+ All Categories
Home > Documents > AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS...

AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS...

Date post: 17-Mar-2018
Category:
Upload: lekhuong
View: 215 times
Download: 1 times
Share this document with a friend
93
// AFAPL-TR-78-6 Part III ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE Part III Tapered Roller Bearings r -T 106ý A. B. Jones J. M. McGrew, Jr. Shaker Research Corporation Northway 10 Executive Park Ballston Lake, New York 12019 February 1979 CD C..) Interim Report for Period April 1977 - December 1978 L Approved for public release; distribution unlimited. AIR FORCE AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 REPRODUCED FROM 'B BEST AVAILABLE COPY7N0 J 2
Transcript
Page 1: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

//

AFAPL-TR-78-6Part III

ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDEPart IIITapered Roller Bearings

r -T 106ý

A. B. JonesJ. M. McGrew, Jr.

Shaker Research CorporationNorthway 10 Executive ParkBallston Lake, New York 12019

February 1979

CD

C..) Interim Report for Period April 1977 - December 1978

L Approved for public release; distribution unlimited.

AIR FORCE AERO PROPULSION LABORATORYAIR FORCE WRIGHT AERONAUTICAL LABORATORIESAIR FORCE SYSTEMS COMMANDWRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

REPRODUCED FROM 'BBEST AVAILABLE COPY7N0 J 2

Page 2: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

NOTICE

When Government drawings, specifications, or other data are used for anypurpose other than in connection with a definitely related Government pro-curement operation, the United States Government thereby incurs no responsi-bility nor any obligation whatsoever; and the fact that the Government mayhave formulated, furnished, or in any way supplied the said drawings, speci-fications, or other data, is not to be regarded by implication or otherwiseas in any manner licensing the holder or any other person or corporation, orconveying any rights or permission to manufacture, use, or sell any patentedinvention that may in any way be related thereto.

This report has been reviewed by the Information Office (01) and is releas-able to the National Technical Information Service (NTIS). At NTIS, it willbe available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

JHB.SCHRAND HOWARD W-~JONESProject Engineer Chief, Lubrication Branch

FOR THE COMMANDER

BLACKWELL C. DUNNAMChief, Fuels and Lubrication Division

If your address has changed, if you wish to be removed from our mailing list,or if the addressee is no longer employed by your organization please notifyAFAPL/SFL, WPAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required bysecurity considerations, contractual obligations, or notice on a specificdocument.

AIR FORCE/56780/23 August 197g - 140

Page 3: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

UNrt.A~qTWTmSECURTV~ CL.MSIFICATION Of T4IS PAGE Veto.. DX. n~qw.

READ) INSTtUCTIONS(//)2REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

REQTU;R-~GOVT ACCESSION No. 3.ECIPIENOT'S rrOGNM

4. T ITLE (E dSu.btitle) S. TYPE OF REPO03IEEWi*OOCOV9*E* -

ROTO-BEAINGDYNAICS.- ---.. ~.....Technical -/InterimL OO-ERN DYarIC TECHNOLOGY DESIGN GUILIEo~j,7j~ -Nvme 9Tapered Roller Berigs 8

A._ B. /Jones /

J. M.7McGrev,_Jr. 1_133615-76-ýC-2038S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Shaker Research Corporation AE OKUI UBRNorthway 10 Executive Park 34.68BallstonLake,_N.Y.__12019 _ ___________

I I. CONTROLLING OFFICE NAME ANO ADDRESS I.~R.OT.

Air Force Aero Propulsion Laboratory/SFL )I" Febr wy1979fAir Force Sys tens Command 1

Wrigh-Paterson AFB, Ohio 45433 _____________

IS MNIORNGAGENCY NAME B ADDRESS(If dill.,.I frc1, Controlling Office) IS. SECURITY CLASS. (of this rePort)

0 1ý 115s. OECL ASSIFVIC ATION/ DOWNGRADINGSCHEDULE

II. DISTRIBUTION STATEMENT (of thie Rope"f)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of theo b*Crect on...d Ini Block 20, Of dIIiffoE flows Xopoft)

III. SUPPLEMENTARY NOTES

19. KEY WORDS (CC..tlro. m towV** oldo if ecoomar ormldtf 1~0 br oe* owinw)

Tapered Roller Bearings Roller Bearing StiffnessTapered Roller Bearing Stiffness Turbine BearingsRoller Bearings Rotordymamics

x.20. ABSTRACT (Co..tirt. - revW~o @(o l. f necooo awl idotflt br block nowbow)

'This report is an update of the original Part IV of the Rotor-BearingDynamics Design Technology Series, AFAPL-TR-65-45 (Parts I through X).A computer program is given for preparation of tapered roller bearingstiffness data input for rotordynamic response programs. The completestiffness matrix is calculated including centrifugal effects. Consider-ations such as elastohydrodynamic and cage effects are not included sincethey have little influence on the calculation of tapered roller bearingst~ffni q.gg. TP rPaiilti-onrpjra m i raqo~hi ~11 and Paqv to une.

,,A 73~V 1473 EDITION OF I NOV 66BIS COBSLETES/N 0102-014- 6601 1UNCLASSIFT~fl

SECURITY CLASSIFICATION OF THIS PAGE (WRO,.Dt o .i0

Page 4: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

FOREWORD

This report was prepared by Shaker Research Corporation under USAF

Contract No. AF33615-76-C-2038. The contract was initiated under Project

3048, "Fuels, Lubrication, and Fire Protection," Task 304806, "Aerospace

Lubrication," Work Unit 30480685, "Rotor-Bearing Dynamics Design."

The work reported herein was performed during the period 15 April

1977 to 15 November 1978, under the direction of John B. Schrand (AFAPL/

SFL) and Dr. James F. Dill (AFAPL/SFL), Project Engineers. The report

was released by the authors in December 1978.

ilor

iViS

Page 5: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

TABLE OF CONTENTS

Section I INTRODUCTION 1

Section II ANALYSIS 3

2.1 General Bearing Model and Coordinate System 3

2.2 General Bearing Support Characteristics -------- 7

2.3 Tapered Roller Bearing Characterization -------- 9

2.4 Tapered Roller Bearing Under Combined Loading_ 15

Section III APPLICATION OF COMPUTER PROGRAM 40

3.1 Sample Test Case ------------------------------- 40

3.2 Input Format ----------------------------------- 42

3.3 Output Format -----.---------------------------- 42

APPENDIX COMPUTER PROGRAM FOR CALCULATING STIFFNESS MATRIXOF TAPERED ROLLER BEARING 52

REFERENCES ....-................................................... 80

V

PRECEDING PAGE BLANK

Page 6: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

i

LIST OF ILLUSTRATIONS

Page

Figure l(a) Bearing Stiffness Model -............................. 4

Figure l(b) Bearing Lccation Coordinate System ------------------- 4

Figure 2 Linearization of Tapered Roller Bearing Stiffness.____ 8

Figure 3 Tapered Roller Bearing ................... 11

Figure 4 Bearing Coordinate System ---------------------------- 12

Figure 5 Tapered Roller Bearing Index, q ---------------------- 13

Figure 6 Boundary Dimensions of Typical Tapered Roller. 16

Figure 7 Dimensions of Roller Profile and Crown 17

Figure 8 Dimensions of Crown Drop-------------- 21

Figure 9 Forces and Moments on Roller 22

Figure 10 Geometric Intersection of a Roller and Raceway 26

Figure 11 Sample Tapered Roller Bearing Assembly --------------- 41

Figure 12 Input Data Format 43

Figure 13 Sample Problem Data Input ------------- 44

Figure 14 Output Data for Load Condition #1 - - - - 45

Figure 15 Output Data for Load Condition #2 49

vi

Page 7: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

NOMENCLATURE

Symbol Description Units

b Semi-width of contact ellipse at x in.

B Corner break at roller small end in.

B2 Corner break at roller big end in.

B ij Damping component, change of force in i direction lb-secdue to velocity in j direction; i - x, y, z; inj = x, y, Z.

B Damping matrix lb-sec(N lineal 0 0 in

0 0

0 0

(BN)angular

0 0

(O)lineal Damping matrix due to lateral velocities ib-sec

B in

[:yx :YY1ineal

(#)angular Damping matrix due to angular velocities in-lb-secangular radian

S Ylngular

11 for i = 1C. A constant, Ci 1-1 for i = 2

d Roller diameter at midpoint of effective length in.of roller

d Roller diameter at x in.

X

E Pitch diameter at midpoint of effective length in.

EE Modulus of elasticity for roller lbs/in2

vii

Page 8: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

ER Modulus of elasticity for race body lbs/in2

E Pitch diameter at x in.x

F Roller centrifugal force lbs.c

Fi External applied force, i " x, y, z lbs.

F' Reaction force, positive in direction opposite lbs.to displacements, i = x, y, z

F Force Matrix = F lbs.

z

C Distance along roller cone element from extreme in.end of effective length to point where crown dropis measured

H Roller crown radius minus the rise of the arc at in.midpoint of effective length

I Moment of inertia about roller center of gravity Ibs-in2

cg

K Roller-race stiffness ibs/in.

K ij Stiffness component, change of force in i direction Ibs/in.due to displacement in j direction.

i = x, y, z; j x, y, z

=KN Stiffness matrix

"K lineal 0 00 0

0 0 (0 angular

L0 0

(KWlineal Stiffness matrix due to lateral displacements lbsfin.

yx YYllineal

(K)angular Stiffness matrix due to angular rotations in-lbK K tad

Sn aYYangular

viii

Page 9: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

Perpendicular distance from the line of action in.of flange reaction, P3, to roller centerline atmidpoint of effective length

Ie Effective length of roller load carrying surface in.

IF Length of flat portion of roller measured along in.roller cone element

LT Total length of roller measured parallel to roller in.axis between sharp intersections of end faces with

roller cone elements

m Mass of roller lbs.

MG aller gyroscopic moment lbs-in.

Mi External applied moment, i x, y, z lbs-in.

Mi Reaction moment, i = x, y, z lbs-in.M1 outer race/roller contact moment ibs-in.

M2 Inner race/roller contact moment lbs-in.

n Number of rollers

N1 Outer ring rotational speed rad/sec.

N2 Inner ring rotational speed rad/sec.

Px Contact unit loading lbs/in.

Px Current estimate of contact unit loading lbs/in.

PD Diametral clearance in.

P1 Outer contact load on qth roller lbs.q

P2 Inner contact load on qth roller lbs.q

P3 Flange reaction on qth roller lbs.q

q Roller position index

R Roller crown radius in.c

RE Roller big-end spherical radius in.

