+ All Categories
Home > Documents > A. Restivo and R. Vaglica

A. Restivo and R. Vaglica

Date post: 18-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
68
Minimality conditions on automata A. Restivo and R. Vaglica Dipartimento di Matematica e Informatica, Universit ` a degli Studi di Palermo Via Archirafi 34, 90123 Palermo, Italy A. Restivo and R. Vaglica Minimality conditions on automata 1/37
Transcript
Page 1: A. Restivo and R. Vaglica

Minimality conditions on automata

A. Restivo and R. Vaglica

Dipartimento di Matematica e Informatica,Universita degli Studi di Palermo

Via Archirafi 34, 90123 Palermo, Italy

A. Restivo and R. Vaglica Minimality conditions on automata 1/37

Page 2: A. Restivo and R. Vaglica

Abstract

• We investigate the “Dynamical Aspects of Automataminimality”. We are interested on how the choice of thefinal states can affect the minimality of the automata.

• A particular attention is devoted to the analysis of someextremal cases such as, for example, the automata that areminimal for any choice of final states (uniformly minimalautomata) and the automata that are never minimal, underany assignment of final states (never-minimal automata).

A. Restivo and R. Vaglica Minimality conditions on automata 2/37

Page 3: A. Restivo and R. Vaglica

Minimization of DFAs and role of q0 (initial state)

minimization of DFAs

indistinguishability notion of states

the notion of initial state is irrelevant

Moore’s and Hopcroft’s algorithms

q0

indistinguishable states

Let A = (Q,Σ, δ) a DFA, F ⊆ Q the set of final states and{p,q} ⊆ Q.

p ≡ q ⇔ ∀w ∈ Σ∗ : δ∗(p,w) ∈ F iff δ∗(q,w) ∈ F

A. Restivo and R. Vaglica Minimality conditions on automata 3/37

Page 4: A. Restivo and R. Vaglica

Objects of study

DFA:• the initial state is not specified• the set of final states is not specified• strongly connected

↪→ path from each vertex to every other vertex

A = (Q,Σ, δ)

a

b

b a

b

b

synchronization problem and Cerny’s conjecture

A. Restivo and R. Vaglica Minimality conditions on automata 4/37

Page 5: A. Restivo and R. Vaglica

Objects of study

DFA:• the initial state is not specified• the set of final states is not specified• strongly connected

↪→ path from each vertex to every other vertex

A = (Q,Σ, δ)

a

b

b a

b

b

synchronization problem and Cerny’s conjecture

A. Restivo and R. Vaglica Minimality conditions on automata 4/37

Page 6: A. Restivo and R. Vaglica

A useful tool for our investigation: the state-pair graph

A G(A)

Definition

The state-pair graph of A = (Q,Σ, δ) is the graphG(A) = (VG,EG) where:

i. VG consists of all not ordered pairs of distinct states of A;ii. EG = {((p,q), (p′,q′)) | δ(p,a) = p′, δ(q,a) = q′ and a ∈

Σ}.

A. Restivo and R. Vaglica Minimality conditions on automata 5/37

Page 7: A. Restivo and R. Vaglica

Example

A

1 2

34

a

b

a

b

aabb

G(A)

12 23

3414

13

24

A. Restivo and R. Vaglica Minimality conditions on automata 6/37

Page 8: A. Restivo and R. Vaglica

Example

A

1 2

34

a

b

a

b

aabb

G(A)

12 23

3414

13

24

A. Restivo and R. Vaglica Minimality conditions on automata 6/37

Page 9: A. Restivo and R. Vaglica

Example

A

1 2

34

a

ba

a

b

abb

G(A)

12 23

3414

13

24

A. Restivo and R. Vaglica Minimality conditions on automata 6/37

Page 10: A. Restivo and R. Vaglica

Example

A

1 2

34

a

ba

a

b

abb

G(A)

12 23

3414

13

24

A. Restivo and R. Vaglica Minimality conditions on automata 6/37

Page 11: A. Restivo and R. Vaglica

Example

A

1 2

34

a

b

a

b

aabb

G(A)

