+ All Categories
Home > Documents > Addmath Chapter 3

Addmath Chapter 3

Date post: 14-Apr-2018
Category:
Upload: ker-her
View: 251 times
Download: 0 times
Share this document with a friend

of 16

Transcript
  • 7/30/2019 Addmath Chapter 3

    1/16

    1

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    1. (b), (c), (d), (e) and (h)

    2. f(x) = 4x2 8x + 6

    Whenx = 2,

    f(2) = 4(2)2 8(2) + 6

    = 16 + 16 + 6

    = 38

    3. f(x) = x2 3x + 2

    Whenf(x) = 0,

    x2 3x + 2 = 0

    (x 1)(x 2) = 0

    x 1 = 0 or x 2 = 0

    x = 1 or x = 2

    4. f(x) = 3x2 + 5x 1

    Whenf(x) = 1,

    3x2 + 5x 1 = 1

    3x2 + 5x 1 1 = 0

    3x2 5x + 2 = 0(3x 2)(x 1) = 0

    3x 2 = 0 or x 1 = 0

    x =23

    or x = 1

    5. (a) (b)

    (c) (d)

    (e) (f)

    6. (a) Two different real roots

    (b) One real root or two similar real roots

    (c) No real roots

    7. (a) The minimum value is 3.

    (b) The maximum value is 4.

    (c) The minimum value is 10.

    (d) f(x) = 23 12 (x 3)2 +

    14 4

    = (x 3)2 +12

    Therefore, the minimum value is12

    .

    (e) f(x) =13

    [6 (x + 1)2] + 5

    = 2 13

    (x + 1)2 + 5

    = 13

    (x + 1)2 + 7

    Therefore, the maximum value is 7.

    (f) The minimum value is 3.

    8. (a) f(x) =x2 4x + 2

    =x2 4x + 1 42 22

    1 42 22

    + 2

    = (x 2)2 4 + 2

    = (x 2)2 2

    Hence, the minimum value is 2.

    (b) f(x) = 2x2 + 6x 5

    = 2(x2 + 3x) 5

    = 23x2 + 3x + 1 32 22

    1 32 22

    4 5

    = 231x + 32 22

    94 4 5

    = 21x + 32 22

    92

    5

    = 21x + 32 22

    19

    2

    Hence, the minimum value is 19

    2

    .

    (c) f(x) = x2 + 5x

    =x2 + 5x + 1 52 22

    1 52 22

    = 1x + 52 22

    25

    4

    Hence, the minimum value is 25

    4

    .

    3 Quadratic Functions

  • 7/30/2019 Addmath Chapter 3

    2/16

    2

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    (d) f(x) = 6x x2

    = (x2 6x)

    = 3x2 6x + 1 62 22

    1 62 22

    4= [(x 3)2 9]

    = (x 3)2 + 9

    Hence, the maximum value is 9.

    (e) f(x) = 3 4x x2

    = x2 4x + 3

    = (x2 + 4x) + 3

    = 3x2 + 4x + 1 42 22

    1 42 22

    4 + 3= [(x + 2)2 4] + 3

    = (x + 2)2 + 4 + 3

    = (x + 2)2 + 7

    Hence, the maximum value is 7.

    (f) f(x) = 4x 2x2

    = 2x2 + 4x

    = 2(x2

    2x)= 23x2 2x + 1 22 2

    2

    1 22 22

    4= 2[(x 1)2 1]

    = 2(x 1)2 + 2

    Hence, the maximum value is 2.

    (g) f(x) = 10 + 5x 3x2

    = 3x2 + 5x + 10

    = 31x2 53x2 + 10

    = 33x2 53x + 156 2

    2

    1 56 22

    4 + 10

    = 331x 56 22

    25

    36 4 + 10

    = 31x 56 22

    +25

    12

    + 10

    = 31x 56 22

    +145

    12

    Hence, the maximum value is145

    12

    .

    (h) f(x) = (2x 1)(x + 3)

    = 2x2 + 5x 3

    = 21x2

    +

    5

    2x2 3= 23x2 + 52x + 1

    54 2

    2

    1 54 22

    4 3

    = 231x + 54 22

    25

    16 4 3

    = 21x + 54 22

    25

    8

    3

    = 21x + 54 22

    49

    8

    Hence, the minimum value is 49

    8

    .