V Radial distance from roller center line to in.flange reaction

ix

Page 10: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

6K

6SColumn Y

Matrix 0X

0y

xyz Bearing coordinate system in.

x Static component of displacement in.

xv Dynamic component of displacement in.

XA Big-end extremity of contact pattern measuredparallel to roll axis from the midpoint of the

effective length

XB Small and extremity of contact pattern measured in.parallel to roller axis from the midpoint of theeffective length

XA Maximum permissible distance of big-end pattern in.extremity from midpoint of effective lengthmeasured along race

XB Maximum permissible distance of small-end pattern in.

extremity from midpoint of effective lengthmeasured along race

-N Impedance matrix %N + i N

Other notations as defined in text.

X

Page 11: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

GREEK SYMBOLS

Angle between roller axis and line of action of radiansflange reaction

8 Outer ring contact angle radians

Y I d x cosO/Ex

S2 d x cos($-T)/Ex

6 Displacement in.

6 Linear displacement in x direction in.x

6 Linear displacement in y direction in.Y

6 Linear displacement in z direction in.z

A Approach of inner race to outer race at midpoint in.of effective length

A Approach of roller to race at x in.x

A Approach of roller to outer race (cup) at qth in.Alq roller

A2q Approach of roller to inner race (cone) at qth in.roller

C i Residues of simultaneous equations

4(1 - v) in 2

Roller elastic constant = EE

24(l - vR)

nR Race elastic constant = ER

0 Angular rotation about x axis radians, 0

x

O Angular rotation about y axis radians, 0YO Angular rotation about z axis radians, 0

Frequency of rotation rad/sec.

VE Poisson's ratio for roller

xi

Page 12: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

VR Poisson's ratio for race

Material density lbs/in3

Included roller cone angle radians, 0

SCircumferential roller position radians, 0

WR Angular velocity of roller about its own center rad/sec.

Orbital velocity of roller rad/sec.

V Crown drop in.

xii

Page 13: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

SUBSCRIPTS

Symbol Description

b Refers to bearing

cg Refers to center of gravity

E Refers to roller

F Refers to flat

g Refers to gyroscopic

i Index, i = 1, 2, 3 or i = x, y, z

i,j Refers to index of stiffness matrix; i.e.,force in i direction due to displacementin j direction

p Refers to pedestal

q Refers to roller circumferential position

R Refers to roller

T Refers to total

x Refers to x direction

y Refers to y direction

z Refers to z direction

1 Refers to outer race

2 Refers to inner race

xiii

Page 14: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

\

SECTION I

INTRODUCTION

The original Rotor-Bearing Dynamics Design Technology Series AFAPL-TR-

65-45 (Parts I through X) included a volume, Part IV(l), which presented

design data for typical deep-groove and angular contact ball bearings. The

data was presented in graphical form and consisted of direct radial stiff-

ness, load carrying capacity, and load levels. In addition design guide-

lines and limitat 3ns were discussed. The major deficiencies of this

original volume were that centrifugal effects due to high speed were

ignored, and axial and angular stiffness information were omitted.

Subsequent to the publication of Part IV, several extensive treatments of

rolling element bearings including elastohydrodynamic, thermal, and cage

effects have been published. The computer program of Mauriello, LaGasse,

and Jones (2) considers both eiastohydrodynamic and cage effects for ball

bearings. The more recent computer based design guide prepared by

Crecelius and Pirvics (3) treats elastohydrodynamic, thermal, and cage

effects for a system of ball and roller bearings.

Thus, very sophisticated analytical tools are available for the design and

application of rolling element bearings. Neither of these tools, however,

provide the user with the stiffness matrix required for solution of rotor

dynamics problems. In addition both computer programs are very large and

require an extensive computer facility for use.

Part 11(4) of the revised series provided an update of the original

Part IV(l). Those aspects of the original Part IV(l) which treated general

design aspects of ball bearings, load capacity, speed limitations, etc.

were deleted since their coverage is superficial compared to the more

sophisticated computer tools now available (2,3). Only those parts

directly connected with preparation of input for the rotordynamic response

Page 15: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

I

programs (Part 1(5) of the revised series) were retained. The stiffness

data included in the original Part IV were also updated.

The present volume (Part III of the revised series) extends the treatment

of rolling eJement bearings to the tapered roller bearing. The complete

stiffness matrix is calculated including centrifugal effects. Considera-

tions such as elastohydrodynamic and cage effects are not included since

they have little influence on the calculation of tapered roller bearing

stiffness. The resulting program (Appendix) is reasonably small z-nd easy

to use.

Page 16: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

SECTION I1

ANALYSIS

2.1 General Bearing Model and Coordinate System

Accurate calculation of the lateral dynamic response of a high-speed rotor

depends on realistic characterization of the support bearings. In the most

general case, both linear and angular motions are restraintd by the support

bearings at the attachment location. In the analytical model, the reaction

force and the reaction moment of each bearing are felt by the rotor through

a single station of the rotor axis As schematically illustrated in Figure

la, a coil spring restraining the lateral displacement and a torsion spring

which tends to oppose an inclination are attached to the same point of the

rotor axis. A complete description of the characteristics of the support

bearings, however, involves much more than the specification of the two

spring constants. This is because:

The lateral motion of the rotor axis is concerned with two

displacement components and two inclination components.

The restraining characteristics may include cross coupling

among various displacement/inclination coordinates.

The restraining force/moment may not be temporally in phase

with the displacement/inclination.

The restraining characteristics of the bearing may be

dependent on either the rotor speed or the frequency of

vibration, or both.

Bearing pedestal compliance may not be negligible.

To accommodate the above considerations, the support bearing characteristics

are described in Reference 5 by a four-degrees-of-freedom impedance matrix as

defined in Equation (1):

3

Page 17: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

I

(FIG la) Bearing Stiffness Model

y

"-Z ROTOR SPIN

STATIC LOAD

(FIG Ib) Bearing Location Coordinate

System

4

Page 18: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

iN

where W is a column vector containing elements which are the two lateral

displacements (6X9 6y) and the two lateral inclinations (G., 0 y) of the

rotor axis at the bearing station N.

Employing a right-handed Cartesian representation in a lateral plane as

depicted in Figure lb, the z-axis is coincident with the spin vector of the

rotor. The x-axis is oriented in the direction of the external static load,

and the y-axis is perpendicular to both z and x axes forming the right-handed

triad (x, y, z). (6 x, 6 y) are respectively lateral lineal displacement

components of the rotor axis along the (x, y) directions. (0x, 0 y) are

lateral inclination components respectively in the (z-x, z-y) planes. Note

that 0 is a rotation about the y-axis, while 0, is a rotation about they

negative x-axis.

ZN is a complex (4 x 4 matrix), and in accordance with the common notation

for stiffness and damping coefficients, may be expressed as

N KN+ ivB (2)

where %K is the stiffness matrix and B. is the damping matrix. v is the

frequency of vibration. Most commonly, lateral lineal and angular displace-

ments do not interact with each other so that the non-vanishing portions of

and B are separate 2 x 2 matrices. That is

lineal

0 0 0 (3)

[ 0 0 angular

5

Page 19: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

E (B)0 0N#

(N lineal 00 0

EN 10 0 (4)

0 0 (-N)L angular

Accordingly, a total characterization of a support bearing would include

sixteen coefficients which make up the 4 (2 x 2) matrices:

K Kxx xy

K K= lieal L j linal(5)

Lyx YY- lineal

B B[xx xy(B) lineal (6)

=y linealL yx By lineal

FK Kxx xy(_)angular (7

LYX yy jangular

B Bxx xy( angular L- (8)

B BByx Byy angular

In the event that the pedestal compliance is significant, then the effective

support impedance can be calculated from

Z (Z + Z -i (9)=N ---- P

where subscripts "p" and "b" refer to the pedestal and bearing respectively.

Note that both pedestal inertia and damping may be included in Z=P

6

Page 20: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

2.2 General Bearing Support Characteristics

The function of a bearing is to restrict the rotor axis to a nominal axis

under realistic static and dynamic load environments. Deviation of any

particular point of the rotor axis from the nominal line can be character-

ized by three lineal and two angular displacements. These may be designa-

ted as (6 x, 6 y, 6z, Ox, 0 y) in accordance with a right-handed Cartesian

reference system. The z-coordinate is coincident with the reference axis

and is directed toward the spin vector. (Ox, 0 y) are rotor axis inclina-

tions respectively in the z-x and z-y planes. The x-coordinate is directed

toward the predominant static load; e.g., earth gravity. Ideally, the

bearing would resist the occurrence of any displacement so that the

reaction force system imparted by the bearing to the rotor is generally

expressed in matrix notation as

F - Z . x (10)

F is a column vector comprising the five reaction components (Fx, Fy, Fz,

MX, My), while x is the displacement vector (6x, 6y, 6z, 0,0 ). Z is

a (5 x 5) matrix containing the elements Zij with both indices (i, j)

ranging from 1 to 5. The values of Zij characterize how rotor displacements

are being resisted by the bearing.

From the standpoint of dynamic perturbation, distinction is made between

a static equilibrium component and a dynamic perturbation component for

both the displacements and the reactions. Thus,

x = x + x'; F = F + F' (11)

(x', F') are respectively presumed to be infinitesimal in comparison with

(x , F ). Accordingly, Zij are regarded as dependent on x-x but not on x'.

To illustrate the idea of perturbation linearization, one may examine the

one-dimensional load-displacement curve shown in Figure 2.

7

Page 21: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

F ' - ,° .t a ,,

I

x-SxTA

8'o

Figure 2. Linearization of Tapered Roller Bearing Stiffness

8

Page 22: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

As illustrated, the load-displacement relationship is a 10/9 power law in

accordance with the Hertzian point contact formula. It is not possible

to describe the entire range by a linear approximation. However, if a

small dynamic perturbation is taken around a static equilibrium point,

6' < 6 , the small segment of the load-displacement curve can bex x

approximated by a local tangent line. The corresponding force increment

isaF

F' 0 _x 6' (12)x 36 x

where 6' is the incremental displacement. 3F /36 will depend on thex x x

amplitude of 6 .0

The question of history dependence is resolved by regarding x' as periodic-

motions at any frequency v of interest, and Z accordingly would have both

real and imaginary parts and may also be dependent on both the rotor speed w

and the vibration frequency v.

To avoid notational clumsiness, the primes will be dropped from (F', x')

which are understood to be dynamic perturbation quantities unless the sub-

script "o" is used to designate the static equilibrium condition.