12 23

3414

13

24

A. Restivo and R. Vaglica Minimality conditions on automata 6/37

Page 12: A. Restivo and R. Vaglica

Example

A

1 2

34

a

b

a

b

aabb

G(A)

12 23

3414

13

24

A. Restivo and R. Vaglica Minimality conditions on automata 6/37

Page 13: A. Restivo and R. Vaglica

Example

A

1 2

34

a

b

a

b

aabb

G(A)

12 23

3414

13

24

A. Restivo and R. Vaglica Minimality conditions on automata 6/37

Page 14: A. Restivo and R. Vaglica

Notation and terminology

• A = (Q,Σ, δ)

• A: completion of A• A(i ,F ) : DFA with initial state i ∈ Q and F ⊆ Q as set of

final states• A(i ,F ) is said to be trim if all its states are both accessible

and coaccessible.

A. Restivo and R. Vaglica Minimality conditions on automata 7/37

Page 15: A. Restivo and R. Vaglica

Closed components of a G(A)

A closed component of a graph G is a subset S of the set of thevertices of G such that• there exists a path from any element of S to any other

element of S (i.e. S is a strongly connected component),and

• there is no outgoing edge from one element of S to avertex of G which is not in S.

12 23

3414

13

24

G(A)

A. Restivo and R. Vaglica Minimality conditions on automata 8/37

Page 16: A. Restivo and R. Vaglica

To check the minimality of a DFA

γF : VG → {B,W}

γF (p,q) =

{B if p ∈ F and q /∈ F , or vice versa;W otherwise.

TheoremLet A = (Q,Σ, δ), i ∈ Q and F ⊆ Q such that A(i ,F ) is a trimDFA. Then A(i ,F ) is minimal iff in any closed component ofG(A) there is at least an element v such that γF (v) = B.

A. Restivo and R. Vaglica Minimality conditions on automata 9/37

Page 17: A. Restivo and R. Vaglica

To check the minimality of a DFA

γF : VG → {B,W}

γF (p,q) =

{B if p ∈ F and q /∈ F , or vice versa;W otherwise.

TheoremLet A = (Q,Σ, δ), i ∈ Q and F ⊆ Q such that A(i ,F ) is a trimDFA. Then A(i ,F ) is minimal iff in any closed component ofG(A) there is at least an element v such that γF (v) = B.

A. Restivo and R. Vaglica Minimality conditions on automata 9/37

Page 18: A. Restivo and R. Vaglica

Example

1 2

34

12 23

3414

13

24

a

b

a

b

aabb

F = {1}

1 2

34

12 23

3414

13

24

a

b

a

b

aabb

A. Restivo and R. Vaglica Minimality conditions on automata 10/37

Page 19: A. Restivo and R. Vaglica

Example

F = {1, 2}

11 22

34

12 2323

341414

1313

2424

a

b

a

b

aabb

F = {1}

1 2

34

12 23

3414

13

24

a

b

a

b

aabb

A. Restivo and R. Vaglica Minimality conditions on automata 10/37

Page 20: A. Restivo and R. Vaglica

A main question

Do there exist minimal automata whose minimality is notaffected by the choice of the final states?

RemarkA(i ,F ) is trim for some i ∈ Q and for all F ⊆ Q if and only if Ais strongly connected. Thus the above question makes senseonly if we consider strongly connected automata.

A. Restivo and R. Vaglica Minimality conditions on automata 11/37

Page 21: A. Restivo and R. Vaglica

A main question

Do there exist minimal automata whose minimality is notaffected by the choice of the final states?

RemarkA(i ,F ) is trim for some i ∈ Q and for all F ⊆ Q if and only if Ais strongly connected. Thus the above question makes senseonly if we consider strongly connected automata.

A. Restivo and R. Vaglica Minimality conditions on automata 11/37

Page 22: A. Restivo and R. Vaglica

Uniformly minimal automata

DefinitionA strongly connected automaton A = (Q,Σ, δ) is calleduniformly minimal if, for all F ⊆ Q, it is minimal.