    (i) f(x) = (1 4x)(x + 2)

    =x + 2 4x2 8x

    = 4x2 7x + 2

    = 41x2 + 74x2 + 2

    = 43x2 + 74x + 178 2

    2

    1 78 22

    4 + 2

    = 431x + 78 22

    49

    64 4 + 2

    = 41x + 78 22

    +49

    16

    + 2

    = 41x + 78 22

    +81

    16

    Hence, the maximum value is81

    16

    .

    9. (a) f(x) = x2 4

    Therefore, the minimum point is (0, 4).

    x 2 2 4f(x) 0 0 12

    f(x)

    x

    42 2 4

    12

    0

    (b) f(x) = 3x2 + 5

    Therefore, the minimum point is (0, 5).

    x 1 3

    f(x) 8 32

    f(x)

    x

    1 3

    5

    8

    32

    0

    (c) f(x) = 8 x2

    Therefore, the maximum point is (0, 8).

    x 3 AB8 3

    f(x) 1 0 1

    f(x)

    x

    1

    8

    3 3 8 8

    0

  • 7/30/2019 Addmath Chapter 3

    3/16

    3

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    (d) f(x) = 10 2x2

    Therefore, the maximum point is (0, 10).

    x 3 AB5 4

    f(x) 8 0 22

    f(x)

    x

    8

    10

    3 4 5 50

    22

    (e) f(x) = x(x + 2)

    =x2 + 2x

    =x2 + 2x + 12 12

    = (x + 1)2 1

    Therefore, the minimum point is (1, 1).

    x 4 2 0 2f(x) 8 0 0 8

    f(x)

    x

    (1,1)4

    8

    2 20

    (f) f(x) = (x 1)(2x + 1)

    = 2x2

    x 1= 21x2 x2 2 1= 23x2 x2 + 1

    14 2

    2

    1 14 22

    4 1

    = 231x 14 22

    1

    16 4 1

    = 21x 14 22

    18

    1

    = 21x 14 22

    98

    Therefore, the minimum point is (

    1

    4 ,

    9

    8 ).

    x 1 12

    0 1 2

    f(x) 2 0 1 0 5

    f(x)

    x

    1 21 1

    2

    98)14 (,

    2

    0

    5

    1

    (g) f(x) = (x 3)2 + 5

    Therefore, the maximum point is (3, 5).

    x 2 0 3 AB5 3 + AB5 6

    f(x) 20 4 0 0 4

    f(x)

    x

    24

    20

    (3, 5)

    63 + 53 50

    (h) f(x) = x2 + 4x + 5

    =x2 + 4x + 22 22 + 5

    = (x + 2)2 + 1

    Therefore, the minimum point is (2, 1).

    x 3 0 1f(x) 2 5 10

    f(x)

    x

    (2, 1)

    3 1

    2

    5

    10

    0

    (i) f(x) = 2x2 + 6x 8

    = 2(x2

    + 3x) 8

    = 23x2 + 3x + 1 32 22

    1 32 22

    4 8

    = 231x + 32 22

    94 4 8

    = 21x + 32 22

    92

    8

    = 21x + 32 22

    25

    2

    Therefore, the minimum point is (32

    , 25

    2

    ).

    x 3 0 1 2f(x) 8 8 0 12

    25

    2)32( ,

    f(x)

    x

    3

    12

    8

    0 1 2

  • 7/30/2019 Addmath Chapter 3

    4/16

    4

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    (j) f(x) = (x 4)2

    Therefore, the minimum point is (4, 0).

    x 0 4 5

    f(x) 16 0 1

    f(x)

    x

    4 501

    16

    (k) f(x) = x2 + 6x 9

    = (x2 6x) 9

    = (x2 6x + 32 32) 9

    = [(x 3)2 9] 9

    = (x 3)2

    Therefore, the maximum point is (3, 0).

    x 0 3 4

    f(x) 9 0 1

    f(x)

    x0

    1

    9

    (3, 0)

    4

    10. (a) x(x 2) > 0

    0 2x

    f(x)

    The range of values ofx isx< 0 or x> 2.