2.3 Tapered Roller Bearing Characterization

In many ways the tapered roller bearing is much simpler to model from. a rotor

dynamic point of view than a fluid film bearing. In general, the following

two simplifications can be made:

The restraining characteristics do not include cross coupling

among the various displacement/inclination coordinates.

The restraining force/moment is normally temporally in phase

with the displacement/inclination.

9

Page 23: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

Figurc. 3 shows a tapered roller bearing referred to in an orthogonal xyz

coordinate system. The outer ring is fixed but the inner ring may move

with respect to the coordinate system. Both rings are free to rotate about

their axes.

Three lineal displacements, 6X, 6 y, 6z, and two angular displacements, Ox,

0y, are required to define the spatial position and attitude of the inner

ring when it is displaced from its initial position. For purposes of deriva-

tion the initial situation is that existing when the bearing's end play is

just taken up in the thrust direction. Figure 4 shows these displacements

in the positive sense. Figure 5 establishes the convention of the roller-

position index q.

2.3.1 Stiffness

The total characterization of a tapered roller bearing's stiffness

can be expressed by the matrix.

FaF 3F aF~ aF aFjDx ay az M0x a0

aF aF aF DF aFI

ax ay ax a® a®x y

aF 3F aF aF aF[K] = (1y 3) 30 (13)

x y

am aM am aM aMX X X X X

ax ay az a® acx y

am aM am aM am

ax ay az a0 ® 0

10

Page 24: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

Y

CONE

z

I • CUP

Figure 3. Tapered Roller Bearing

1i

Page 25: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

x

Crz"iN cn

to

N~S-I

120

Page 26: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

q--q ( q -4

Figure 5. Tapered Roller Bearing Index, q

13

Page 27: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

The lineal and angular stiffness matrices (Equations 5 and 7) can

be derived from Equation (13). For example:

aF DFx x

ax ay

(_lineal (14)

3F aF-y y

Lax ay_

am am 1

x xao ao

x y

-~angular (15)

am amao 30x Y

Note that although the axial components of stiffness are not utilized

by the lateral rotor dynamics program (5), they have been retained in

the general tapered roller hearing stiffness matri:,, Equation (13). The

axial stiffness would be required, for example, if the reader was calculat-

ing the axial natural frequency of a tapered roller bearing mounted shaft.

23.2 aming

An extensive search of the literature revealed no experimental damping

data for tapered roller bearings. As the current state-of-the-art

does not permit accurate calculation of tapered roller bearing damping,

no damping data is included in this report.

14

Page 28: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

2.4 Tapered Roller Bearing Under Combined Loading

Solution for the stiffness matrix of a tapered roller bearing under com-

bined loading is a tedious problem and requires the use of a digital

computer. In this section, the derivation of the solution is described.

A computer program for obtaining the solution is included in the Appendix.

2.4.1 Bearing Applied Forces and Moments

As the result of the five displacements described previously in

Figures 3 and 4, there are the reactions FI, F', F;, and M' andx y z xM'. F'x, F', and F' are forces. M'I and M' are moments. All arey x y zx yshown in their positive sense in Figure 4. External forces F and

F may be applied at the inner ring center. The senses of thezI

signs are the same as for the reactions F' and F'.x z

2.4.2 Roller Geometry

Figure 6 shows the boundary dimensions of a typical tapered roller.

Roller mass, moment of inertia, and location of the center of

gravity are calculated assuming the roller is a flat-ended, trun-

cated cone bounded by R1 , R2 , and t

In general, the big-end face of the roller is not flat but is a

sphere having the radius Re which is generally a proportion of the

slant height, Zs, of the untruncated roller cone. Roller crown and

corner breaks are also omitted from mass and moment of inertia

calculations as their contributions are second order.

Figure 7 is a more complete sketch of the roller showing the details

of the roller crown. The big-end spherical surface is neglected

here also.

T is the included angle of the roller cone and is obtained by itera-

tion of

r -l d- tan {4 sin( - (16)

2E2

Page 29: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

-4

SToE-4

0

00

16

i64

Page 30: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

/ U

S -- 4

0'

L • , -• -

2 L ' -'-4

, a,

17

Page 31: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

From Figure 7

cH V2_)2 (17)

where R is the crown radius and I the length of the flat portionc Fof the roller profile. In a fully crowned roller, the flat length

is zero.

Se is the effective length of the roller load-carrying surface.e

The actual working length for any loading must lie within e" B 1

and B2 are the corner breaks. Their shapes are unimportant as long

as they blend smoothly into the crowned surface.

V is the drop of the crown and is measured at the extremes of the

effective length of the roller.

V H - JR ~ (18)

dH (19)

0 2tan(T)

1 H cos () + Vsin(j) B1 (20)I H0 -- -- cos1

H2 = H0 + cos (1) + Vsin(½) + B2 (21)

R1 = Hltan(T) (22)

R = H2 tan( ) (23)

Let the cone corresponding to H1 have the mass mI and a moment of

inertia about its center of gravity I1cg

Let the cone corresponding to H2 have the mass m2 and a moment of

inertia about its center of gravity 12cg

18

Page 32: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

irR2 H P2 3x386.4 (24)

3mI R2 H2I I I ) (26)

cg 3M R2 2

3m2 R2 H2""'21. (26)

2 212 "-• (27)+

cg

where p is the material density in lb/in3

Then the distance X from the big end of the roller at H2 to the

center of gravity of the roller is X'

m2 H2 3H1

4 - ml (H2 - (28)

2 -1

The moment of inertia I of the tapered roller about its center ofcggravity at X is

H 2 3HI , )2ic i2 + m2 __ •) i13 - ml (H2 - •-cg 2 cg + - cg (29)

Later the distance X, being the distance left from H0 to the center

of gravity of the roller, will be required.

S- H2 - H0 - •' (30)

The slant height, Is, of the truncated roller cone is shown in

Figure 6 and is

2 = (31)sir ()

and the big-end spherical radius, RE, is a proportion of Is.

19

Page 33: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

V is the radius from the roller centerline to the point of contact

of the roller and inner-race guide flange and the flange reaction.

It is directed at an angle, a, where

a sin-1 (32)R

e

The lever arm of the flange reaction about the midpoint of the work-

ing surface of the roller at H10 is

f= [R- 72 - H2 + H0 sinc (33)

Figure 8 is an enlarged view of the race profile showing the crown

drop V which is measured at a distance G from the end of the

effective length. The contour is the same at both ends of the roll.

If the radius R is known, the drop at G isC

2 e 2f H- R -C-- G) (34)

If the drop is known and the radius R is not, the radius isc

k 2e• G2 F (42 2- ,

R + G) (35)

2.4.3 Roller Equilibrium

Figure 9 shows the forces and moments acting on a roller which is

in contact with both outer and inner races and with the inner ring

guide flange.

In the following discussion, the subscripts 1 and 2 refer to the

outer and inner contacts, respectively.

P and P 2 are the contact loads. M1 and M2 are contact moments

resulting from nonuniform loading along the roller's length. Fc

is the centrifugal force and MG is the gyroscopic moment. The

20

Page 34: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

u -3

0 0

',4U

m

0

'.

2I)

Page 35: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

c7a

be4

4) 0

-41

t"4

00

I

22

Page 36: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

latter acts at the center of gravity of the roller which is located

the distance X from the central plane of the roller which contains

the midpoint of the effective length.

The centrifugal force and the gyroscopic moment are

F - (m + m + sin(B - I-) 2 (36)

T

MC - IcgfSEwRsin(B - f) (37)

where fZE is the orbital velocity of the roller and wR the angular

velocity of the roller about its own center, both In radians/secnnd.

I ~ cosf 4 ) + ( -T dcos(S T)38E a + [ + P(2 1 cE (38)

T 2•R a (d_ [ý1-22) 1 - - E- (39)

0 1 and 0 2 are the input angular velocities of outer and inner rings

in radians/second. P 3 is the reaction of the inner-ring flange on

the roller.

In the present problem, we are concerned with external forces applied

to the bearing inner ring along x and/or z (Figure 4) only. There

may also be initial linear displacements along any or all of the.

coordinate axes, x, y, and z; and initial rotations about x and y.

These initial displacenents do not change when external forces are

applied along x and/or z. However, when initial rotations are pre-

sent about x or z, operating displacements may occur along x and/or

y as the case may be. The system, therefore, has the possibility

of three degrees of freedom; i.e., working linear displacements along

any or all of the axes x, y, and z. If initial displacements exist

about x or y, working displacements in these modes are prevented.

23

Page 37: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

The approach of the inner race to the outer race along the line

defined by 6 for a roller at azimuth ' is

PS (6z + V")sinz + ((6 + 6")cos + (6 + 6y)sin¢ - D1 \2 zx xy y -- 7

cos6 + -{EsinS + dsin(2)11(0 + 0x)sino + (0 + O")COSO}2 2 dsn&)1( x n'.

(40)

PD is the diametral clearance or the total diametral play of the

inner ring relative to the outer ring before loading.

The azimuth angle, 0, is related to the roller position index, q,

through

2r (g-l) (41)n

where n is the number of rollers.

The double-primed items in Equation (40) are the initial displace-

ments Ln the several modes.

Also, as a result of the initial misalignments which may exist about

x and/or y, the inner race at the qth roller may be misaligned the

amount 0.

0 (0 + 0)sinO + (0 + 0y)COSO (42)

If A1 is the approach of the roller to the midpoint of the outer

race, the approach A2 of the inner ring to the roller at its midpoint

is

(A - A1 )COS(C -(43)

2 cos(a + j)T

If 01 is the misalignment of the roller relative to the outer race,

the misalignment e 2 of the inner race relative to the roller is

24

Page 38: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

02 a 0 - 01 (44)

Misalignment is positive if it tends to squeeze the big end of the

roller more than the little end when the big end is at the left.

Figure 10 illustrates the geometric intersection of a roller and

raceway.

The profiles of race and roller bodies are referred to an XY

coordinate system. Note that the X axis is positive to the left

of the origin.

The equation ef the race surface is

Y = 0 (45)

The equation of the flat portion of the roller or the element of the

basic roller cone is

Y = Ai + XtanO (46)

The equation of the crowned portion of the roller profile is

(X - HsinOi)2 + (Y + HcosOi - Ai)2 . R2 (47)c

The subscript i is 1 for an outer contact and 2 for an inner contact.

The intersections of the race and the crowned roller surface occur at

X A and XB

X =\R2 - (Hcosei Aj)2 + HsinOi (48)A.