Remark

If A is complete and F = Q, then A is minimal only if it corresponds to thetrivial automaton with only one state. So a nontrivial uniformly minimalautomaton is not complete.

LemmaA strongly connected (incomplete) automaton A is uniformlyminimal if and only if the only closed component of G(A) is{(q, s) | q ∈ Q and s is the sink state}.

consequencepolynomial algorithm to test uniform minimality

A. Restivo and R. Vaglica Minimality conditions on automata 12/37

Page 23: A. Restivo and R. Vaglica

Uniformly minimal automata

DefinitionA strongly connected automaton A = (Q,Σ, δ) is calleduniformly minimal if, for all F ⊆ Q, it is minimal.

Remark

If A is complete and F = Q, then A is minimal only if it corresponds to thetrivial automaton with only one state. So a nontrivial uniformly minimalautomaton is not complete.

LemmaA strongly connected (incomplete) automaton A is uniformlyminimal if and only if the only closed component of G(A) is{(q, s) | q ∈ Q and s is the sink state}.

consequencepolynomial algorithm to test uniform minimality

A. Restivo and R. Vaglica Minimality conditions on automata 12/37

Page 24: A. Restivo and R. Vaglica

Uniformly minimal automataExample

1 2

34 a

a

ab

b a,b

13

24

12

14

23

34

1s

4s

2s

3s

1s

4s

2s

3s

Figure: A uniformly minimal automaton A and the associated state-pairgraph G(A).

A. Restivo and R. Vaglica Minimality conditions on automata 13/37

Page 25: A. Restivo and R. Vaglica

Uniformly minimal automataExample

1 2

34 a

a

ab

b a,b

13

24

12

14

23

34

1s

4s

2s

3s

1s

4s

2s

3s

Figure: A uniformly minimal automaton A and the associated state-pairgraph G(A).

A. Restivo and R. Vaglica Minimality conditions on automata 13/37

Page 26: A. Restivo and R. Vaglica

Remark

Uniformly minimal automata are related to well-known objectsin different contexts:• multiple-entry DFAs• Fisher covers of irreducible sofic shifts in Symbolic

Dynamics

A. Restivo and R. Vaglica Minimality conditions on automata 14/37

Page 27: A. Restivo and R. Vaglica

FA with a Limited Nondeterminism

DFAs with multiple initial states (multiple-entry DFAs)

A = (Q,Σ, δ)I,F ⊆ Q

A(I,F ) = (Q,Σ, δ, I,F )

I set of initial statesF set of final states

If | I |≤ k , A(I,F ) is called k -entry DFA.

1 2

3

a

aa, b

b

b

1 3

2

4 6

5

a

a

b a, b

aa

b

b

ba

b

1

A. Restivo and R. Vaglica Minimality conditions on automata 15/37

Page 28: A. Restivo and R. Vaglica

Different notions of minimality

For an arbitrary regular language L, we have:

1 minimal DFA2 minimal multiple-entry DFA3 minimal k -entry DFA

More relevant,- in general, minimal multiple-entry (resp. k -entry) DFAs are

not unique, and- the related minimization problems are computationally

hard.

A. Restivo and R. Vaglica Minimality conditions on automata 16/37

Page 29: A. Restivo and R. Vaglica

Different notions of minimality

For an arbitrary regular language L, we have:

1 minimal DFA2 minimal multiple-entry DFA3 minimal k -entry DFA

More relevant,- in general, minimal multiple-entry (resp. k -entry) DFAs are

not unique, and- the related minimization problems are computationally

hard.

A. Restivo and R. Vaglica Minimality conditions on automata 16/37

Page 30: A. Restivo and R. Vaglica

Example

1 2

3

a

aa, b

b

b

1 3

2

4 6

5

a

a

b a, b

aa

b

b

ba

b

1

Figure: A 2-entry DFA and the corresponding minimal DFA.