    (b) (x 3)(x 4) < 0

    0 43

    x

    f(x)

    The range of values ofx is 3

  • 7/30/2019 Addmath Chapter 3

    5/16

    5

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    910x

    f(x)

    The range of values ofx is 1 3

    x2 + 2x 3 > 0

    (x + 3)(x 1) > 0

    13 0x

    f(x)

    The range of values ofx isx< 3 orx> 1.

    5. f(x) = 2x2 12x + 5

    = 2(x2 6x) + 5

    = 2[(x 3)2 32] + 5

    = 2(x 3)2 18 + 5

    = 2(x 3)2 13

    \p = 2, q = 3 , r + 1 = 13

    r = 14

    6. (a) f(x) = x2 + 6px + 1 4p2

    = (x2 6px) + 1 4p2

    = 3x2 6px + 16p

    2

    22

    1 6p2

    22

    4 + 1 4p2= [(x 3p)2 9p2] + 1 4p2

    = (x 3p)2 + 9p2 + 1 4p2

    = (x 3p)2 + 1 + 5p2

    The maximum value given is q2 p.

    Therefore, q2 p = 1 + 5p2

    5p2 +p + 1 = q2

    (b) x = 3 is symmetrical axis

    3p = 3

    p = 1

    Substitutep = 1 into 5p2 +p + 1 = q2,

    5(1)2 + 1 + 1 = q2

    q2 = 7

    q = AB7Hence,p = 1, q = AB7

    7. 4t(t+ 1) 3t2 + 12 . 0

    4t2 + 4t 3t2 + 12 . 0

    t2 + 4t+ 12 . 0(t+ 2)(t+ 6) . 0

    026x

    f(x)

    The range of values oftis t, 6 or t. 2.

  • 7/30/2019 Addmath Chapter 3

    6/16

    6

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    1. x-coordinate of maximum point = 4 + 0

    2= 2

    Equation of the axis of symmetry isx = 2

    2. Letx be thex-coordinate ofA

    0 + x

    2

    = 3

    x = 6

    The coordinates ofA are (6, 4).

    3. Letx be thex-coordinate ofA

    x + 6

    2= 2

    x = 4 6

    x = 2

    The coordinates ofA are (2, 0).

    4. x-coordinate ofA =0 + 8

    2

    = 4

    Let Cbe the centre ofOB,

    4

    5

    A

    CO

    AC2

    = OA2

    OC2

    = 52 42

    = 9

    AC= 3

    The coordinates ofA are (4, 3).

    5. x-coordinate of minimum point =0 + 4

    2

    = 2

    x-coordinate of minimum point for the image is 2.

    6. (a) y = (x p)2 + q and minimum point is (2, 1)

    Hence,p = 2 and q = 1

    (b) y = (x 2)2 1

    Wheny = 0,

    (x 2)2 1 = 0

    (x 2)2 = 1

    x 2 = 1

    x = 1 + 2

    = 1, 3

    Hence,A is (1, 0) and B is (3, 0).

    7. f(x) = 2k+ 1 1x + 12p22

    Given (1, k) is the maximum point.

    Therefore, 2k+ 1 = k

    k = 1

    x +12p = 0 whenx = 1,

    1 + 12p = 0

    12p = 1

    p = 2

    8. Given (p, 2q) is the minimum point of

    y = 2x2 4x + 5

    = 2(x2 2x) + 5

    = 2(x2 2x + 12 12) + 5

    = 2[(x 1)2 1] + 5

    = 2(x 1)2 2 + 5

    = 2(x 1)2 + 3

    2q = 3

    q =32

    p 1 = 0

    p = 1

    9. (a) Since (1, 4) is the point ony =x2 2kx + 1,

    substitutex = 1, y = 4 into the equation,

    4 = 12 2k(1) + 1

    2k= 2

    k= 1

    (b) y =x2 2(1)x + 1

    =x2 + 2x + 1

    = (x + 1)2

    Minimum value ofy is 0.