XB = - (Hcos9 1 - A) 2 + HsinGi (49)

25

Page 39: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

0.

low

V4

A-4

264

Page 40: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

XAi and XBi must be within the projected extremities of the roller

crown. That is

xl < xi (50)XA X A (5

xBi XB (51)

where

* eXA - cOsO8 + VsinO1 (52)

e s £-~ ~ + Vsinoi(3

If the quantity under the radical in Equations (48) and (49) is zero

or negative, there is no contact between roller and race.

I F

If 2 cosO > XA, there is also no contact.

If X > XAi is set equal toXA i A, Ai i

If <XBi XB is set equal to XBi.

L - > -_- coso and Xi • cosoif 2 cs1 A 2 1IA

the value of XB is X (54)

B i B i tanO i

From Figure 9 the conditions for roller force equilibrium are

"-P1 cos8 + P2 cos(8-T) - P3 sin(8 - - - s) + Fc . 0 (55)

-P1 sin8 + P2 sin(B-T) + P3 cos(8 - .- a) = 0 (56)

Equations (55) and (56) are a set of simultaneous nonlinear equations

in which the variables are A and 91 at the outer contact of the

27

Page 41: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

particular roller.

The flange reaction P3 is obtained by taking moments about the roller

midpoint.

{-M 1 + M2 - M +F Xcos(8 - - dsi( -T

P~ 1~ (P 2 2 1 P2)sn2)P3

(57)

From Figure 10 the intrusion of the roller into the race is

A = Ai + Xtanoi XI < -'F cosoi (58)i i lxi

x R (X-HsinOi) - HcosO + A IXI > -• cosO(59)

The derivatives of Ax with respect to 0i will be required later and

are

lCosx2 0c2

dA (X-HsinOi)Hcosoi iF__x = + Hsin- 1XI > - cosO (61)

di PRff 7 T(X-HsinO1 sni G 2c

Lundberg (6) gives the approach A of two cylindrical bodies pressed

together with the uniform loading p as

(qR + nE) XA - XBAx 2 p {1.8864 + Ln ( 2b } (62)

x

nR and n E are elastic constants for race and roller, respectively,

having the form

= 4(l - v 2) (63)qR,E ER,E

where v is Poisson's Ratio and E is the modulus of elasticity.

28

Page 42: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

bx is the semi-width of the pressure area in the rolling direction.

(nR + n d 1/2bx a 1 21 Px dx (I + Ci ¥1 (64)

Ci is 1 for i - 1, corresponding to an outer contact; and -1 for

i - 2, corresponding to an inner contact.

d cos8S= xE (65)

x

d cos(B-T)X2 E(66)

2 Ex

whered + 2XsMin()

d = (67)x cos(2)

E - E + 2Xsin8 + dcos(6 - -) - dxcosO (68)x2

The value of px corresponding to Ax is required. This cannot be

obtained from Equation (62) in closed form. It can be obtained

numerically in the following manner.

Let p' be an estimate of px. A good starting value isx

5 x 107 A10/9P 5, x (69)

(XAXB) (/9

An improved value of px is

(Ax Ax)Px Px, dx /dp (70)

x x dA'/dp'K x

L' is the approach of race and roller bodies calculated for thexcurrent estimate of pI using Equation (62).

29

Page 43: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

dA'/dp' is obtained from Equations (62) and (64) using the current

estimate p' and isx

ciA' (nX - xS (nR + nE) A B

dp- 2i (1.3864 + in ( 2 )b (71)x x

Iteration of Equation (70) yields px to any desired accuracy.

The contact force, P, and the moment, M, are

(XAi X

P (72)fXBi

Mi X. PxdX (73)

X XBi

Equations (55) and (56) may now be solved for A1 and 01, the dis-

placements at the outer contact. Again, a closed-form solution

cannot be obtained and numerical techniques are employed.

If estimates are made of the variables A1 and 01, Equations (55)

and (56) may not be satisfied and there will be the residues EI

and c2 for Equations (55) and (56), respectively. Differentiating

Equations (55) and (56) gives:

d_ dP 1 dP 2 dA 2 dP 3d -coss + COS(--T) sin( - - a)

dlA~ld A1 2 1A 1

(74)

d_1 dP 1 dP2 dO2 dP3

dO -O di + cos(B-r) 2 dO 2 -1- (E) do-1

(75)

de 2 dP 1 dP 2 dA 2 d P3-- = + dP1 + - + cos(ý - t- n) dPdA1 sn d--A s'in(6-t) dA2 d• 2 A

1A T11d 2 dA1 1(76)

30

Page 44: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

dc2 dP1 dP2 do2 dP3dOa sinO • + sin(P-T)2 dO + CoOS(-2 a) d1-

(77)

From Equations (43) and (44)

dA2 -cos(a - )

2 2) (78)dA1 cos(a + j)

dO2

dGI

And, from Equation (57)

dM1 dM2 dA2 d dP1 dP dA1 2 d 1 2 sin 1dP dA dA dA1 2 ( dA dA2 1 2(3- 1=11 2 (80)

dAI

dM1 dMd dos dMn dM o

dP3 - dTO- + dO 20 d01 dO d02d1 2d I - (81)

I 'adO01 r urn siae, mrvdetmtsaeIA' and 0 are current estimates, improved estimates are:

d11

1I do 1

d e 2£2 dO--

SI d -A d--A(82)

dA1 dO1

dc:2 de2

dA do 1

31

Page 45: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

de1

dA- l

dA '20 1 ol- de 1 d1 (83)

dA dO

d1 1e

2 2dA do1

The determinants in Equations (82) and (83) are calculated at current

estimates.

The derivatives of P. and M. with respect to A. and 0. are3 . 1 1

dP. rX i dpx dAx1 -5 x i dX (84)

dA. -A -- dA.dA dA.1 1B x 1.

dP. XA dp dAd f i - x dX (85)do X dA do

dM. -fXAi X dpxdA xdX (86)AdAx dAx -

X 1dM.i= XAi dp dA

-X ' dX (87)dEi X dA 1dodM . dPx dAx

dO.. Jv~ dx do

The value of dpx/dAx is obtained from Equation (71) and the value of

dA x/dAi is unity.

If Equations (43), (44), (55), and (56) are differentiated with

respect to A, there results four equations which are linear in

32

Page 46: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

dA1 /dA, dA2 /dA, d 1 /dA, and d0 2 /dA and from which all four deriva-

tives can be obtained. Of the four derivatives, only dAI/dA and

d01 /dt are of interest here.

d-cos-dP dP 3 " dA 1 + dP 2

1 CO 2 dA1 LA 2

dP3 dA2 [_Cos$ dP 1 dP3"

sin(8 0- -a) - 2'dO+ a _-

2 d P 2 dAde ' dO d0

dO1 +cos(B-T) dP 2 sinC - T a 2 0 (88)

2A2 d 2 d

dP1 dP 3 dAl n dP 21 sin5 d + cuS(-B a) =J- + sin( 8 Ta-0 -- +

A12 + 1 d2 d P3"

3d 2 dP dP 3 dP3dd - - a) + s + cos( - a) dO2 1

do I inBT dP 2 +csa- T- a d31 2o 0 (89)dAj02 2

dA cos(a + T dA)d1 1 (90)dA + cos(ac -()

dcI dcz2 _da- + da- 0 (91)

Equations (88) through (91) are easily solved for dA /dA and dO I/dA.

dA 1/dO and dOI/dO are obtained in a similar manner.

2.4.4 Bearing Equilibrium

The reactions of the bearing on the shaft at the central plane of the

roller are

33

Page 47: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

nF' - cosP l PlqCOSBq (92)Sq= q 1

nF' = cos8 E Pl sPnl (43)

q1 q q

nF' =sina P1 (94)

qY1 q

FI + dsin(F)}Pq + Mq]sin (95)x Z

F nF [= {Esin + dsin(j)1PI + Ml COSq (96)

Considering the three-degree-of-freedom system, the inner ring is

acted upon by the external forces F and F and may have working

displacements along x, y, and z. Equilibrium requires that

F' + F 0 (97)x x

F' = 0 (98)y

F +F V 0 (99)z z

Here the variables are 6XI 6 and 6z. Again, a direct solution is

not possible and numerical methods must be employed.

For initial estimates 6', 6', 6' of the variables Equations (97),x y z

(98), and (99) may not be satisfied and there remain the residues

Ell E', and L3" Improved values of the variables are

dcI dc1de1 de1

1l d6 'd6y z

de 2 de2d2 2 d 2€2 d-6- d-6•y z

de3 de3E3 d-6 d-

6 6' y z (100)x x D

34

Page 48: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

d E1 dcI1

d6 ' I -dx z

d6 2 'd6x z

d F-3 d c 3

d 6 £3 'd6 = 6' - x z (101)

Y Y D

d 1 d 1 1

x y

d-2 dc2

x y

dE3 dc3d•6 d- 3

6 -6' x y (102)z z D

where D is the determinant of the system.

dc1 d1 de1d6 d6 d6

x y z

d 2 d c2 d c 2D ( d - d- d- (103)

x y z

de3 dc3 dc3

d6 d6d6x y z

The right members of Equations (100) through (103) are evaluated at

current estimates

de1 dF'

d(6x 6 y, 6 z) d(6 x, 6,6 (104)

x y z x y z

dc2 dF'2 Y -(105)

d(6x 6y, 6 Z) d(6x, 6y, 6 Z)

de3 dF'

d(6x, 6 y, 6 z) d( 6 K, 6 y, 6 ) (106)z x z

35

Page 49: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

Although only the above derivatives are required in determining the

equilibrium of the system, the complete matrix is required for

stiffness calculations.

dF'n dPldF , - - cos2 qq (107)

d(6 9yS6' 0 ) qd q d(6x'6y6z1 0. )

dF' n dPlqX 7-Cosa cOSOq (108)~zxv

d(6X 6 y'6z' x'y) = q T(6,6 6 q0 zo x (108)

dF' n dPlq

d(6 ,6 6 ,O ) sint d(6 x6 y6zOO 10xy z x y q=1 x y z'x' ) 19

dM' n dP1d(6x , ) E =2{E sina+d sin(! •6 6,) +

d(X6y z' 2x9 y q=l [22dSX'6'~ y 6zO x 0y

dM1

d(6 6 6 qq , )] sinq (110)

dM' n l

d(- =6 2: = {E sinB+d sin ,6 ) +d69 6O VO2d(6x,*y,*zOxOt)

x y zxy q1 x y zx y

dM1

d(6 6 6 q 0 ] cOSq (1ii)

where

dPl q dP1 dolq dAd

d(6 ,6y,6zExOy) [dAI d dA do J d( ,6y,6z,0xO z)x y qq q q xz

dP 1 d6 1 dP do I dOdA doq do+ d1 d(6,6y,6zO ,y

q q 1 qJ xy'Z' x yq q

(112)

