855 7 0005 37 8 55 677 5 0009 38 7 94 failed 8 55 686 4 0 010 38 PBXN- cs 5 95 20 5 8 55 686 4 0010 38 111 4995 5632 I6 0003 289 6 85 670 4 0 010 30 Navy 3455 5540 I3 0003 187 6 85 670 4 0 010 30 unconf, 34 12 5 572 I2 0004 188 6 85 failed sizes(pm) 2495 5 315 12 0003 115

    Prop- - 6 60 RDX 60 2485 5331 12 0003 117 ellant 9525 652 12 AP 200 2480 5365 I2 0004 120 B 9525 655 9 Al 5 2480 5421 II 0004 122 55.60 urn 95 25 6 44 I7 I 79 2478 5 365 I2 0004 119 AP 7620 644 14 g/cc 2406 5311 I2 0003 110 unconf 7620 644 14 ref 8 2401 5 309 12 go03 II0 ref 46 7620 644 14 2345 5383 II 0004 112

    5080 642 IO 2225 5228 12 0003 99 5080 639 II 2055 519 11 0003 90 5080 64, 10 2052 5 158 12 0003 89 3175 627 9 2045 5 154 12 0003 89 3175 627 9 1934 5 036 12 0 003 80

    Prop- cs 6 70 I7 75 failed ellant 7620 666 5 PBXN- ce 6 036 20 5 C 5080 647 12 Ill 49 95 5 688 16 0003 283 55-60 urn 3, 75 644 8 Australia 34 I3 5 527 I4 0003 I71 AP 2540 637 8 unconf 2406 5313 I3 0 003 108 unconf 1905 630 6 ref 9 2401 5312 13 0003 108 ref 46 2045 5 186 12 0003 87 Prop- - 7 07 PBXN- cc 6 036 20 5 ellant 5080 689 IO Ill 5000 5747 15 -iiE- 305 D 3175 683 7 Australia 23 49 5 513 IO 0004 117 55-60 wrn 31 75 680 8 conf 18945406 9 0004 89 AP 25 40 6 82 6 ref 9 1260 5 130 8 0005 52 unconf I9 05 665 6 Prop- - 6 40 ref 46 1905 668 6 ellant 9525 635 8

    1588 654 6 A-l 9525 636 7 1588 656 6 55.6Omm 7620 631

    prop- c0 7 31 AP 7620 628 12 ellant 5080 726 4 unconr 5080 628 8 I

    IO I

    E 3175 715 5 ref 46 5080 631 6 55-60 pm 25 40 719 4 31 75 609 9 AP 1905 708 4 3175 615 8 unconf 1588 710 3 3175 617 8 ref 46 1270 703 3 25 40 6 07 8

    2540 605 8 25 40 6 07 8 1905 607 6 1905 605 6

    T-16

  • :able 2, page 6 I :OMPOSITES: ALUMINIZED ; INORGANIC

    Ro Us G Rcur 1 Ro Us G RCUI ‘rap- 1905 607 6 AP 4 95 5 :llant 1588 597 6 I 26 38 I 417 24 0 02 156 i-l 1588 593 6 a/cc 31 8 408 22 0 02 I25

    ef 46 1270 611 5 155.60 b,,, 127 265 I6 003 37 1270 609 5 ref 46 12 7 265 16 003 37

    ‘rap- - 5 96 I2 7 265 I6 003 37 llant 5080 579 II 95% AP w 3 39 4

    3175 567 9 5% Al 38 IO 320 12 0 05 221 5-60pm 3175 574 8 081 p/cc 25 40 312 10 0 06 I31 LP 25 40 5 63 8 unconf 1735 298 9 006 78 nconf 25 40 5 65 8 ref. 47 1270 283 8 007 5, :f 46 22 23 5 60 8 9 55 266 8 007 36

    2223 555 8 AP-AI - 4 33 5 ‘rap- w 4 64 ref 47 3810 40, 15 0 03 200 llant 3175 380 22 Illg/cc 2540 392 12 0 04 122 ,-I 3175 388 21 unconf 1735 371 IO 005 73 5-6Omm 1270 265 I6 AP

