+ All Categories
Home > Documents > AC Circuits [Compatibility Mode]

AC Circuits [Compatibility Mode]

Date post: 06-Apr-2018
Category:
Upload: qasim-al-mansoor
View: 218 times
Download: 0 times
Share this document with a friend
56
8/3/2019 AC Circuits [Compatibility Mode] http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 1/56 AC Circuits Electrical power is generated, transmitted and distributed in the form of alternating current (AC). Contents Sinusoidal AC waveform parameters Peak, rms, period, frequency, phase Phasors Complex numbers, impedance, leading/lagging. Stead state AC circuit anal sis. Power in AC circuits.
Transcript
Page 1: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 1/56

AC Circuits

Electrical power is generated, transmitted and

distributed in the form of alternating current (AC).Contents

• Sinusoidal AC waveform parameters

– Peak, rms, period, frequency, phase

• Phasors

– Complex numbers, impedance, leading/lagging.

• Stead state AC circuit anal sis.• Power in AC circuits.

Page 2: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 2/56

Page 3: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 3/56

 It is the equivalent DCi I 

 

generates the same mean

amount of power loss P inv V  R

R

a resistor. AC circuit  Equiv. DC circuit 

circuitDCinPower

But v=iRV v

T  221==

V  R I VI 

22P === thatshowcanYou

coset  pv −= π 

Instantaneous power

in AC circuit R RT 

0isvoltagermsthe

 pV 

T T 

circuitACinpowerMean=

dt vV  21

 2

currentrmsSimilarily

∫ ∫  == vidt T  pdt T 00

PT 

0

2 p I =

Page 4: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 4/56

Analysis of an RL circuit R L

i

(1) cos2cosLet t V t V v  p ω ω  ==

v

0

 

di LiRv =++−

or t  ss iii +=let

(2) viRdt 

 L =+ We are normally interested in the

steady state solution i ss only.qua on s a rs or er

ordinary differential equation illsolution wstatesteadyThe

 

substitution.(3) )cos(2)cos( φ ω φ ω  +=+= t  I t  I i  p ss

Page 5: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 5/56

Analysis of  RL circuit continued

Substitute (1) and (3) in (2)

 =−

The objective is to find I and φ.

BUT this is not easy!

iswork)of lota(afteranswerThe

+

− L

 L R

ω 

ω  22 )( 

Phasors.

 ⎠⎝ 

−= R

an

Page 6: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 6/56

Phasors

φ t 

functionComplex functionReal

⇔ re )sin(ω  +t r 

ACsinusoidalhere rsent ttoPhasorUse  jφ re

analysishesimplify ttocurrentsandvoltages

Page 7: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 7/56

Page 8: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 8/56

 com lex numbers

 y

Imaginary axisCartesian form

 x+ 1

 x,formPolar

r  x

 y x

θ  r 

3 22 xr  +=Real axis

(4) tan

1

 x

 y−

=θ 

(5) cosθ r  x =(6)and(5)(2),(1),From

 s nr  y =θ θ θ  sin jcos1 +=∠

Page 9: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 9/56

Euler’s identity

?1isWhat θ ∠ω  =+=

Recos2

can writenowWe

t i i

θ θ θ  sin jcos1

thatknowWe

+=∠{ }φ ω = +Re2  )t j(e I 

seriesTaylorusecanWe { }φ ω  ∠×∠=

=

11Re2  t  I 

thatproveto

 

exponential function instead of 

sin and cos function!θ θ  sin jcos1 +==∠ eθ 

v

Note the use the bold symbols to

represent complex function 

Euler’s identityi.e. i

ss

is the complex function

equivalent of i ss.