36

Page 50: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

dM I dM dtA dM dO Id

-I ! |-|s t

d(6,6 ,6ZO ,o dA dAq dO dA 1d(6 ,66+q q

dM dA 1q +dM I dO dO..... + _._..•. .. i______dA dO dO dO d(6,6 ,6 ,0 ,o)

Li q I q ' Zq q

(113)

The derivatives of A and 0 with respect to the inner-ring displace-q q

ments are, from Equations (40) and (42)

dA

d6 = cos6 cOS q (114)x

dAd6 = cosB siniq (115)

y

dA

d6 sin6 (116)z

__dO = I{E sinP,+d sin(2) 1sln~q 17

xdA---q = -{ sin+d s (!))}cSi (17

dA q=I E sin,,+d sin( cos (18)dO 2 2 j q(1)

dOd(= 0 (119)

d(x9 y ,6 Z)

d r

"•) = sin q (120)x

d •j q

2.4.5 Effect of Unloaded Roller

In some instances one or more rollers may be out of contact with the

inner race while in contact with the outer race and the inner-ring

flange. The conditions for equilibrium of such rollers are

37

Page 51: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

-P Cos$ - P3 sin(a - a- c) + FC 0 (121)

-P sin8 + P3 cos(W - - a) - 0 (122)

where-M - P dsin(t) + F i cos( -

PM3 .1-M. - 2 1 (123)

Here the variables are A and 0I. Initial estimates A' and 0' will

generally fail to satisfy Equations (121) and (122), and there will

be the residues e1 and c2"

Improved values are

d E I

11 dO-1

d e 2C2 dO''A 2A - 1

(124)1 1 dc 1 de1

dA1 dO1dA dO

1 1Ke1dA dO1

d ! 1 (125)

1A I de1 _

de2 dc2

1 d

The right members of Equations (124) and (125) are evaluated at

current estimates. Iteration of Equations (124) and (125) yield

A1 and 0 to any desired accuracy.

38

Page 52: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

The derivatives required in Equations (124) and (125) are

dc1 dPI dP3

d- - cosa - sin(a - - - a) d (12•)

1 dP 1 dP1- - B - + in(L - T- a) d 3 (127)

dA 1 1A2 d

dc2 dP1 dP3

dc - -sin8-1 + COW - .1- a) dP(128)

dOI do d1 2 dO1

where dM 1 ds1 n() dPI

dP3 d1 1 (129)

dA1k

dM1 1 dsin(T)2 dPldP3 dO1 1

dO1

Rollers which are out of contact with the inner race must be considered

in evaluating the bearing's reactions. They, however, contribute

nothing to the stiffness matrix since P 1 and M for these rollers do

not change with changes in the inner-ring displacements.

39

Page 53: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

SECTION III

APPLICATION OF COMPUTER PROGRAM

The analysis of Section II has been programmed in Fortran IV for a

digital computer and is suitable for use on the CDC 6600. A program

listiiig is presented in the Appendix.

3.1 Sample Test Case

To illustrate a typical case consider the bearing in Figure 11. This

is a tapered roller bearing assembly modified for high speed operation.

The geometry of this sample bearing is summarized below.

Number of rollers 37

Roller diameter at midpoint .2913 in.

Pitch diameter 5.0 in.

Contact angle at outer race 140409

Effective length of roller .6001 in.

Roller big-end spherical radius 0.8 in.

Radius from roller centerline to point of big- 0.75 in.end spherical surface with inner race flange

Roller crown radius 100 in.

Roller small-end corner break .02 in.

Roller big-end corner break .03 in.

Crown drop gage point .03 in.

The operating conditions for the sample case are:

Rotational speed = 20,000 rpm

Load Condition #1

Thrust Load = 3,000 lbs.

Load Condition #2

Thrust Load = 3,000 lbs.

Radial Load = 700 lbs.

40

Page 54: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

7J0'7

Ir ve~AVA. 416 zP

r -~7d7ek2 it

V-d 78M~'~

X"~"2.*4'dOP

Figure 11. Samplxel T f"ipcrcJd .u hrtai seml

41 414,l~eo

Page 55: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

3.2 Input Format

Figure 12 presents the input data format and Figure 13 shows the actual

input data for Load Conditions #1 and #2 of the sample case.

3.3 Output Format

Figure 14 presents the output data for Load Condition #1. The input data

are summarized in Figure 14, followed by the output data including the

internal load distribution as well as various other stress and displace-

ment parameters. The stiffness matrix is given on the last page of Figure

14.

The output data for Load Condition #2 are presented in Figure 15.

42

Page 56: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

C 4c

.ICC C

-C - C

4..j

o. 0

-- 41

0c' -C

C, c

c c

l.A -- c4

ccc - 0 A

c. -. 1 0 1

-43-

Page 57: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

ti r0 ~ 4 co'

fA W! i 1 ItU. Iw II

I--

to

0, in * iiCiLI

II-

c* ty a) Z 0 da4 C

ci Im auj0

0: (L W wz zw

fn 03 to

MFn fA U.

44)

Page 58: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

C3 9

j .2 - .L =,&

m-0 =0J

mc- 0 0. se

a1.3 z Xa 0

a...

m w 0 3 c

#0 x z 0

N C45

Page 59: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

a~

44 0 02~~73 013555= 0 Z5.. .330O023002JS0 .90 dd4444 44d*4da44d4,0k4.ia4.a44J0*4.4.OeA°

. .....................................

~~. ...+ • - .......

0% -

. ......