    10. f(x) = x2 8x + k 1

    = (x2 + 8x) + k 1

    = (x2 + 8x + 42 42) + k 1

    = [(x + 4)2 16] + k 1

    = (x + 4)2 + 16 + k 1

    = (x + 4)2 + 15 + k

    Since 13 is the maximum value,

    then 15 + k= 13

    k= 2

    11. f(x) = 2x2 6x + 7

    = 2(x2 3x) + 7

    = 23x2 3x + 1 32 22

    1 32 22

    4 + 7

    = 231x 32 22

    94 4 + 7

    = 21x 32 22

    92

    + 7

    = 21x 32 22

    +52

  • 7/30/2019 Addmath Chapter 3

    7/16

    7

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    The minimum point is (32

    ,52

    ).

    x 1 0 3

    f(x) 15 7 7

    ,

    3

    5322

    0

    7

    15

    x

    f(x)

    1

    The range is52

  • 7/30/2019 Addmath Chapter 3

    8/16

    8

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    18. Given thatx 2y = 1,

    \x = 1 + 2y .......................................1

    Substitute 1 into y + 3 > 2xy, y + 3 > 2(1 + 2y)y

    y + 3 > 2y + 4y2

    0> 4y2 +y 3

    0> (4y 3)(y + 1)

    3

    4

    0y

    f(y)

    1

    The range is 1 52

  • 7/30/2019 Addmath Chapter 3

    9/16

    9

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    5

    2

    1

    3

    1

    x52

    x x 113

    The range isx>52

    .

    24. 5 , f(x) , 9

    5 , 5 3x +x2, 9

    5 , 5 3x +x2 , 5 3x +x2, 9

    5 3x +x2 9 , 0

    x2 3x 4 , 0

    (x 4)(x + 1) , 0

    41 0x

    f(x)

    1 ,x, 4

    0 ,x2 3x

    0 ,x(x 3)

    30x

    f(x)

    x, 0,x. 3

    01 43

    x< 0 x> 3

    1 < x< 4

    The range is 1,

    x,

    0 or 3,

    x,

    4.

    25. 1 >x2 + 3x 3 . 3

    x2 + 3x 3 . 3

    x2 + 3x. 0

    x(x + 3) . 0

    3 0x

    f(x)

    x, 3,x. 0

    1 >x2 + 3x 3 ,

    0 >x2 + 3x 4

    0 > (x + 4)(x 1)

    14 0x

    f(x)

    4 0

    4x 1

    3 0 1

    The range is 4

  • 7/30/2019 Addmath Chapter 3

    10/16

    10

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    x 6 x 1

    7x 2

    67 1 2

    The range is 7

  • 7/30/2019 Addmath Chapter 3

    11/16

    11

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    (1, 39)

    21

    (5, 9)

    (4, 11)

    0x

    y

    The range is 39

  • 7/30/2019 Addmath Chapter 3

    12/16

    12

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    1. y = 3(2x 1)(x + 1) x(4x 5) + 2

    = 3(2x2 +x 1) 4x2 + 5x + 2

    = 6x2 + 3x 3 4x2 + 5x + 2

    = 2x2 + 8x 1

    = 2(x2 + 4x) 1

    = 2(x2 + 4x + 22 22) 1

    = 2[(x + 2)2 4] 1

    = 2(x + 2)2 8 1

    = 2(x + 2)2 9

    Since a = 2 . 0, therefore the minimum value of

    y is 9.

    Wheny = 0, 2(x + 2)2 9 = 0

    (x + 2)2 =92

    x + 2 = ABB92 x = ABB92 2

    = ABB92 2 or ABB92

    2

    = 0.1213 or 4.121

    Whenx = 0, y = 2(2)2 9

    = 1

    The minimum point is (2, 9).

    14.121

    (2, 9)

    0.12130

    y

    x

    2. 5 , Area of rectangleABCD, 21

    5 , (x + 3)(x 1) , 21

    5 , (x + 3)(x 1)

    5 ,x2 + 2x 3

    0 ,x2 + 2x 8

    0 , (x + 4)(x 2)

    04 2

    f(x)

    x

    x, 4,x > 2

    (x + 3)(x 1) , 21

    x2 + 2x 3 , 21

    x2 + 2x 24 , 0

    (x 4)(x + 6) , 0

    06 4

    f(x)

    x

    6 ,x, 4

    4

    6 < x < 4

    x < 4 x > 2

    2

    x

    6 4

    The range is 6,x, 4 or 2 ,x, 4.