A. Restivo and R. Vaglica Minimality conditions on automata 17/37

Page 31: A. Restivo and R. Vaglica

Remark

DFAThe minimal DFA A recognizing aregular language L has a minimalnumber of final states.

Q

F

the Nerode equivalence ∼A is thelargest congruence saturating F

∀A′ : L(A′) = L → ∼A≤∼A′

k -entry DFAL← unary string language whoselength is not a multiple of 3

both 2-entry minimal for L

A. Restivo and R. Vaglica Minimality conditions on automata 18/37

Page 32: A. Restivo and R. Vaglica

Remark

DFAThe minimal DFA A recognizing aregular language L has a minimalnumber of final states.

Q

F

the Nerode equivalence ∼A is thelargest congruence saturating F

∀A′ : L(A′) = L → ∼A≤∼A′

k -entry DFAL← unary string language whoselength is not a multiple of 3

both 2-entry minimal for L

A. Restivo and R. Vaglica Minimality conditions on automata 18/37

Page 33: A. Restivo and R. Vaglica

Symbolic dynamics

Sofic shifts are recognized by finite automata where all states are both initialand final.A sofic shift is irreducible if it is recognized by a strongly connectedautomaton.

In general, the minimal automaton for an arbitrary sofic shift is not unique.However, it is unique (up to the labeling of the states) in the case of anirreducible sofic shift L.

This minimal automaton (called Fisher cover) can be obtained from a stronglyconnected deterministic automaton recognizing L, by merging theindistinguishable states.

A. Restivo and R. Vaglica Minimality conditions on automata 19/37

Page 34: A. Restivo and R. Vaglica

TheoremLet A = (Q,Σ, δ) a strongly connected DFA. The followingconditions are equivalent:

1 A({q},F ) is minimal for some q ∈ Q and for all F ⊆ Q, i.e. A isuniformly minimal.

2 A({q},F ) is minimal for all q ∈ Q and for all F ⊆ Q.

3 A({q},Q) is minimal for some q ∈ Q.

4 A({q},Q) is minimal for all q ∈ Q.

5 A(I,F ) is |I|-entry minimal for all I ⊆ Q and for all F ⊆ Q.

6 A(I,F ) is multiple-entry minimal for all I ⊆ Q and for all F ⊆ Q.

7 A(Q,Q) is the Fisher cover of some irreducible sofic shift.

8 A(Q,Q) is multiple-entry minimal.

A. Restivo and R. Vaglica Minimality conditions on automata 20/37

Page 35: A. Restivo and R. Vaglica

Scheme of the proof

1 A({q},F ) is minimal for some q ∈ Q and for all F ⊆ Q.

2 A({q},F ) is minimal for all q ∈ Q and for all F ⊆ Q.

3 A({q},Q) is minimal for some q ∈ Q.

4 A({q},Q) is minimal for all q ∈ Q.

5 A(I,F ) is |I|-entry minimal for all I ⊆ Q and for all F ⊆ Q.

6 A(I,F ) is multiple-entry minimal for all I ⊆ Q and for all F ⊆ Q.

7 A(Q,Q) is the Fisher cover of some irreducible sofic shift.

8 A(Q,Q) is multiple-entry minimal.

7 3 4

1 2

56

8

1

A. Restivo and R. Vaglica Minimality conditions on automata 21/37

Page 36: A. Restivo and R. Vaglica

consequenceUniformly minimal automata correspond to Fisher covers ofirreducible sofic shifts in Symbolic Dynamics.

There are infinitely many uniformly minimal automata.

A. Restivo and R. Vaglica Minimality conditions on automata 22/37

Page 37: A. Restivo and R. Vaglica

Almost uniformly minimal automata

A strongly connected DFA A = (Q,Σ, δ) is almost uniformlyminimal if, for all proper subsets F ⊂ Q, it is minimal.