4 C". - 0 N N . %N q 1. # n . N.. . . . ..%N N . . . . ) N cI: t. 'G N

cto

4.449 3000

44

o 0 4 00 0 0 000,0000404002

.--- a.ax 0 *. o o..o.. ........ S0.- 0I

4~c C4 2 0 ------------S~lt~t *S 2* S. *s

1 00 0 c4 * * S 2 *.:u4s S. *-- - - -. rg-t-- - - * 2- * . *

440 u4 0 "aN N N N N ~ Nfh44 N N' tN N

44

~~~~~~~- n .ii • ,i • _ .l + +. . oo .o+........ +......

S.. . .. . • =- - • .............. . . . . . . . . . .

':Z • + +, + oo +.o .o .o +.....0......o....0.

46

REPRODUCED FROMBEST AVAILABLE COPY

Page 60: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

0 I l3. ll J 3 310a J'37:31( I 3 Jl 3 3 aJ.02 'tI

2 *, . .. .• e7 - g. gg ge, I" gieg .ci,,,.

S ,~ .,...0.. ,......... r 0. . -a0, , .. . C

• l m . • . •. .. ) ,.•. .. .... ,..... ,),...

* • ,,,,, , ,,,, ,,I~ e ,,,, ,io*, c,,, , Il,,, .. .

)o 'a 3U) - 3c-0. 0,-... .,-. ........ lc 130. . . . .. ia o' ..a 3

I --

t. • ..... o.ae.....o .. ,.... .... . oo. o

Z"~ ~~~ .2' 2 ' .. . ." ., ."..: " .2 ". ". ". . .C

.- •~~~~~~~~~~ ... . ., . o ... , ... . . . .o.. .O .o . .o .o. .. o

-, ,*.,v' .d0 0,.¾, ,g f. ....,. ,.7..' . ,.

.4 NC0JJO4UJ)J0J.aJ0J)J.J 24437JJIJJ

47

•,• n):• •"•-nREPRODUCED FROM"•," '"•I>÷• ;-',•"• :'U"- ''• '•' . .. BEST AVAILABLE COPY

Page 61: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

4'P

VI 0

S.... ..... ..... .... .- _ .•.aO . . .. ... O. ..- J**

U.84REPRODUCED FROM O.JBESTAVAI•I.ECOP

Page 62: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

-a. 30 6 .0133. 3 tO 0 3C"N4N eCN............... *.2i0*

141 (.3 * e..0*#4.31N31 ......~~ .e.f..........34 * 3-

- ~ ~ ~ ~ ~ ~ ~ .. . .213 .3NC NN.'N .N3~ 3 .3

f .34 . .. ..

3134£.~ ~ ~ ~ ~~~ ... .331 .t~ 4 NjU .N .m0.3 *00.*-ca.a.c

0*~~~~~~~~ -31-- -C- - -N@ N N N N N N N %N e~.tC n. .3

.. .. .. .. .I .a . .4 ..-....

................

a t~ S -- Ut- 113330------------ 3 3s* s- 3- 2f~s-

31S. , o . 3N'11 3.1'S' N ar-7(C~,.lrb~ .949 333

REROUCD RO.0 .24 -3b3-3A-SN-3c'-O33s (BEST AVAIABL COPY O r' ''3.

Page 63: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

I A l tlI tlI II I l l ~~l lt fl *'*Cl

e4 0000035(10ee • • 03( S0'o 000 '00• 0 e 0o 0 0oQ0O I

42 -5MWli 0.il. *CSNS0SaN4lSt IIIII .Ile**

S1II CC CI CC ,dAAI As, .I liflt i IAAS CC ! t

a C t*'' • 5 S C S tN b 0 P a t

- Ag ,r,.,J, ,r., C ,%C ,A~r ,,,, s,,, (,.~~~d', ,,s,, * , ,,

A O000((10( L (00000010000s,..nst i i i i P i t i i bi i i I i i i i 1 i a i i

C.jJ 0 l S C C ~ * ~ C C Q * 0 .

I dl AIIflii iiiii I~dlflA.A sii. tg *.,nsIi IflWS.l si.llsi A II! dI, iU!

NO I 00 4(i I i I (100130000I 1 I G 00I 000000 I 000000II IiII IIII

BESTAV......OP .........

Page 64: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

4J

- - N - N. C4 ~ ~ .3 wauI-0 - O

27 .40 ...... 0 4

*iI i I II I II . # • r Ot d 02 ' 0 0% . • Z40

• .. . . . . . . . . . . . ... . . .. . - . - * ., * J ,

....... . ......... -,

i II II 2 4 1z i 00 X U

51

REPRODUCED..,,€ n FR.....O..M :•:-.....,-,BEST AVAILABLE COPY4.. 4...

Page 65: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

APPENDIX

COMPUTER PrOGRAMFOR

CALCULATING STIFFNESS MATRIXOF

TAPERED ROLLER BEARING

52

Page 66: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

7 1-7 7 1- T Lai0 fI.- k31. 01- C d1 w3 7 1-- 0

:7LA I. li3 ->, 0 -

>W Li 4 I- -)4 -i -LAI CC- ae4W ib-4 1Li7 LOZ II InC 0 < .-. ý kIn Li '.I.- > O so (.D m M 4: 3 39 N ILI I e ui lLAt. I-- I- 4 7 Ii L I- cA C IA 7 ItulI-Li 1-I X1 ~ 0 7 z 7 kI 0 - 0- 0La. '-r _j li LL 4c0 1- 40~ L i* z1.. ./1 4 -L) ZZ LLA.4-4 4 UZ .0I- 0La cLA c c ~ )I '9 61- LA - -CL 4c

0. ua c W -A4 4j<0 u LALL 1- 47x0.4 '4 LA.LL z 7i z zZ LA. ( W =0 Z LL $- c0 00 L±J 4tid W. 1&Id er L) Z 7Lq 04 0 qt 0.

if 0- Z LA U.) - U'L~ C~ C . A 1C LaI.- o- 2'- LA. 4 I O- i $- t& < - L- C~

r) ~ cr)LA x 0 > (Dl 4)- J7 0XLJ- x -jZ. Z~ u I-4- Z~ :D In-J _j w I0..ZL u 0

8 r r4 i Ic o- Lt =O CcT Ir -S- -ita 7- y "J c 0t1- ZL) - 3 7 7,

<-4 *'-e XLi4 LaJ tu - 0 ir z '.Z00f 0 In -e L> IJc 7C- LAI. C I -L I Z~- O = ý-a= a CIA -L(I -9a'- Cr U . 0'7 Ll C (L- CI'- LL

1-L 1. r LA c 3-1 IL r44 IWJ'L , ILI 0 L 4U. 0. 1- LtaIw zaJ t 0-C

a 7 07 C fL - = I- T 0:f IL~C''- -C'..- 7 0 e U La.T c 141 .

MAL, ul 7 TLi ir7 L--wl S&1 &D:r TIA. C) Id aASQF 0 > '.4 rZ4 77' ZT > 'Id UM

I.- =C c 7 1 7 1-4 Wa ai.1-- 7".-- s-7r -a> Lt o 0-4_j7 -0 7 C! of 2' 0- .- Ms *-4'-J0 l 7 4CP- LIl 7

. _ LA -I ttC,0 LA0 X 7Or T ILA WU. La5Laj'I.

0u 0~ -a11 >tf 21- ULA X> I-- U 1-L 4IAJ LA 7>

3; LA gy '% c3f P-. 07 AI u.-4 AI)I~- -1ý-Ii u (JO.ti', * I.

%C - L -1 -4 4- CL 4!. u-1 LA~ I.- A 2 04 7cj u - 1 0" Oo no .A74WJ. W -0(j X Ox4 4k4d4L bL-so (- x I7k -40 7- 0 M f1 q~ a.Zti 0 uu.)~r LA LAA: t 7 w ~

VI -J AL - -1- = --(C C.L'LI.-L,-d7 7 -J rV)LL: LA, - C 9p1161 )71 y OWiI AiL _41 .- , U- . 11ý ) -): - 1 1j0A

-JVIt-LA CLA- a Lual1- 76- 3 <L ~- LA7 a a j I- I. Z Lea, I.-

I-- 1-7212 W Cj 40 <W U 4j W4j0 0 .> ILU Z C -) . )w>I

L V C Z* ýL, C~ c - LA- LL 0 14- Vý C4 i O0: 0'- tI.-I- 3c3r L,04 J u- >iL cr M . 0u TZ (DOC) *<444La.wO-Lacm 000 Z

-. * I- 1 L -0 C. 4, 1.-Lj6. #,- ,Isf r- ur a 74I- 1-0 2rcLr C LC' I--LA 4i r a a ttO4!At u C- 0

L I- -C J C LA t T LA C-LA 1. I.- ! U2 6 .. .Ll'2a L. T* LA %C. a

SL- -J7-1--'71-- WLL ty 0 2C j-'4I < < 1--0 0 Cl W4_4-1-4

r~ t -) '. 117 rv -J < . Lt C~ . IC.I- 1 l crb 6 C, Si ý

C-

0O *CO FL ra IL I- c C C~V) to4. I I II- I Cc aZ.4SI

Z 0 .- 4.4 -4 -0 .. q -4 1 1I..

T p--

53

Page 67: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

%

0 .- 4 .4-- "O 0 ulLrt (D4 I-(x l Li

b-4WL 2 Y I -U - u m 7x z 4WtLJ 0 <0z Ld 7 u-

c c > c 7 l- L.CC L c~

Wt-C OLjUW 7Li. 0 0

>jjZi "~ I _j ti- _ Na

*~L L -W 1 JI~J Id 1. ,-'D

iii c I-W U " O.I JWW -4Z0 Z <"

I oxn WZ 39 Ix 0.JL z za U cLW)IJx 4AJ>I-ZL 4WLIo T4 w -

it LA II *. C'y *C- I-** _jaj0 "

>1-7CZ-c 17i- LizO u - LL1-7' > -

a C C t.-t 7 3l-' 12I -J I- - L 6

I.-7 Z Z I*-> ijJ 1 7 * w Q .

7 .4:jVIL'fo-U r r OtI 7, 0- (C xul >t' -CK

w w m I -lj 3: LJ- I&I Lit LV t-M~ " L.. N a m -li

001dm- .- ww au - u- c W-j crr 7

C LLu 3Z c Lr C LsZI bL - VV r _j I-j--_

D ., -f 7 1 . L 7~ I A *7 W 2 1.1- LL 00L 1.J7. D3 r

b7 lyc o3." in ifZ I.-TI' cr7'.4y L er -aW7I ý-i 22.. nuIJrtA

C- 77 c ' M Ul C .4 07 O7Lj LLI-e4UI- V) ri- )r-Jc

< X W. LAI (D t41 0 WI- wO =4 .4.O Z4 " Zi " 0 w0.0.QZZ

x x 00 _jI Mr- - 00LJ 0C n uZ4- ZO0 4z M LiLtLfL LLJ

Z :.It - c d z a= u hT<d-4Li74 'CQr4LJ 7Q.L' cr4 27Z~-J W.4I

<. 4m I'D. I4 U CW f.0 ui 4 Lu 0 < W le A f

Ir z z- a x 0 U- 7-.4ý =-7 . 4 W-i (D -i W01..4(44 j)W)- 1-1

u tj10 M<"OXZW OOf -J 1 -4<WO.4L1zLk wxI 11 a-

f 5%ooW C-)l~4 M A I- i LulZl< - m.. Z xm -0i. l00 )0

I- .4 1 < -j ~WLf) 4 -

0 4 74 C QJ(Dul-4 L V Y =7 0o141.1

W z o* -4 . LL U- * si U. le C.<

N rU N - 1 ) .4 I4 .4 5-4.. Lr Gr I44" .- P

-4 Li 0 If Z 41 04 a 4 M =444&4X3 4 X4 -j4 444 LL 04 44 4-4X 44L<; .EL130Z

0 r Z r l ' -- C' L) 7 - r 07 r"7UltPn." r t i 54LL