Page 10: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 10/56

 Circuit

 R Li

t V v ω cos2=

 

equationaldifferentiorderfirsta

yescr esc rcue

 

:functionsRealusing

viRdi

 L =+dt 

Page 11: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 11/56

 continued

 RL

i

t Ve ω  j2=v

 

equationaldifferentiorderfirsta

yescr esc rcue

 

:functionsComplexusing

vii

=+d 

 Ldt 

Page 12: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 12/56

 differential e uation

(4) ) j(  j0 j Ve R L Ie =+ω φ 

(1)2 ) j(  Ve Rdt 

 L ωt  φ +==+ vi I  φ andunknowsThe

(3) 2Let ) j( φ ω += t  Iess

tss

i Ve Ie φ 

 

0 j j =

t t 

 Ied  ω φ ω 

φ ω 

 j)( j

)( j

)2(

(1)into(3)Substitute

=+

+

ω 

Which is easier thandt 

t t t  Ve RIe LIe φ φ ω   j) j() j( j =+ ++

using the real functions

sin and cos.

t t t 

Vee RIee LIe

φ ω φ 

ω 

 j j j j j

 j =+

Page 13: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 13/56

’Phasors

:slidepreviousfromRecall Z is known as impedance.

(4) ) j(  j0 j Ve R L Ie =+ω φ  The complex variables V,

I are called pahsors.

L j ,Let

0 j j

ω 

φ 

+===

 RVe Ie

Z

VI Phasors are not functions of time!Im

aswritten

thenbecan(4)Equation  I Stationary

arrow I 

Im ω 

(5) ZIV = Re

Phasor IRe

φ+  jω t  arrow

 

generalized Ohm’s Law. φ 

φ 

∠== 1

 j

 IeI

timeof functionComplex) j( ω φ ω  +∠== + t  Ie t 

I

Page 14: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 14/56

 1. Draw the hasor e uivalent circuit

i- replace v and i with their

equivalent phasors.v ω cos=- replace and L with their

equivalent impedances.

ea c rcu t. na yse e a res st ve c rcu t

but using complex numbers. R

 jω  Lφ ∠=I+=∠=

 L R ω φ 

 jI

0∠=V V⎟ ⎠

⎜⎝ 

⎟ ⎠

⎜⎝ 

−∠+

= −

 R L R ω 

1

22tan

)( 

⎟ ⎠⎜⎝ −=+=−

 R L R I 

ω 

φ ω 

1

22 tan,)(

Page 15: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 15/56

Impedance of  R

Time domain Phasor Domain

i

 R

t j2Re 

)cos(2

ω 

φ ω 

e

t  I i

I=

+=I

z Rφ ∠== IeI

φ  ==  j

v

)cos(2 φ ω  +== t  IRiRv  R R ==V

z

)cos(2  ω  += t V 

 j t jφ  ω 

{ }t j2Re  ω eV=

Page 16: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 16/56

 hase relationshi

v V

m

it  Re

v and i are in phase

Page 17: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 17/56

 Time domain Phasor Domain

)cos(2 φ ω t  I i += φ 

φ 

∠== I  Ie

 jI L z L

{ }t j

 j j

2Re 

2Re 

ω 

φ 

e

e Ie t 

I=

=

 ⎞⎛ ==⎟ ⎠ ⎞

⎜⎝ ⎛  +

2 j π 

π φ 

v V

+−== )sin(2 φ ω ω  t  LI di

 Lv ⎠⎝  2

== 2 j

ω π 

 Le L

Vz

 ⎞

⎛ 

++= cos2 

π 

φ ω ω  t  LI  ⎟

 ⎞

⎛  +=2

sin j2

cos π π 

ω  L

==

 X  L is

calledt j2Re ev V= L L X  L  j j === ω V

z

reactance

Page 18: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 18/56

 hase relationshi

v 2

π 

V

m

i t  Re

i lags v

Page 19: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 19/56

 Time domain Phasor Domain

)cos(2 φ ω t  I i += φ 

φ 

∠== I  Ie

 jI

C  zC 

{ }t j

 j j

2Re 

2Re 

ω 

φ 

e

e Ie t 

I=

= ⎞⎛  −∠==

⎟ ⎠ ⎞

⎜⎝ ⎛  − 11 2

 j π π 

φ 

 I  IeV

v V

= dt dvC i 2ω ω  == 1 2

 j

ω 

π 

eC 

-

 LI

Vz

=-1=( )+== ∫  sin

21φ ω 

ω t 

C idt 

C v

⎟ ⎞

⎜⎛ 

⎟ ⎞

⎜⎛ −+⎟

 ⎞⎜⎛ =

2sin j

2cos

π π 

ω C ⎟⎜

⎝ −+=

2cos

π φ ω 

ω t 

C C  X  j1 j

−==−

==V

z

2Re ev V=

Page 20: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 20/56

 hase relationshi

v 2

π VI

m

t Re

i leads v

Page 21: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 21/56

,=

I

VV and I are in hase

Inductance z L= jω  L  jω  L

I lags V V

Capacitance 11=

z

II leads V

Page 22: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 22/56

Capacitive loads

• Their equivalentExample

mpe ance as a negat ve

imaginary part of the form2Ω  j1ΩI

- , w ere >• They can be made of a

- j6ΩV

combination of  R, L and

C !