    3. (a) p =1 + 5

    2

    = 3

    (b) y = (x 1)(x 5)=x2 6x + 5

    4. y = a(x 2)2 + 1

    Substitutex = 0, y = 9 into the equation,

    9 = a(2)2 + 1

    8 = 4a

    a = 2

    Therefore, the quadratic function is

    f(x) = 2(x 2)2 + 1.

    5. x2

    + (1 + k)x k2

    + 1 = 0For quadratic equation to have real roots,

    b2 4ac> 0

    (1 + k)2 4(1)(1 k2) > 0

    1 + 2k+ k2 4 + 4k2> 0

    5k2 + 2k 3 > 0

    (5k 3)(k+ 1) > 0

    01 3

    5

    f(k)

    k

    The range of values ofkis k< 1 or k>35

    .

  • 7/30/2019 Addmath Chapter 3

    13/16

    13

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    6. y =x2 + 7x 8 2k

    For y to be positive for all real values ofx, there is

    no roots fory = 0.

    Therefore, b2 4ac, 0

    72 4(1)(8 2k) , 0

    49 + 32 + 8k, 0

    8k, 81

    k, 81

    8

    Alternative

    y =x2 + 7x 8 2k

    =x2 + 7x + 1 72 22

    1 72 22

    8 2k

    = 1x + 72 22

    49

    4

    8 2k

    Fory to be positive for all real values ofx,

    49

    4

    8 2k. 0

    2k.49

    4

    + 8

    2k.81

    4

    k, 81

    8

    7. Substitutex = 6, y = 0 into y =px2 + qx,

    0 =p(6)2 + q(6)

    0 = 36p + 6q

    q + 6p = 0 .........................1

    y =px2 + qx

    =p1x2 +qpx2

    =p3x2 +qpx + 1

    q2p 2

    2

    1q

    2p 2

    2

    4

    =p31x +q

    2p 2

    2

    q2

    4p2 4

    =p1x +q

    2p 2

    2

    q2

    4p

    q2

    4p

    = 12

    q2 = 48p

    p =q2

    48

    ..........................................................2

    Substitute 2 into 1,

    q + 61 q2

    48

    2 = 0 q +

    q28

    = 0

    8q + q2 = 0

    q(8 + q) = 0

    q = 0 or q = 8

    When q = 0, p =02

    48

    = 0

    When q = 8, p =(8)2

    48

    =64

    48

    =43

    Therefore, the values ofp =

    4

    3 and q = 8.

    8. (2 3k)x2 +x +34k= 0

    b2 4ac = 12 4(2 3k)1 34 k2= 1 6k+ 9k2

    = 9k2 6k+ 1

    = (3k 1)2

    Since (3k 1)2> 0 for all values ofk,

    therefore, (2 3k)x2 +x +34k= 0 has real roots for

    all values ofk.

    9. f(x) = 3(x2 + 2mx + m2 + n)

    = 3[(x + m)2 + n]

    = 3(x + m)2 + 3n

    The minimum point is (m, 3n)

    Compare toA(t, 3t2),

    \ m = t and 3n = 3t2

    m = t n = t2

    10. (a) y =px2 + 8x + 10 p

    When the graph does not intercept the x-axis,

    there are no roots forpx2 + 8x + 10 p = 0.Therefore, b2 4ac, 0

    82 4p(10 p) , 0

    64 40p + 4p2, 0

    p2 10p + 16 , 0

    (p 2)(p 8) , 0

    2 8

    Hence, r = 2 and t= 8

  • 7/30/2019 Addmath Chapter 3

    14/16

    14

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    (b) Whenp = 2,

    y = 2x2 + 8x + 8

    = 2(x2 + 4x) + 8

    = 2(x2 + 4x + 22 22) + 8

    = 2[(x + 2)2 4] + 8

    = 2(x + 2)2 8 + 8

    = 2(x + 2)2

    Therefore, the minimum point is (2, 0).

