+ All Categories
Home > Documents > Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007...

Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007...

Date post: 10-Aug-2019
Category:
Upload: dohuong
View: 215 times
Download: 0 times
Share this document with a friend
18
06.12.2018 1 Advanced Imaging Techniques Angiography Prof. Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany [email protected] www.ma.uni-heidelberg.de/inst/cbtm/ckm Name I Slide 2 I 12/6/2018 Learning Goals introduction to advanced imaging techniques in MR, CT and CBCT basic MRI principles -> Physics of Imaging Techniques Goals: 1. How does the technique work ? 2. What kind of images do we receive? 3. Where is this applied to ? Literature is given in the respective lectures Slides of the lectures at https://www.umm.uni-heidelberg.de/inst/cbtm/ckm/lehre/index.html
Transcript
Page 1: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

1

Advanced Imaging TechniquesAngiography

Prof. Dr. Frank G. ZöllnerComputer Assisted Clinical MedicineMedical Faculty Mannheim Heidelberg UniversityTheodor-Kutzer-Ufer 1-3D-68167 Mannheim, GermanyFrank.Zoellner@medma.uni-heidelberg.dewww.ma.uni-heidelberg.de/inst/cbtm/ckm

Name I Slide 2 I 12/6/2018

Learning Goals

introduction to advanced imaging techniques in MR, CT and CBCT basic MRI principles -> Physics of Imaging Techniques

Goals:

1. How does the technique work ?

2. What kind of images do we receive?

3. Where is this applied to ?

Literature is given in the respective lectures Slides of the lectures at

https://www.umm.uni-heidelberg.de/inst/cbtm/ckm/lehre/index.html

Page 2: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

2

Name I Slide 3 I 12/6/2018

Readings

Jeans, W. D.; Stout, Paul. "The development and use of digital subtraction angiography". The British Journal of Radiology. 1990 63 (747): 161–168

Hanafee, William; Stout, Paul. "Subtraction Technic". Radiology. 1962 79 (4): 658–661

Hölscher et al., Real-time cerebral angiography: sensitivity of a new contrast-specific ultrasound technique. American Journal of Neuroradiology 2007 28(4):635-9

James C. Carr and Timothy J. Carroll, Magnetic ResonanceAngiography: Principles and Applications. Springer, 416 pages

Name I Slide 4 I 12/6/2018

Angiography

Representation/imaging of the vessels Diseases of the arteries:

Arteriosclerosis and its sequelae Vascular constrictions, e.g. coronary heart disease, carotid

stenosis, peripheral arterial occlusive disease Acute vascular occlusion, e.g. heart attack aneurysm of vessels (aneurysms) vascular injuries vascular malformations

Diseases of the veins: Thromboses varicose veins

Page 3: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

3

Name I Slide 5 I 12/6/2018

Imaging Techniques for Angiography

X-ray DSA CTA

US

MRI TOF CE-MRA

https://en.wikipedia.org/wiki/Angiography, Hölscher et al. Am J Neurorad 2007

Name I Slide 6 I 12/6/2018

Digital Substraction Angiography (DSA)

Aim: Visualization of vessel

Question: Are we able to visualize vesselsimply by standard X-ray ?

Page 4: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

4

Name I Slide 7 I 12/6/2018

X-ray contrast agent

negative contrast media: air, CO2 NO2

positive contrast agents: tri-iodine-benzoin-acid or

similar (vessels) barium sulfate BaSO4

(gastrointestinal)

absorption coefficient for iodine in limb angiography

optimum tube voltage for an iodine contrast medium is at 63 kV

Morneburg. “Bildgebende Systeme für die medizinische Diagnostik” 1995

Name I Slide 8 I 12/6/2018

Digital Substraction Angiography (DSA)

Iodine-containing contrast medium is injectedinto the patient Via vein access (i.v.) Via catheter (selective angio)

after a waiting period, x-rays are taken today, only digital subtraction angiography

(DSA) with catheter is available

Page 5: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

5

Name I Slide 9 I 12/6/2018

Comparison – Angiographie / DSA

classic angiography DSA

Name I Slide 10 I 12/6/2018

Principle of DSA

X-ray wo CA„Mask“

X-ray with CA„Fill“

substractedimage

Page 6: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

6

Name I Slide 11 I 12/6/2018

Mask Fill Subtraction

CA Signal Time Curve

Morneburg. “Bildgebende Systeme für die medizinische Diagnostik” 1995

time

Name I Slide 12 I 12/6/2018

Morneburg. “Bildgebende Systeme für die medizinische Diagnostik” 1995

Digital Substraction Angiography (DSA)

console

Page 7: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

7

Name I Slide 13 I 12/6/2018

Angiography device

Name I Slide 14 I 12/6/2018

Artis zeego

Page 8: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

8

Name I Slide 15 I 12/6/2018

maximum 6 images/sec at high dose

Laubenberger and Laubenberger. „Technik der medizinischen Radiologie“, Deutscher Ärzte-Verlag 1999

Pulsed DSA

Name I Slide 16 I 12/6/2018

fixed mask consisting of several integrated images, reduced vascular pulsations by weighting the images during addition

Laubenberger and Laubenberger. „Technik der medizinischen Radiologie“, Deutscher Ärzte-Verlag 1999

continues DSA

subtraction subtraction

Page 9: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

9

Name I Slide 17 I 12/6/2018

Pro/cons of DSA technqiues

High frame rates Hardly any pulsations Weighted Images / Mask High radiation exposure High load on the X-ray tube

Lower frame rate High contrast due to individual

pulses Overall radiation exposure

lower Lower tube load

contin. DSA Pulsed DSA

fast processes morphology

Name I Slide 18 I 12/6/2018

MR Angiography

categorised into contrast-enhanced time-of-flight (TOF) phase-contrast

Page 10: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

10

Name I Slide 19 I 12/6/2018

CE MR Angiography

widespread acceptance due to their ease of use

ability to quickly, reliably, and robustly produce high-quality diagnostic images of large vascular territories