A. Restivo and R. Vaglica Minimality conditions on automata 23/37

Page 38: A. Restivo and R. Vaglica

Almost uniformly minimal automata

TheoremFor any integer n ≥ 2 there exists a (complete) almostuniformly minimal DFA with n states.

δ(i , a) =

{i+1, if 1 ≤ i < n;1, if i = n.

δ(i , b) =

i, for i ∈ {1, n};i+1, if i = 2k for positive integers k ≤ n

2 − 1;i-1, if i = 1 + 2k for positive integers k ≤ n

2 − 1;n even

δ(i , b) =

i, for i ∈ {1, n};i, if i = 2k for integers k ∈ [ n+1

4 , n+34 ];

i+1, if i = 2k for positive integers k < n+14 ;

i-1, if i = 1 + 2k for positive integers k < n+14 ;

i+1, if i = n − 2k for positive integers k ≤ n−34 ;

i-1, if i = n + 1− 2k for positive integers k ≤ n−34 .

n odd

A. Restivo and R. Vaglica Minimality conditions on automata 24/37

Page 39: A. Restivo and R. Vaglica

Almost uniformly minimal automataExample

1

2 3

4

5

a

a,b

a

aa

b b

b

b

b

23

12 51

45

34

41

25 13

2435

Figure: The automatonM5 and its state-pair graph (strongly connected).

Remark

If G(A) is strongly connected then, for all proper subsets F ⊂ Q, it has atleast one vertex v such that γF (v) = B.

A. Restivo and R. Vaglica Minimality conditions on automata 25/37

Page 40: A. Restivo and R. Vaglica

Almost uniformly minimal automataOn the complexity of the decisional problem

Remark

Almost uniformly minimal automata do not correspond to strongly connectedDFAs which are minimal for all choices of the set of final states F withmaximal cardinality.

1 2

43

12 34

2413

1423

b

b

b

b

aaaa

Figure: minimal for all F with |F | = 3, but not almost uniformly minimal

A. Restivo and R. Vaglica Minimality conditions on automata 26/37

Page 41: A. Restivo and R. Vaglica

Almost uniformly minimal automataOn the complexity of the decisional problem

Remark

Almost uniformly minimal automata do not correspond to strongly connectedDFAs which are minimal for all choices of the set of final states F withmaximal cardinality.

11 22

43

12 34

2413

1423

2413

1423

b

b

b

b

aaaa

Figure: minimal for all F with |F | = 3, but not almost uniformly minimal

A. Restivo and R. Vaglica Minimality conditions on automata 26/37

Page 42: A. Restivo and R. Vaglica

Almost uniformly minimal automataOn the complexity of the decisional problem

Theorem

Let A = (Q,Σ, δ) be a strongly connected DFA which is notuniformly minimal. A is almost uniformly minimal if and only iffor any closed component S of G(A) and any pair of statesq,q′ ∈ Q there exists a sequence q1, ...,qt ∈ Q, with t ≥ 1,such that q = q1,qt = q′ and (qi ,qi+1) ∈ S, for 1 ≤ i < t .

consequencepolynomial algorithm to decide whether an automaton is almostuniformly minimal

A. Restivo and R. Vaglica Minimality conditions on automata 27/37

Page 43: A. Restivo and R. Vaglica

Almost uniformly minimal automataOn the complexity of the decisional problem

Theorem

Let A = (Q,Σ, δ) be a strongly connected DFA which is notuniformly minimal. A is almost uniformly minimal if and only iffor any closed component S of G(A) and any pair of statesq,q′ ∈ Q there exists a sequence q1, ...,qt ∈ Q, with t ≥ 1,such that q = q1,qt = q′ and (qi ,qi+1) ∈ S, for 1 ≤ i < t .

consequencepolynomial algorithm to decide whether an automaton is almostuniformly minimal

A. Restivo and R. Vaglica Minimality conditions on automata 27/37

Page 44: A. Restivo and R. Vaglica

Almost uniformly minimal automataExample

1

2 3

4

5A

b

a,b

b

bb

a

a

a

a

1

34

45 15

12

23

25

13 24

35

14

G(A)