  • Table 3 Data for cylinders where failure was measured

    Homogeneous TNT, pressed TNT, pressed TNT, pressed TNT, pressed TNT, cast TNT, creamed TNT, liquid xtryl tetry, NM NT0 NT0 NT0 Heterogeneous XTX-8003 PBX-9404 NM-sil ica-guar X-0219 X-0290 PBX-9502 RDX 94 h/pew RDX 97 B/pew Camp B Cyclotol 77-23 PBXW-7 Composites ANFO, SW RX-HD I 34 56 4 55 40 HANFO 1 07 26 19 5 35 45 QM-100R X0-2016 1 41 28 8 42 7 20 38 QM-IOOR X0-20/8 1 45 28 8 47 7 20 34 QM-IOOR 70.3016 I 44 17 5 57 6 27 8 QM-IOOR 60-4018 I 46 11 55 7 60 12 QM-100R 60.40,6 1 47 I4 2 59 7 86 I2 QM-IOOR 60.4016 I 50 14 2 60 7 62 12 HMX 20, emulsion I 47 86 07 7 59 I8 HMX 30, emulsion 151 50 25 7 42 8 HMX 50, emukion I 60 32 38 8 74 4 Amatol 50/50 I 53 I8 3 45 6 71 I9 Amatol 50/50 1 53 183 47 6 62 19 Amatol 50/50 I 00 6 32 18 5 22 IO Amatex 20 I61 85 7 03 IO CompB-AN 79.21 I 59 6 85 67 7 75 4 PBXN-III, N, conf I 79 87 48 5 95 7 PBXN-I I I, N, unc I 79 185 50 5 95 12

    Pa Rr detvel (mm&s)

  • Table 3, page 2

    reference 50

    90% RDX-talc

    80% RDX-talc

    75% RDX-talc

    Pa Rf Radius smallest

    (p/cc) (mm) at u, 4 f” ff fv+e I 10 35 40 5 05 0 40 0 IO 0 50 explosive grain I 25 45 50 5 10 0 35 0 20 0 55 size 100 pm 1 33 65 70 5 10 0 32 0 7.5 0 57