Page 68: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

W- a 4c * alI.,- Cat i . a -

7i (5(%tz x -4 W _ n rIA -I-C

7'3 ! I--x: -4 V ~ a .ý jbj4 ).C *C L I( II ..; N r - > - x_j < -i cr LL .j oi(vi >To .-* I.l' I,- _j U o -~j a~l- -104 -W V) W4 4t4Ic ý- I-o IL - Mv Li VC it' 0 -C.C -C C IN c 2

r- i a . I- 7- ILT. - 0 0> ft C ~ >V4 L i- T - K ~L- C-,f > ~ IS. nIZti I.- X~C -U'O 4r 0

Pb~(o j .- L 7 :r LAII M Ix I.-L Li Ic .- 4U0.e L. *. . .4I-i -jC - Cý -a- C - L'C,> LiC 'E c~ > tCýC' ( V -) u.A -U C

* - P -.- 4~ P" ý- . =- I- X NJ-- *0 (rj P" x In ILIC C C _j a UAr- -. p ., cl .- -

le 7 W _j - 4-Pa.L I&.-. - 4C, !~ Ii'C 0, "0 a~I -L .. C Lj> ;

li A l , w( - I-- AI b > 5L 4~ ý t,a .L L, NC -C -( C. - ). = I--r l m Coo~ .- 0 *1 In sI - 0 _j %0 N~ e 0 -DL - -0 . >I--w :A . Id uJi ~ (- W f 1--C 0 0 A4 C\. 0- > xLn 2 'OoCO L .4 _ju fl -- U.j. XNon Cf- b-

0-- 10-t .0 4 L-1 0'i 2 ~ 00.- U lJ , I X - t -U u ~ E P.- b-6 - ip U > IT7'1 - - -W . I30' % I 0 (A -.4 - It Qt 4 -or or i- I..- )ý - Li 4 M-iA a . -1 C44-0 tO L00. CL w zu l w - LALAl - I- N _jX T .. 4 LAI.~ ~- M0_ I-'-ir #PaC a0. C-. 0 aU -LLJj - M. - -0-<<C (Dl

-J -J 2.ii L A L, 4L a - -W w% rL7 711 lp2- C ~ - rd 0 . y I- -- -a> ~ 0.--S.-.- =)/ -C 11- craý. - PIt - L2-Li ll-- LI-I-.. tre w 61 LP)iia j( tr.04uX ft--I--X.x (A T-4 -4t.' ( -C ft U WJ - .- -X)K lý1

F, -c:.cTI-o I-a' I- - I',Cr .C 0 r IL1.I-C a - 0 1tDup0 %ow < 0: 1.-,0 ., ,0 .4 C . .i t * M -. 4 ' -CiAc r

V-. - X < -(NX)( Zcc 0 LWCNOM0o7 ~- -. .JV K"1~ * 0 1-4cw -- --).,DO >C1u~ N O Ifl4I 4-4 4 > . ~ -. -0~ -pp

*It

L"- C*C ft '- _j 40? 0 0 IT-

.j i .J .1 Al i, ,j '44Lj J 4 j .j

55

Page 69: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

0.

CC

- *-

10-.

0~ a- Inf L

LLJ M

3: 1, GV1:

a, 4 (U. %. I.5- 0

C5 00 % %z Or.4u

1- -4 *w 4l - -nV0 3- 0 5:C C- a- *rc , . C . I (1,~- 7 :

'-0C0ý :1 C % ;U 0a f mata 0CAl + tC 1! 1 N%

i~a 0.LC t- t 5 aaw7571 r -C , LL/ c r- c

m LL o LL ou n - i.4 z >-r-c>-E i:L

rn ~ - -- htl D 4 -) s

-.- -- : C . a a-It* .. -tLJ~ * it56

Page 70: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

cc

x

x

Lfl

Arx

C 5+Iiir

11 cc m M -

,a 77 T -T - 4c .M + + * X T ,,SIw

- i =) = ~ % *4 *i

(~N 440 m i 00 N* xt r-4 11 a7 7r '-! 0 1) * (VY Y I

+ f-j C+ 31* U: x! r, *nt ,N 0<U .4 uJ +41 -1 1 1 N nC Ut

So- a 2 ** )K >( 6W< C a c4- < . *CI. C, c 4c- U (7.C0J %.; U4 U. ff7 v(\ V1 L -

* -.:,1,c , A A , it r v) %jr XU 41* 41 4 . c -m 4 a0r Q- w1 N.4 - .f 0 -4.4 1 * <- < a-IU.t rN, m

C\ 1- 01 1.-. a-a C-4 xD I iI-u W M= M CN 3 c>- > T <04 V' _j _j j 3 ~ 41- a IV 4 A0 4 -- *-r I

~-cr I V cr >1 >1ut 1 u - 0

V-CU C V0 Cf- *r Lr S+ (z cC..-I6t-N-11.Z1 CC1 -4 C o . I (.(C T)tfI ).) 11X1 l ZKX cy i -i - ia-C 1,C --- 1 11 M C O i \ It er M- 11co 11~4 - of a ~It _ U;of II~t 0 C 0-j X I- NMN X11U -00000 4M1 0 11j( 1,- & 41 XLi=

I 7(V. XC1-C 11)C. 0504J41 1 I, s- *-l. X X 4C C~%4 0C .LA*IU.-.X4rU rZ r LI- WI -J TtL9~ 4a 11C OfI Ift 11 -. .It-(cfd- 774 < *.-M -5 - I s- L) * U --

* t \e .J-4 x a sa -e c a' C * - C\ * : c'. 6- 1.- C - ii L Ui ... c a ' 7 -

C 0 00

57

Page 71: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

4- 0 0 W J w-. 4-. .WU 7 N\ T

o x -.. W. b4 -0.LL. (1.1 1%4 x

Lb tiC c 21 cI-j 0 7 4 .1

u (0 LAl 9.4 <z Z L J~ :) -4 Z

2 -.1:3 0 7 Laio cu 0. 140 )0. N~ >- xUP M 0 >04. * 4- 4 Z

LA 0. X C I.'

< L i- C10.0 .q U1 0. U ~

4ti - rz 7J .

LL 7 7 -J .0 >0 7 1. *

* J 0. - a I r l' .0 w f (n af4 4 v " _

m III rC) LLI . a-4a 40.1 L .01 .- ui OW1

in4 4 .. cr -. 1 t.) Z .

U0 0 D CL O 4 0.m 0 1.. x J

0. 1,11 770. 4c Zjfl' U- 4I 0. * T044c. In 71 l'00 U 0.U-

0 L fl -j - I* M. * 0

40 4. . Co 110 0 * 047 0 Z - :3 x tfn Z In 0.

IX - IA,'- i _ >4 4 _j xs e- -*1.4 0 Xx - 4 a

a .< uX. . L i~(\ ID4L~ .~ .W -C 0 ~ c L Lf 0.-I.-0 S .~ U ID a m * x z. A jýOLa

Y Y5 7 !4I l- 1-- 14 W-I Go.Jx 4 4. l'- ct > Z CMM<MM~f* I itn L-o.- = um-1.-4-111-0.0 x 4. -- "-e

7 In 1 7 A 0 0 Z-L JfldTI1. IJ A-LOI .4T Nat a0Ij~ _.. -r00 L0t 6- ~ OLi T PI-0 14I--4 6 g e 0 oo*4c.4N.LL-% 0 w4 a.v4N Aj XLU n *4 V " qP- .

1( U 7 VU V )-KtrL.~ - -Pý .) *.4WZ 0' -.- ~ - -4C- * . .* ZIt i3tf ro It 1 f In -1 11 11 I It fill If 11 .3 n -0 - ~ 0 - .D- N% M. 0 4 - a

17-YYSN1.--I- X<A NN0- - - -. 1.'.1'0 X IX D - .- x ~0. )1- 0. 1.- Il- 7 x .- a

u w m u 0 w u l-xl- 10 1- wI. 4 Li 31:LL :9.0 U -' Z 39 W LM 3:w.4l ~ ; -4mnP). ruC .

oD 0 0 0C

58

Page 72: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

0 ) 074.1 LIJ Q

I- 7 .4 .4

-t z 0 fl.1L4 70 C C.

*c d c"z 0 or0

gV~ t- 0 .

C, e P I.- (P 07 It IL

LAJ (L 0~ 0 a z4 0 < 110 - .1

*r t- _j4I. t.i 404 I

Cu7 7 a,4 a 4

CI. ý - C P- V n or 17- t.-w L . 4 11 U1 j 0.4 or

- - oi X P- or C 0i .

(NJ 40 cc - =tA-L& tl CJ ; %0 7 jo C "~a CY LL I C

0-ý 40 C0 ' 7 C - tL I.- '

tL4f 17W 7 - . .479.~%- + ori u 7.-. o CJ Y - U 0

Vi . kA-' -j 7. 7 &U O 1

W1 0. t- `4 w < .0 0 5 0 (71 (1C lulor m:t r,4 0 -ZC 7C - Ci' LL ('

a. LL0+ X 0. 0 In X< -01.10 3 FnoZ0.lI0 * Id 4- OcbX I- -o *.

-C- .- I- COL-M. mc 0 7Q a- a w7 M.+ C -o--i a~ +

Ir 0 -AO j6 L, or. 04 s- '0 -' LJ

I., %, 00-f-41-* -40.4 uLO .4 n0W "- kDJL j 0+ a0 0. -- *Li 0 0 )-ZD50 4L- %. u- Z o

r. -1/1, - 44n *ZI a-I (I- c 0C')--O- T. 4 4 -O 4 00 aLL-0 V) O7 L.Z Z in 11 t 0

&-+ cri -- 1+ (00 c4.07 m0 W2ZI L11 0-4Ctoal1 of -4, *-.--LaJT \.-. -t'~I 0 .0. * CIIt.- -- . if . OO14- 1 .-4---W1M 4 7. 0- M( to- * C ILL) (0N

0.- 0 f- 00 N. Lt * * -- Li <- w0 .. Li -4- 11 4x M0C<I I 04*( dtX 1 f X X J I--4XI.-X, 0 1.- OO W4 I, X0j1 4L0 j_ j- f1 j 0 Itit 770. *0 I~l t-C a 4 -j _ b-or7 .-

C0 ) ULI-: .0 cC.. LL C,**LC *.4.0.<4I--UaZ cLi Y. ~ CIL C0L('.- C . COOeI- .C C s- 0 0 LL 0U10-4 39. LL ~ 3: WIt " c7 c Lo

- ~ ~~~~~~~~~~~ or z-4 Y, I~ I'4' n2 - 0- ~ '~ t0 -4 CU

ar'-IIIIIII----4Z0~I--I-- -tO 4--S- *0Wo

-InNC~I~L~t*7 W44..4Z W-a,4 'O'059I

Page 73: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

u

z4-4

z

CI

I.-.

z

X 4A

a Li

-4 o 0 - .0- N In-0- Ni

10- c4 -C Nc. 0 a

2 -.1 IIU -3 m -I.- nM-

lo ~7 C ; -ý j -0_x a-o c r c<Ca>O

t- 0~ .4j U. 0-N ~ . !m. T If M" no + .-- N<. 04 CL. >e - 4C 4 4T < -tZ -~-*,- to' r-Jt-

*I.- N b- .- 1 t tI t 0 c, lbC- NL 0 1--0 -U04--w -W I& %C I- ,yC_ ) M--_ -"% . -0 . Ct~ N ' O U0(

W* C- 0 - 1- 1,- CC - C C--(r 11U 0f if Uy u na Y i C i Zn In " LA 0 w<0'-ý, tmm -iI.L e W ~ n ~ Yr LL DI-N - - C. -3 lI 1 1- .- e1,- ýe 11~' CM Ce n IV~t)

Ii U U~-bL Li C C 7' C C.ý 0 C La C 1,- 0 -' 0 C- LL. C C' C C LU C C LL LL. !- C Ui U C-14/' 0 b- W -C 3L. LL- C~ C Z 0 X COO 0 .r4(3 Mt U U L- ~La I U 1- Li.U C'- P- U Ca WL

Nl N~ N NN NI Nl N

60

Page 74: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

to Nr I4r. -. w

- I.

IaW Av A pr-. C

-> 0 1

> I-- (N if c

'CCW (D( F

L-I- YF -0 t- -0 0 -W', w C jf ecr L r

, r W .. J c i tr w.

in w C -Z~ .

> &* 0 GC-.J -J . -.4 IAC ( r. D.I-

_j> j f- f- C 7- C- >1 > -AlCpr.