Equivalent impedance

= - = -• Current leads the voltage.

V10Let =V

)2.68(86.1 j52

0

+∠=−== ZI

Page 23: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 23/56

Inductive loads

• Their equivalentExample

mpe ance as a pos t ve

imaginary part of the form1Ω  j5ΩI

+ , w ere >• They can be made of a

- j2ΩV

combination of  R, L and

C !

Equivalent impedance

Z=1+j5-j2=1+j3• Current lags the voltage.

V10Let =V

)6.71(16.3 j31

0

−∠=+== ZI

Page 24: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 24/56

Complex number arithmetic

• Before we can analyse AC circuits usingphasors we need to review complex number

arithmetic.

– Conversion from polar to Cartesian forms and.

– Addition, subtraction, multiplication and

.

Page 25: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 25/56

 from Cartesian to Polar forms 

 y

Imaginary axisθ  j

 x,PolartoCartesian

r  x

 y x

θ  22  y xr  +=

Real axis tan 1

 x

 y−=θ 

Complex number z cos

 

θ r  x =

 s nr  y =

Page 26: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 26/56

Complex Number Summation

Let ⎟ ⎞⎜⎛  ⎟ ⎞⎜⎛ ∠+= − 1122 tan y xz

22

 j

222

11111

2

1

 j

 j

θ 

θ 

θ  ∠==+=

∠==+=

r er  y x

r er  y x

2

1

z

z

 ⎞⎛  ⎞⎛ 

⎝ 

− 2122

1

 y

 x

Summation⎝  ⎠⎝  2

22

 x2

)( j)( 

) j() j(

2121

2211

 y y x x

 y x y x

+++=

+++=+21

zz

formPolar

⎟⎟ ⎠⎜

⎜⎝ 

⎟ ⎠

⎜⎝  +

∠+++=+ −

21

2112

21

2

21

tan)()( x x

 y y x x21

zz

Page 27: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 27/56

Complex Number Subtraction

Let

⎟ ⎞⎜⎛  ⎟ ⎞⎜⎛ ∠+= − 1122 tan y xz

22

 j

222

11111

2

1

 j

 j

θ 

θ 

θ  ∠==+=

∠==+=

r er  y x

r er  y x

2

1

z

z

 ⎞⎛  ⎞⎛ 

⎝ 

− 2122

1

 y

 x

nSubtractio⎝  ⎠⎝  2

22

 x2

)( j)( 

) j() j(

2121

2211

 y y x x

 y x y x

−+−=

+−+=−21

zz

formPolar

⎟⎟

⎜⎜⎝ 

⎟ ⎠

⎜⎝  −

−∠−+−=− −

21

2112

21

2

21

tan)()( x x

 y y x x21

zz

Page 28: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 28/56

Complex Number Multiplication

Let

⎟ ⎞⎜⎛  ⎟ ⎞⎜⎛ ∠+= − 1122 tan y xz

22

 j

222

11111

2

1

 j

 j

θ 

θ 

θ  ∠==+=

∠==+=

r er  y x

r er  y x

2

1

z

z

 ⎞⎛  ⎞⎛ 

⎝ 

− 2122

1

 y

 x

tionMultiplica⎝  ⎠⎝  2

22

 x2

)( j)( 

) j() j(

12212121

2211

 x y x y y y x x

 y x y x

++−=

+×+=×21

zz

formPolar

θ θ 

)(  2121

)( j

21

221121

21 θ θ θ θ  +∠==

×=×=×+ r r er r 

r r er er 21

zz

Page 29: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 29/56

Complex Number Division

11  j

ormartes an

 y x +=1

z

22

rdenominatotheof conjugateby theMultiply

 j y x +2

z

2

2

2

2

12212

2

2

2

2121

22

22

22

11  j j j

 j j

 y x x y x y

 y x y y x x

 y x y x

 y x y x

+−+++=−−×++=2

1

z

z

formPolar

 j 1θ 

22

 j

22 θ 

θ  ∠==

r er 2

z

)(  21

2

1

2

1 21 θ θ  −∠== −

e

Page 30: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 30/56

Example – AC Circuit Analysis

10Ω 1mH 3mH

( )t v 502cos141 π = 2μF 5Ω

Page 31: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 31/56

–Phasor dia rams

Find V

( ) A302 −∠

?