    70% RDX-talc I 43 75 80 5 07 0 29 0 30 0 59

    60% RDX-talc 1 66 85 90 5 90 0 20 0 40 0 60

    55% RDX-talc I 80 33 33 0 15 0 45 0 60

    50% RDX-talc 2 00 33 33 0 075 0 50 0 58

    95% RDX-wax 1 05 45 50 53 0 39 0 05 0 44

    90% RDX-wax 1 10 45 50 53 0 32 0 10 0 42

    80% RDX-wax I 25 44 50 62 0 17 0 20 0 37

    76% RDX-wax 1 32 44 50 67 0 094 0 24 0 33

    72% RDX-wax I 39 44 50 73 0 012 0 28 0 29

    70% HMX-talc 1 43 75 80 5 09 031 0 30 0 61

    58% HMX-talc I 72 65 70 6 17 0 20 0 42 0 62

    50% HMX-talc 2 05 38 6 30 0 038 0 50 0 54

    90% HMX-wax 1 10 65 70 5 20 0 36 0 IO 0 46

    58% HMX-wax 1 28 75 80 5 85 0 21 0 42 0 63

    50% HMX-wax 1 42 85 90 6 80 0 00 0 50 0 50

    90% TNT-talc I 10 75 80 4 IO 0 40 0 10 0 so

    75% TNT-talc 1 33 85 90 4 10 0 28 0 25 0 53

    70% TNT-talc 1 43 85 90 4 00 0 24 0 30 0 54

    65% TNT-talc 1 54 95 10 0 4 45 0 20 0 35 0 55

    60% TNT-talc I 66 65 70 4 55 0 15 0 40 0 55

    55% TNT-talc 1 80 65 70 4 97 0 IO 0 45 0 55

    90% TNT-AI I IO 75 80 4 10 0 40 0 10 0.50

    65% TNT-AI 1 54 95 10 0 4 60 0 20 0 35 0 55

    60% TNT-AI 1 66 65 70 0 15 0 40 0 55

    55% TNT-AI I 80 65 70 5 39 0 IO 0 45 0 55

    95% TNT- lucite pwd 1 05 II 120 4 07 0 36 0 05 041

    85% TNT- Lucite pwd 1 16 16 5 18 0 4 88 0 26 0 15 041

    80% TNT- kite pwd 1 25 11 12 0 4 80 0 19 0 20 0 39

    78% TNT- lucite pwd 1 28 95 100 0 17 0 22 0 39

    75% TNT- lucite pwd I 33 85 90 4 88 0 12 0 25 0 37

    70% TNT- lucite pwd I 43 75 80 5 80 0 034 0 30 0 33

    T-19

  • Table 3, page 3 reference 51

    Liquid TNT, 85oC P. Rc containment

    1 46 38 13 mm steel

    Liquid TNT, 95aC

    92% NM, acetone

    90% NM, acetone

    81 3% NM, acetone

    60 glass 90 cellophane

    1 45 36 I3 mm steel 48 glass 72 cellophane

    1 IO 35 13 mln steel 27 glass 42 cellophane

    1 09 46 2-12 mm steel 33 glass 54 cellophane

    1 05 17 3-12 mm steel

    AN

    136 glass 220 cellophane

    1 06 80 glass

    >lOO cellophane

    T-20

    r

    /

  • Table 4 Compositions of explosives used in this report

    Explosive Composition of Mixtures (wt%) ABNBF 7-amine-4,6-dinitrobenzofuroxan

    AN 80, TNT 20 AN 50, TNT 50 ammonium nitrate AN 94, fuel oil 6

    Am&x 20 Amatol 50/50 AN ANFO-generic ANFO-NM ANFO-SW AP BX-4 c-4 COmF !. Comp B Cyclotol Cyclotol 77.23 DINGU DNBF DNT EDC-35 EDNA HANFO HMX ZO-emulsion HMX 30.emulsion HMX 40-emulsion HMX 50-emulsion IRX-1 IP.X-3A IRK-4 LX-04 LX-IO LX-17-l NM NM-silica NT0 Oct0l PBX-9404 PBX-9501 PBX-9502 PBXN-110 PBXN-111 PBXW-7 type II PBXW-123 PBXW-126 Pentolite Picric Acid Propellant A Propellant B

    AN 77, water 16, mineral oil 6, emulsifier 1 AN 77, water 14 7, oil 3 9,sorbitol monooleate 0 7, ? ammonium perchlorate TATB 60, RDX 30, HMX, 5, Viton A 5 RDX 91, pib 9 RDX 91, wax 9 RDX 63, TNT 36, Wax 1 RDX 75, TNT 25 RDX 17, TNT 23 dinitroglycoiurile 4,6-dini~obenzofUroxan 2,4-dinitrotoluene TATB 95, k&F 5 (moist-aminated TATB) ethylenediamine nitramine AN 72 4, tixi oil 4 6, AN/water/emulsion 23 AN 57 2, HMX 20, SN 8 0, water 9 6, fuel oil 5 2 AN 50 1, HMX 30, SN 7 0, water 8 4, fuel oil 4 6 AN 42 9, HMX 40, SN 6 0, water 7 2, fuel oil 3 9 HMX 50, AN 35 8, SN 5 0, water 6 0, fuel oil 3 3 HMX 70, htpb 30 HMX 70, htpb 20, Al 10 HMX 30, htpb 30, AP 24, Al 16 HMX 85, Viton-A 15 HMX 90, Viton-A 10 TATB 92 5, k&F 7 5 (wet-aminated TATB) NM 94, nitroethane 4, nitropropane 1 NM 93, silica 6, guar gum I (gel) 5-nitro-1,2,4-hiazol-2-one HMX 75, TNT 25 HMX 94, nitroceliuiose-1 1 3, c e phosphate 3 HMX 95, estane 2 5, bdnpa 1 25, bdnpf 1 25 TATB 95, k&F 5 (dry-aminated TATB) HMX 88, htpb 12 RDX 20, AP 43, Al 25, htpb 12 TATB 60, RDX 35, Viton A 5 AP 44 8, Al 30 2, TMETN 18 8, pcl4 2, ndpa 1, ipdi 1 Al 26, NT0 22, AP 20, RDX 20, polyurethane 12 PETN 50, TNT 50 2,4,6-trinitrophenol plastisol-NC 55, AP 30, Al 15 plastisoi-NC 64 7, AP 35 3