1

1

A. Restivo and R. Vaglica Minimality conditions on automata 28/37

Page 45: A. Restivo and R. Vaglica

Almost uniformly minimal automataExample

1

2 3

4

5A

b

a,b

b

bb

a

a

a

a

1

34

45 15

12

23

25

13 24

35

14

G(A)

1

1

A. Restivo and R. Vaglica Minimality conditions on automata 28/37

Page 46: A. Restivo and R. Vaglica

Almost uniformly minimal automataExample

1

2 3

4

5A

b

a,b

b

bb

a

a

a

a

1

34

45 15

12

23

25

13 24

35

14

G(A)

1

1

14

1

4

A. Restivo and R. Vaglica Minimality conditions on automata 28/37

Page 47: A. Restivo and R. Vaglica

Almost uniformly minimal automataExample

1

2 3

4

5A

b

a,b

b

bb

a

a

a

a

1

34

45 15

12

23

25

13 24

35

14

G(A)

1

1

14

1

4

35

3

5

A. Restivo and R. Vaglica Minimality conditions on automata 28/37

Page 48: A. Restivo and R. Vaglica

Almost uniformly minimal automataExample

1

2 3

4

5A

b

a,b

b

bb

a

a

a

a

1

34

45 15

12

23

25

13 24

35

14

G(A)

1

1

14

1

4

35

3

5

24

2

A. Restivo and R. Vaglica Minimality conditions on automata 28/37

Page 49: A. Restivo and R. Vaglica

Almost uniformly minimal automataExample

1

2 3

4

5A

b

a,b

b

bb

a

a

a

a

1

34

45 15

12

23

25

13 24

35

14

G(A)

1

1

14

1

4

35

3

5

24

2

13

A. Restivo and R. Vaglica Minimality conditions on automata 28/37

Page 50: A. Restivo and R. Vaglica

Almost uniformly minimal automataExample

1

2 3

4

5A

b

a,b

b

bb

a

a

a

a

1

34

45 15

12

23

25

13 24

35

14

G(A)

1

1

14

1

4

35

3

5

24

2

13

25

A. Restivo and R. Vaglica Minimality conditions on automata 28/37

Page 51: A. Restivo and R. Vaglica

Never-minimal automata

QuestionDo there exist strongly connected automata which aren’tminimal for any choice of their final states?

We call never-minimal a DFA which isn’t minimal for any choiceof their final states.

TheoremFor any integer n ≥ 4 there exists a never-minimal stronglyconnected DFA with n states.

A. Restivo and R. Vaglica Minimality conditions on automata 29/37

Page 52: A. Restivo and R. Vaglica

Never-minimal automata

QuestionDo there exist strongly connected automata which aren’tminimal for any choice of their final states?

We call never-minimal a DFA which isn’t minimal for any choiceof their final states.

TheoremFor any integer n ≥ 4 there exists a never-minimal stronglyconnected DFA with n states.

A. Restivo and R. Vaglica Minimality conditions on automata 29/37

Page 53: A. Restivo and R. Vaglica

Never-minimal automata

QuestionDo there exist strongly connected automata which aren’tminimal for any choice of their final states?

We call never-minimal a DFA which isn’t minimal for any choiceof their final states.

TheoremFor any integer n ≥ 4 there exists a never-minimal stronglyconnected DFA with n states.

A. Restivo and R. Vaglica Minimality conditions on automata 29/37

Page 54: A. Restivo and R. Vaglica

Proof:Q = {1, 2, ..., n}, Σ = {a, b}

δ(i , a) =

{1, if i ≤ 3i-1, if 4 ≤ i ≤ n δ(i , b) =

4, if i ≤ 3i+1, if 3 < i ≤ n − 12, if i = n

12 23 13 have no outgoing edge

1 ∈ F ⇒ 2 /∈ F ⇒ 3 ∈ F ⇒ γF (1, 3) = W .