CE-MRA has replaced X-ray DSA as the method ofchoice for imaging certain vasculature: the carotid and vertebral arteries, the aorta and renal arteries, the vessels of the lower extremities

Name I Slide 20 I 12/6/2018

CE MR Angiography

achieve signal differences between blood and stationarytissuesmagnitude of the magnetization from moving blood is

larger than the magnitude of the magnetization fromstationary tissues

injecting a contrast material intravenously to selectivelyshorten the T1 of the blood

T1-weighted imaging method, appropriatelysynchronized to acquire data during the fi rst pass ofthe contrast material through the arteries of interest

Page 11: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

11

Name I Slide 21 I 12/6/2018

CE MR Angiography

A coronal MIP image of thevessels of the thighs of a healthy volunteer acquiredusing a coronal 3D contrast-enhanced MRA acquisitionmethod applied after intravenous injection of a gadolinium-based contrastmaterial

Name I Slide 22 I 12/6/2018

CE MR Angiography

Injection rates typically range from 0.5 to 4.0 ml/s for CE-MRA.

Injection volumes range from 0.1 to 0.3 mmol of contrastmaterial per kg of patient body weight (mmol/kg)

typical values in the range of 20–40 ml of contrast material

reduce the T1 of blood to as low as 50 ms during the firstpass of the contrast material

Page 12: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

12

Name I Slide 23 I 12/6/2018

CE MR Angiography

Sequences fast 3D gradient echo recall sequences with RF spoiling Time-resolved 2D /3D T1-weighted image acquisition (similar to

perfusion MRI)

for fast GRE synchronisation of the bolus arrival into the vesselterritory is important

Name I Slide 24 I 12/6/2018

CE MR Angiography

Sequences fast 3D gradient echo recall sequences with RF spoiling Time-resolved 2D /3D T1-weighted image acquisition (similar to

perfusion MRI)

for time resolved images fast repeated imaging is needed

Page 13: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

13

Name I Slide 25 I 12/6/2018

Time-of-Flight (TOF) MR Angiography

TOF techniques derive contrast between flowing bloodand stationary tissues by manipulating the magnitude ofthe magnetization, such that the magnetization is large formoving blood and small for stationary tissues

do not require the injection of a contrast material

TOF MRA techniques rely on the fact that blood is in motion, and stationary tissues are not

Name I Slide 26 I 12/6/2018

TOF MR Angiography

a spoiled, fast gradient-echo sequence 2D: thin slices are imaged 3D: thin slabs are imaged and the slabs are encoded into slices

using a phase-encoding method signal decreases with

increasing number of RF pulsesexperienced

the equilibrium signal is larger for tissues with shorter T1

Time sequnce so that TR isintermediate long: high signal for flowing blood low signal for stationary tissue

Page 14: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

14

Name I Slide 27 I 12/6/2018

TOF MR Angiography

Name I Slide 28 I 12/6/2018

TOF effects in the presence of plug flow with speed v in direction z : when the velocity is higher than the critical velocity as given, spins

in the blood region I experience only one RF pulse and then exitthe imaging slice before the next RF application.

Spins in region II are not affected by the first excitation but by thenext RF pulse

when the blood is moving slower than the critical velocity, thesaturation effect can be understood by dividing the slice intomultiple segments.

Blood located in each segment experiences a different number ofRF pulses, RF( n ), resulting in different saturation effectsdepending on n

Page 15: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

15

Name I Slide 29 I 12/6/2018

TOF MR Angiography

2D TOF lower extremities

3D TOF brain

Name I Slide 30 I 12/6/2018

Phase Contrast MR Angiography

PC MRA methods provide a direct quantitative measure of the velocityof the flowing blood

can be acquired using 2D or 3D acquisitions derive contrast between flowing blood and stationary tissues by

manipulating the phase of the magnetization phase of the magnetization is zero for stationary tissues and non-zero for moving tissues

Page 16: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

16

Name I Slide 31 I 12/6/2018

Phase Contrast MR Angiography

timing diagram for a 2D phase-contrast MRA pulse sequence bipolar flow-encoding gradient on the frequency encoding axis

remember: diffuions encoding gradients !

Name I Slide 32 I 12/6/2018

Phase Contrast MR Angiography

Page 17: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

17

Name I Slide 33 I 12/6/2018

Phase Contrast MR Angiography

Name I Slide 34 I 12/6/2018

Phase Contrast MR Angiography

Magnitude image: the signal intensity represents the MR signal amplitude averaged

over the two scans used for one-dimensional velocity encoding. Complex difference image (flow encoded magnitude image):

the signal intensity represents the absolute value of the phaseshift

contains no information about the flow direction (e.g., phase shiftsof −170°and +170°shows the same pixel intensity)

Phase difference image: the signal intensity represents the phase angle ∆ࢶ between the

reference and the motion encoded scan, i.e., the local velocitiesalong the encoding direction.

Page 18: Advanced Imaging Techniques - umm.uni-heidelberg.de · American Journal of Neuroradiology 2007 28(4):635-9 ... „Technik der medizinischen Radiologie“, Deutscher Ärzte -Verlag

06.12.2018

18

Name I Slide 35 I 12/6/2018

Phase Contrast MR Angiography

Name I Slide 36 I 12/6/2018

Phase Contrast MR Angiography

velocity sensitivity “venc ” refers to the maximum velocity that can beencoded by the bipolar gradient

Ivelocity sensitivity venc < highestoccurring flow

velocities aliasing towards invertedvelocity values occurs


Recommended