    T-21

  • Table 3, page 2

    Explosive Composition of Mixtures (wt%) ProDellant c “l&sol-NC 64 7, AP 29 4, RDX 5 9 Pro;ella”t D $astisol-NC 64 7, Al’20 3, P.DX 15 Propellant E plastisol-NC 64 7, RDX 35 3 Propellant F plastisol-NC 54 7, KC1 30 4, AI 14 9 QM-100 AN 75, water 18, oil 5, glass microballoons 2 QM-lOOR, X0-20/6 AN 60 4, RDX 20, water 15 1, fuel oil 4 5 QM-IOOR, SO-2018 AN 59 3, RDX 20, water 14 8, fuel oil 5 9 QM-lOOR, 70-3016 AN 52 8, RDX 30, water 13 2, fuel oil 4 0 QM-lOOR, 60.4016 AN 45 3, RDX 40, water 11 3, f”el oil 3 4 QM-IOOR, 60-40/X AN 44 4, RDX 40, water 11 1, fuel oil 4 4 QM-IOOR, SO-SO/S AN 37 0, RDX 50, water 9 3, fuel oil 3 7 RDX-pew RDX variable, polyethylene wax variable 70% RDX-urethane RDX 70, polyurethane 29 65, graphite 0 35

    72 RDX-urethane#3 72 RDX-urethane#S RX-OS-HD RX-52-AD RX-52.AE RX-54-AJ RX-HD T2 Tettyl Ult TATB X-0219 x-0290 x-0341 X-0342 x-0343 x-0344 XTX-8003 Binder htpb idpi n-100 ndpa PCl Pew pib “l&sol-NC bvf Abbreviations ANFO-NM ANFO-SW PBXN-111 -N PBXN-I 11-A

    RDX 72, binder 28 C 33%,H 60,O 5 4,0 97 g/cc RDX 72, binder 28 C 14%,H 29, 0 29, Si 29, 1 02 g/cc HMX 74, TMETN 20, Tone 260 5 2 TATB 65, FEFO 31, pcl I 6, pvf 14, n-100 1 1 TATB 65, FEFO, 32, pcl, 1 6, pvf, 14 HMX 47, Al 28, TMETN 16, NC 8 AN 78 7, fuel oil 6 4, calcium nitrate 5 5, water 9 4 TATB 97, unknown binder 3 trinitro-2,4,6-phenylmethylnitramine ultratine-grain (6 bm) TATB TATB 90, K&F 10 TATB 95, K&F 5, became PBX-9502 TATB 90 25, HMX 4 75, k&F 5 TATB 85 5, HMX 9 5, k&F 5 TATB 80 75, HMX 14 25, k&F 5 TATB 71 25, HMX 23 75, k&F 5 PETN 80, silicone rubber (sylgard) 20 Composition hydroxy-terminated polybutadiene isophorone diisocyanate commerical isoceprate nitrodiphenylamine polycaprolacto”e polyethylene wax polyisobutylene nitrocellulose with about 10% nitrowlcerin polyvinylchloride

    i?om New Mexico (Lee) from Sweden (Swedish Rock) from U S Navy (Forbes) from Australia (Kennedy)

    _.

    i

  • Technical Inform

    ation Departm

    ent • Lawrence Liverm

    ore National Laboratory

    University of C

    alifornia • Livermore, C

    alifornia 94551


Recommended