1 2

43 5 6

b

a

a

b

a a

b b

b

a

a

b

A. Restivo and R. Vaglica Minimality conditions on automata 30/37

Page 55: A. Restivo and R. Vaglica

Proof:Q = {1, 2, ..., n}, Σ = {a, b}

δ(i , a) =

{1, if i ≤ 3i-1, if 4 ≤ i ≤ n δ(i , b) =

4, if i ≤ 3i+1, if 3 < i ≤ n − 12, if i = n

12 23 13 have no outgoing edge

1 ∈ F ⇒ 2 /∈ F ⇒ 3 ∈ F ⇒ γF (1, 3) = W .

1 2

43 5 6

b

a

a

b

a a

b b

b

a

a

b

A. Restivo and R. Vaglica Minimality conditions on automata 30/37

Page 56: A. Restivo and R. Vaglica

Proof:Q = {1, 2, ..., n}, Σ = {a, b}

δ(i , a) =

{1, if i ≤ 3i-1, if 4 ≤ i ≤ n δ(i , b) =

4, if i ≤ 3i+1, if 3 < i ≤ n − 12, if i = n

12 23 13 have no outgoing edge

1 ∈ F ⇒ 2 /∈ F ⇒ 3 ∈ F ⇒ γF (1, 3) = W .

1 2

43 5 6

b

a

a

b

a a

b b

b

a

a

b

A. Restivo and R. Vaglica Minimality conditions on automata 30/37

Page 57: A. Restivo and R. Vaglica

Proof:Q = {1, 2, ..., n}, Σ = {a, b}

δ(i , a) =

{1, if i ≤ 3i-1, if 4 ≤ i ≤ n δ(i , b) =

4, if i ≤ 3i+1, if 3 < i ≤ n − 12, if i = n

12 23 13 have no outgoing edge

1 ∈ F ⇒ 2 /∈ F ⇒ 3 ∈ F ⇒ γF (1, 3) = W .

1 2

43 5 6

b

a

a

b

a a

b b

b

a

a

b

A. Restivo and R. Vaglica Minimality conditions on automata 30/37

Page 58: A. Restivo and R. Vaglica

Never-minimal automataA sufficient condition

Let A = (Q,Σ, δ) a DFA and a ∈ Σ:

δa : Q → Q

q 7→ δ(q,a)

DefinitionWe say that a DFA A = (Q,Σ, δ) satisfies condition Ch if thereis Qh ⊆ Q, with | Qh |= h, such that, for all a ∈ Σ, the restrictionof δa to Qh is a constant or an identity function.

TheoremLet A = (Q,Σ, δ) a DFA. If A satisfies C3 then it isnever-minimal.

A. Restivo and R. Vaglica Minimality conditions on automata 31/37

Page 59: A. Restivo and R. Vaglica

Never-minimal automataC3 is not a necessary condition

1 2

5

34

13 24

23 14

34 12

a

bb

b

a

a

a

a

b

b

1

Figure: A never-minimal automaton A that doesn’t satisfy condition C3 andthe closed components of G(A).

polynomial time algorithm for never-minimal DFA?

A. Restivo and R. Vaglica Minimality conditions on automata 32/37

Page 60: A. Restivo and R. Vaglica

Never-minimal automataC3 is not a necessary condition

1 2

5

34

13 24

23 14

34 12

a

bb

b

a

a

a

a

b

b

1

Figure: A never-minimal automaton A that doesn’t satisfy condition C3 andthe closed components of G(A).

polynomial time algorithm for never-minimal DFA?

A. Restivo and R. Vaglica Minimality conditions on automata 32/37

Page 61: A. Restivo and R. Vaglica

Never-minimal automataRelationships to the “syntactic monoid problem”

If M is a finite monoid and P a subset of M, there is a largest congruence σP

saturating P defined by:

xσPy ⇔ ∀s, t ∈ M (sxt ∈ P ⇔ syt ∈ P).

The set P is called disjunctive if σP is the equality in M.A monoid M is syntactic if it has a disjunctive subset.