    Whenx = 0, y = 8

    Wheny = 0, 2(x + 2)2 = 0

    x = 2

    Whenp = 8,

    y = 8x2 + 8x + 2

    = 8(x2 +x) + 2

    = 83x2 +x + 1 12

    22

    1 12

    22

    4 + 2

    = 831x + 12

    22

    14

    4 + 2

    = 81x + 12

    22

    2 + 2

    = 81x + 12

    22

    Therefore, the minimum point is (12

    , 0).

    Whenx = 0, y = 2

    Wheny = 0, 0 = 81x + 12

    22

    x = 12

    0

    2

    8

    1

    2

    2

    yp= 2 p= 8

    x

    11. (a) f(x) = 24x 4x2 + r

    = 4x2 + 24x + r

    = 4(x2 6x) + r

    = 4(x2 6x + 32 32) + r

    = 4[(x 3)2 9] + r

    = 4(x 3)2 + 36 + r

    Compare tof(x) = p(x q)2 + 16

    Therefore,p = 4, q = 3 and 36 + r = 16

    r = 20

    (b) The turning point is (3, 16).

    (c) f(x) = 24x 4x2 20

    Whenx = 0, f(x) = 20

    Whenf(x) = 0, 4(x 3)2 + 16 = 0

    4(x 3)2 = 16

    (x 3)2 = 4

    x 3 = 2

    x = 2 + 3

    = 2 + 3 or 2 + 3

    = 1 or 5

    0 1

    (3, 16)

    5

    20

    y

    x

    12. (a) y = |p(x 3)2 + q|

    Substitutex = 3, y = 5 into the equation,

    5 = |p(3 3)2 + q|5 = |q|

    q = 5

    Substitutex = 4, y = 0 into the equation,

    0 = |p(4 3)2 5|p 5 = 0

    p = 5

    Therefore,p = 5, q = 5 orp = 5, q = 5.

    (b) Whenx = 3, y = 5

    Forp = 5, q = 5,

    Whenx = 6, y = |5(6 3)2 5|= |40|= 40

    Based on the graph, the range of values ofy is

    40

  • 7/30/2019 Addmath Chapter 3

    15/16

    15

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    Since thex-coordinate of the maximum point for

    both the graphs are same,

    therefore,2 + p

    2

    = 3

    p = 4

    y = x2 + 2x +px 8 becomes

    y = x2 + 2x + 4x 8y = x2 + 6x 8

    Wheny = 0,

    x2 + 6x 8 = 0

    x2 6x + 8 = 0

    (x 2)(x 4) = 0

    x = 2 or 4

    Hence,A(2, 0) andB(4, 0).

    Substitutex = 2, y = 0 intoy = 2(x 3)2 + 2k,

    0 = 2(2 3)2 + 2k

    2k = 2

    k = 1Hence, k= 1 andp = 4.

    (b) Fory = 2(x 3)2 + 2k

    = 2(x 3)2 + 2(1)

    = 2(x 3)2 + 2

    Maximum value of the curve is 2.

    Fory = x2 + 2x +px 8

    = x2 + 2x + 4x 8

    = x2 + 6x 8

    Whenx = 3,

    y = 9 + 18 8

    = 1

    Maximum value of the curve is 1.

    14. Since 3x2> 0 for all values ofx,

    therefore3x2

    (2x 1)(x + 4)

    < 0

    (2x 1)(x + 4) < 0

    04 1

    2

    f(x)

    x

    Hence, 4

  • 7/30/2019 Addmath Chapter 3

    16/16

    16

    Additional Mathematics SPM Chapter 3

    Penerbitan Pelangi Sdn. Bhd.

    17. y2 9 =x

    x =y2 9

    Whenx = 0,

    y2 = 9

    y = 3

    When y = 0,

    x = 9

    When x = 7,

    7 =y2 9

    y2 = 16

    y = 4

    x 9 0 7

    y 0 3 4

    09 7

    43

    34

    y

    x

    The range of values ofy is 4


Recommended