Source

V

2Ω  j1.5ΩloadInductive

Page 32: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 32/56

Summary

• Most electric power is AC, which is cheaper and.

• The transformer is a device that increases or.

• Stepping-up AC voltage steps-down the AC

losses.

 cos functions. Phasors offer an easier alternative.

Page 33: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 33/56

Power in AC Circuits

• Instantaneous power in R, L and C.• Active and Reactive power.

.

• Power factor correction.

Page 34: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 34/56

Power in a urel resistive load

t V v ω cos2

Let

= v R

0 t 

ii

vt V v

i == ω cos2

 IRV 

t  I 

=

= ω cos2 

0 t 

 p

t VI iv ω 2cos2powerousInstantane

==)2cos1( t VI  p ω +=

oweractiveorAvera e P is called active power measured in1

P0

 pdt T 

= ∫ Watts [W] because it corresponds to

heat/mechanical energy output from a

[W] 2

2

 R I V VI  ===

motor or ue use y a generator.

Page 35: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 35/56

 

 Lt V v = ω cos2

Letv

φ 

ivt 

 L

V vdt 

 Li ==

∫ ω 

ω sin

21 i

0 t 

 I V 

t  I 

==

=

ω 

ω sin2   p

t PowerousInstantaneElectrical reactive ower measured in

t VI  ω 2sin  =

==  

[VAR] used to magnetise the inductor is

recovered when it is demagnetised. On

t  L ω 2sin 

2

=

=

orAverage powerReactive

average no energy is lost.

 X 

 L

 L

ω 2sinQ = 0Ppoweractive

=[VAR] Q

2

2

 L

 L L X 

V  X  I  ==

Page 36: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 36/56

Page 37: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 37/56

Average or Active Power P in an

Page 38: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 38/56

Average or Active Power P in an

n uc ve oa2P =

+

∠=−∠=

 L

V  I 

ω 

φ 

 j

0I

 R

 jω  L−∠=I

⎟ ⎞

⎜⎛ 

⎟ ⎞

⎜⎛ −∠

+= − LV  ω 

ω 

1

22tan  0∠=V V

⎟ ⎞⎜⎛ == − LV  I  ω φ  1

22tan, Phasor circuit

P IV = ω  L

( )2  L R ω +

 Lω + R

φ 

[W] cosP φ VI =

( )22cos  L R ω φ  +=

R i Q i i d i

Page 39: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 39/56

Reactive power Q in an inductive

load22

=−∠=

 I  φ 

0

I

 L ==

 jω  L−∠=I

⎟ ⎞

⎜⎛ 

⎟ ⎞

⎜⎛ −∠= − LV  ω 1tan  0∠=V V

 ⎞⎛ ==

+

− LV  ω 

ω 

1tan,Phasor circuit

+ Lω  )(

 Lω  ω  L

( )2  L R ω +

( )22  L R ω += R

φ 

[VAR] sinQ φ VI = ( )22sin  L R

 L

ω 

ω φ  +=

Active and Reactive Power in a

Page 40: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 40/56

Active and Reactive Power in a

capacitive load

 R C ω  jCan show:

φ ∠=Ipower(average)Active

2 == =

Phasor circuit

 

powerReactive

Q2

2

ω C 

 I  X  I  C  −=−=

[VAR] sin  φ VI −=

 