Syntactic monoid problem

Instance: A finite monoid MQuestion: is M syntactic?

P. Goralcik, V. Koubek (98)

• Polynomial-time algorithm (O(|M|3)) for the syntactic monoid problemfor a large class of finite monoids.

• A slide generalization of syntactic monoid problem makes itNP-complete.

◦ Is there any chance to have a polynomial-time algorithm for the“syntactic monoid problem” ?

A. Restivo and R. Vaglica Minimality conditions on automata 33/37

Page 62: A. Restivo and R. Vaglica

Never-minimal automataRelationships to the “syntactic monoid problem”

Let M be the transition monoid of a DFA A.

M not syntactic A never-minimal

A. Restivo and R. Vaglica Minimality conditions on automata 34/37

Page 63: A. Restivo and R. Vaglica

Never-minimal automataRelationships to the “syntactic monoid problem”

Let M be the transition monoid of a DFA A.

M not syntactic A never-minimal

A. Restivo and R. Vaglica Minimality conditions on automata 34/37

Page 64: A. Restivo and R. Vaglica

Complete characterization for the automata over aunary alphabet

Strongly connected DFAs are cyclic.

Uniformly minimal automata

There do not exist nontrivial uniformly minimal automata.

Never-minimal automata

All vertices of the associated state-pair graphs are covered by disjoint cycles.Moreover, for each q ∈ Q there is at least one vertex in any cyclic componentof G(A) that contains q. It follows that A is minimal for every choice of the setof final states F with |F | = 1.⇒ There do not exist never-minimal automata.

A. Restivo and R. Vaglica Minimality conditions on automata 35/37

Page 65: A. Restivo and R. Vaglica

Complete characterization for the automata over aunary alphabet

Strongly connected DFAs are cyclic.

Uniformly minimal automata

There do not exist nontrivial uniformly minimal automata.

Never-minimal automata

All vertices of the associated state-pair graphs are covered by disjoint cycles.Moreover, for each q ∈ Q there is at least one vertex in any cyclic componentof G(A) that contains q. It follows that A is minimal for every choice of the setof final states F with |F | = 1.⇒ There do not exist never-minimal automata.

A. Restivo and R. Vaglica Minimality conditions on automata 35/37

Page 66: A. Restivo and R. Vaglica

Complete characterization for the automata over aunary alphabet

Strongly connected DFAs are cyclic.

Uniformly minimal automata

There do not exist nontrivial uniformly minimal automata.

Never-minimal automata

All vertices of the associated state-pair graphs are covered by disjoint cycles.Moreover, for each q ∈ Q there is at least one vertex in any cyclic componentof G(A) that contains q. It follows that A is minimal for every choice of the setof final states F with |F | = 1.⇒ There do not exist never-minimal automata.

A. Restivo and R. Vaglica Minimality conditions on automata 35/37

Page 67: A. Restivo and R. Vaglica

Complete characterization for the automata over aunary alphabet

Almost uniformly minimal automata

TheoremLet A = (Q, {σ}, δ) be a cyclic DFA with | Q |= n. A is almostuniformly minimal if and only if n is a prime number.

Proof:(⇐) n = hk , F = {q1, ..., qh}

δ∗(qi , σk ) =

{qi+1, if i ∈ {1, ..., h − 1};q1, if i = h.

If i ∈ F ⇒ L(A) = {w | |w | = k · c, c ≥ 0} ⇒ A(i ,F ) isn’t minimal.

(⇒) n prime, |F | = m < n. L(A(i ,F )), ∀i , is given by all words over {σ}whose length belongs to the union of exactly m equivalence classesmodulo n. Since n is prime, this set of integer numbers cannot be equalto the union of classes modulo different integers. Therefore A(i ,F ) isminimal.

A. Restivo and R. Vaglica Minimality conditions on automata 36/37

Page 68: A. Restivo and R. Vaglica

Thank you for your attention!

A. Restivo and R. Vaglica Minimality conditions on automata 37/37


Recommended