Page 41: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 41/56

 Trian le

[VA]  jQP

aspowercomplexDefine

+=S

RecallQ

S

ee o

remember that

[VAR] sinQ

[W] cosP

φ 

φ 

VI 

V  I 

=

=P

 

for a capacitiveload

22

PS

powerApparant

+=== VI S

Power triangle

anglefactorPowerfactorPower

Ptan 1-=φ 

φ cosSPF ==

A P d P F

Page 42: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 42/56

A arent Power and Power Factor

PowerActive powerApparant factorPower

[W] cosP φ VI = [VA] S VI =φ cos

S

PPF ==

PPF=cosφ PF angle φ Element

(Unity)

es s ance

 R

cos<

(lagging)

n uct ve oa

 R+ j X 0

2≤≤− φ 

π 

VI cosφ <1

(leading)

Capacitive load

 R- j X  20

π φ ≤≤

Power factors near 1 are good.Small power factors are poor.

Page 43: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 43/56

Page 44: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 44/56

–factor: ca acitive load case. 

Find V

I

?

Source

V

0.2Ω  j1ΩV010

loadCapacitive

50 W

PF=0.866

ea ng

Page 45: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 45/56

–factor: inductive load case. 

Find V

I

?

Source

V

0.2Ω  j1ΩV010

loadInductive

∠50 W

PF=0.866

agg ng

Example summary: Effect of type

Page 46: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 46/56

Example summary: Effect of type

of load on transmission lossesan an vo tage regu at on

 load 

  factor 

 line loss

W

 Voltage V

V

 regulation

100xΔV/V 

%Resistive 1 5W 21%o4.241.12 ∠

o.lagging

. ..

o.

leading

. -.

Page 47: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 47/56

Effect of Power Factor Summary

• “Poor” power factor increases transmissionne osses.

• Extra line losses are caused by flow of 

reactive power.•

higher generator voltage

 lower generator voltage.

Page 48: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 48/56

Generator voltage control

 flux φ / 2

co

N

dt 

dN  E 

φ 

−= ω  i

Can control generator S

 i to control the flux φ.

Increasing i increase

field losses.

Page 49: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 49/56

  roblem?

• Utility charges for active power P, and customer

pay per , ecause s proport ona to ue

used to generate the electricity.

• But poor power factor increases transmissionlosses and field losses.

• Customers with poor power factors (less that 0.85)

have to a a enalt or correct the ower factor.

Page 50: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 50/56

Page 51: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 51/56

Loads and generatorsi

i

vv

load Generator

powerabsorbsloadA powersuppliesgeneratorA

positiveispower

0>= vi p

negativeispower

<= vi p

Page 52: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 52/56

 Reactive Power

ii

VI 

 X  sin

sgeneratescapac tor

22

−=−=−=V 

VARsabsorbsinductorAn

2

2C 

1= L

 X  L L L

ω =C ω 

Page 53: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 53/56

 Ca acitor and Inductor i

iC 

i LWhen the inductor power p L

is positive, the capacitorpower pC is negative, i.e. the

capacitor provides part of thev

iC 

magnet s ng current o t e

inductor.

 pC 

i L

e power rom t e supp y s

less than the power consumed

 p L.

In fact when the currents

= p

C L

the supply p=0.

Page 54: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 54/56

Power factor correction example

An inductive load with a power factor of 0.5 draws 80 kVA at

400 V 50 Hz. Determine the ower and reactive ower and draw the power triangle. If a power factor correction capacitor

of 1mF is connected across the load, determined the new

power factor.

Page 55: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 55/56

Summary

• Instantaneous AC power varies sinusoidally atou e t e requency.

• The average power in a resistance P=VI=I 2 R.

• The average power in a capacitance of inductanceis zero.

• An inductors absorbs reactive power Q= I 2ω  L.

• A Capacitor generates reactive power Q=-I 2(ω C )-1

• Average power in a load is in general given byP=VI cosφ [Watt].

Page 56: AC Circuits [Compatibility Mode]

8/3/2019 AC Circuits [Compatibility Mode]

http://slidepdf.com/reader/full/ac-circuits-compatibility-mode 56/56

Summary continued• Reactive power in a load is in general given by

Q=VI sinφ [VAR].• Q is positive for an inductor and negative for a

capacitor.

• Apparent power S=VI , complex powerS

=P+jQ.• Poor ower factor cos increases transmission

losses and voltage regulation.

• Power factor can be corrected b connectin acapacitor across a load to generate VARs locally.


Recommended