tr Ny 0. > L La U 0 K) 0 c N c. < < <;- 11 a 1II I 1a.a - M~0 c 0i-CSC r L: U , %f.L *,LIL / V V-"C N C-J -~ Cril --.- tL1- ft1

X C It It CV I CC ~- LJ < 0LL W 0 - i( fPn c - y~ .1- -1tA %oLn u o W 4ro N cit

C , aCCCC ,C C0 0 C C L C C C00-- AO C-CULC

cr. 0 m N f) ar %0~~ P-eJN fn on fn W) in inV

61

Page 75: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

tAj W. 'tAJW 10 kJL

--4 > 0 00

I.-. c m I. - C) If- -.Fro * *--: 00 C0 * - 03 * - 00

U) 1-iIIo cL n0t 01. Itit It fellt >~L& UIIIo' 0 0 U' 0 - 4 l)(D L 00 M I.-0 -t l o -- 00

0Y .4- 00 w 0 0) J0 O -* 001 oK) I- It INt .t IN>I - - I > I ~ U

-O~~)J -- -LJ f,-N- -- mVt~s w w -

_j I- -Oa.jI.-> aW OO jj 1.- 0_j - > - W..j. _j > aWtcoiJj.jUC LiUO .4mI-Nm*ut)o0 >000O-' l-M*COON 1I-M*UU00X

-0- SIC-s- -- L5 -II l n S- - I.- 1--0- n -- I It-t- +-~~~~~~~ I!'- L tL *.4-- ''C-- L * -4 1 1 - LL *'-!- l -I I -

-4 -t N L- + ý4 0 w4-1- 4 N -- % f" - 4 + -41 1 -4 n w-4 + 111 N 0 l - 44t)-.

If X4 I0 - . W 0 0 0 0U0' If' 11 LL 011 .4 -4 >4 >I A 0 00 it 11 11

- 0 W N LU0 0 0YX-W eLL1, V50 00L L -01 0.- NU - CI f1 1t - -< < l r c2z1 11 4t c - eI 1i.Nt

C) 0 0

62

Page 76: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

I-- _ -(D:" --a. cunz

r 0I r a C - o 4 O. ( V fl U J - )-71- )

tu-- -Ji 0o.O.( - ft -x

4-CV '-4 -i u J -4

7'It~14-O(' I> -'- X 0

- f -- UO ftILI 4rfl -Z X-ur-

(10 - X UJ LL -W o J X W--*0 c C l-t O.0 4 0 t

(~J r0->jLi UiI -- l-N

a.- Wl- 0 0-4- n .0I <T 71

li Nn--C -aa 4,C!tM

LUC - in cJF 0..- & ft

C- - -C ý tf f l-1*44 &)- j c% CLf C.-IAC Ir - r >-Jt IU f

I- (r(V -.- ft It OL' _. 1- x

IA* or. ft4 aa _j-E -tJ & _

inO n .: in $. 1 Vti 0(a- CO (V LA

ft ft In 0 7 W4 _j 0- 4r. II.-- -c~..4 Z' aý w * C CCl- > j

ýcJ 41 (V - 0 7

3' e a,- - -o-.Cjo-N o 4Lfl- -Il.

0. 0u aU aW I.. C0I)(a - L -I

cr .OLL U, af 04U'4It& -1-

C - l-c Ir a .44Zxz'l-... -X ft.-.44 ftf - 0 n <0.3J(9l--4 X

(Ui ) V-O &0 V~ a0 0.4- OW--X .4 ý- M0_

ix0leW- tr ~ -. ja-w -aqx~.~n

31a a.- C.~ SI 0ý4 W. - _j T.-( tLaa CO zI w-IA 2-Z- 011 a.,tO 0U00O - -W- -

L w Vy r-r- 0 1 L: -Jt.0LI 0. 0 4- -- O ft0 a %JCUCmUý f.

x--a - cu-b'-c . -7 04m-.U-4 -U le-I -j$.-CPJ W/<1>4N+ fc t '~-c c .- 5 1 x'P_ 43C O C 07 o-a'- .- KL)- t I.J 7W

tLtL 11M )- a,0 lU100 0- a a C>1x J 1 1- -- %C, X U2 L) IrI L-ALA4 o, 4P jc

it f "-40 . 1 -=)in-: 0 :3-415. t x(U63 '

Page 77: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

0. 0. em

27 fu -=)7(7 ?0 -W< -

Ix.- I.t-I.- N

.- I.- PC - t

S.10 -W2: 1,-

if -f I- C,M- co 0 c.- -

o (A m 4N NC CC-U,.- -

I&' CC -0.4 I

2: Il'.N- x .*

*-0 -WON *40 -CON>-ii(\ C 4" fC -'M

-C. I ('7 =

hiwr -- CO-ccc

ft taJr -. U . ftf a

I.- .C. c Cj u -4C

Wi X 0 So- 1.0 C) 6--1 - 4AC. f - -rftf' 0F _:0

IMp') -_j - o1,- -<cJLLIC -a-

1tl- I -li- - LA X: -

fI.40u00:f - --

(\j NC (X 0 -CC MV -C,t. W 1- ~0 0 NU 0 D-. 0 0 0-.

oI-0 T IL!0 a- m _j , I---CNuPt-L,- CI ft -LLAX o :71 5;a-rom- I. -l-a~-~~

tA u) 0 T - f in0 -- .mi -a- W- a -4 M--

If. Ua . u 0 a- 4_ C (_r < : cra LCa C L, U 11 W, C- r- C 1,- !1 It C X>. -3_ A4 X1 ) - 0 t- ' if t11 o I it y ititI II ~ I it 1 1 rl1 It 11 -1 - l< ItI II A

Wi r hi C, _j h - . U, I-- c- It C c Ir c It 0 c - C C 1 II 0 0 C M, ( It r C. tfl

C- CU C - 0 XC T MU UU UU 0 U)W I LLrt, W A ) ,If-1-I- X X

sL -

64

Page 78: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

,4 i,

_-j Lt-"a . h

-I'4. C

*' -I. S V•

x

4, e , N

.J ' J -;

jCY

if, T

C, I&I 4L)

- -- h " .1

C,,

4, ILL

* _.0 -- _ 0.5

45th - C, *

+~~4 + L. C a-

C-4 r.A r.CC*%Jj -o 00 N if1

.... u- Ic I A fr-CI 1C -L - OAOw O I _

C..4 * -. L I VN - -- 1 lwL II.- _j .CICa_ - C-~ a >,2. C Ln l t of - -1.- D n' " 'A 10 - CM 11 3 (L X 11 C, 11 11 - -41 'C leif) Li. - - 11 11 1w C- C 11 Co tre IiC I r, - If It - - - 0 )K S .It

LiL' 0 4 IN~ < - U -t N . _ .j - 0 0 7 IS -4 - - n .4 4 dX0 if ni- %I it It U -l' - - I- " U-4 -4 V Li) IL 7: 7: 11 11 11- -1 - .4.4 .- - 0 f.- 0 U.inC t SSJ-J4I-i-- -- CC'.-1- I W- ...... (iMj95J _J7 X>~ L b 4 1, Ls ~: ~Cc C~ )K - _s~*s~ ).~' : Cc L'->,>LL. e' >C r f C C I` - I- - C. C a Xc C C. C C )w i VP l,- >L)~ X CL X.~0, a. (. >c Z C LA) X

-4

65

Page 79: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

¾u

LL N

- L 17 -

II y. o-cI- C .o(D f -4 a v7 X L

In x+ , U C, C, cI.- -- i-* -4CW4

0 -d 0 l2 -4 a- C0 ILN0 4. _. NO t.- -4 t 0.1 a.

C- +L 1.- 0 :)< U . cl L \Z. C. C-a -I im -7 - t- c C * (-,

I- Li I- 0 0 - 0e* w w 0 -.1OJ,- ~ ~ ~ I Cj 4&.1 .4 _4 3**U) ,C 10 ' x _

*I *0 . * cI CL 0 w Li _ C j 0,U CiCL -* L Iin c a- I.-n Li.. 4i*xmý 1- - 0 c -1 ~ rc

-l uo m- **\ -- ir4~ -* 1C 7.4 x xu \1= C) N < irto- -f u io- o C I.- M * * * < 7 .- 0 C 0I C. _ .11' -

z x 4- U M ' M CC 4Mý mP- W00'. *--4 -4 * :x 0 W Ia - -

C W LLC C1,0 M Al0 -C- C0 CC C 4! -- 00 1C) JO1 L 0) nX 1( 4 O I t N " a. )(W NOl CODI to* 4 A 03 .D

0 11 r1107 I lo 01 C*1It_ 0 -. I- X U* It 2rO _jI j< I(,- 0oit ~ I z- x 4i tx -o-0I. b4 0 PI (9 1 x:4 30 m 4oi t t0ea - .i4tti ta I. I.0z

X C0V, XC ,4t 31 U. Wf 40 0C 0 0 W f0 * C L 1,'- " 40W L

- IN 1W - -t In r- CIDfC Cf- C-.. ~ 14

0 * **W-9- -0 WO COD S~ * 4 1-66-

Page 80: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

LA - >

c >

o 0 -OO

ir - C Ck

I.- CL cn0-c5 if +-, 4-C- c c

I t r , f o r 10Z * r- M * 0 rC

on I. u4t 4iL +

d* c0 * Lc>

c c r C- * e5c*C) ~ ~ * -IL 11 0-c)-O

w- c co a-- *- *0-1-C

* c~* .~jtlC~~~ U.50CC0z c r c 7 r o u tr 0 -- >I-jX

0 ia00x07M + e N a.0. 0- -C I CI -.4 0.- u i0 0 *+ L ,-*N0 C- 0 L &bi

ulc-+c+m P 0 Li gmIC m CL + 0.. 0.u$. i .*- ICMLý-Ln- - x -4 - 1- - 06 (J# -0 CO O (A0.* 5.. Y +Y 9-Z0 c ( 0. y x - * C 0I0. J-

+ l~* C + 0 0. 0. b. X -- UOO TOO-4.J00* - 7-4 .0r f01 0 - -707L + CNO 1- 0 r0T j j

r0C iI . 01 1 1 J01 Z -#1 0 0fi -4 -4. Il0 a &0UIQ.0*

It71* 1Ln - C v+;Z 1 11 *1 14 Y 'e 0. 0. 1 - 1 -JIt CL MU0I--I I- f-O'- 4 -4_ j WC b - _j - _j- 0- +4 w II _D*.CZIW W flO.-

n . -U 0 - - 1-XW-W7- 7 -- - 01~--0 -- 7 11 X.q 0X -4 -- N M 1- 0

0 C.0 4 w4 cm -- 4. 1II-X %J~i )'fl*Z OKI--W- - 0~b -44..-0w0.

++~Z0 5- 4 0) *~**70T ) ~fO Z -67N

-7-~~APdlfw-W 30-0.9-71- + 4. IOr1i

Page 81: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

aL C.> fr

- j

AC X -

InMI- M n 0 l00LL. * -cc LAm4c4 < <

cC c n r0.a

)1 -4 Or 40 0 VL(,tr N U00 In -i -i

-r 0; ** *0 W J d-4 (M UJ LJ4N

InOr0 S- -- of',IFOr)I--> 0. 0- In te' 0o: . a In f',

* *, W Wu* LaJ4J-..ccs11C + +,

* l'. a_. =0 7 1- 0

E. r - 4crC

.- e73 g.. - _--il MI-WJ- -WJ - N

w -a - ý4 In ~ It X1 In 1007MCoooCao( . * . . . .C -7 :--U~ -- 4 W L- V CL I-C I C I CI CIC--CC CC ~-10 11 - - 'n A : - -4 11 -1 - 1 If 11 It - 11 11 11 11 1 11 11 If If 1 a if ac 11 If If o

11 1 IT 6' r 7 - I.. 11 - C - - > -. - 3 - t It - -i - cc - - - - - - INU-~ W <I cr - -) ýl <4> n _j .4j M -aN n ~ -t.q d.4mp ( t -4N nUa -t -

--.. N00l~-X~4~. .-U 4 W W . . . . . . .. 4

U. W 77 l- LL Li C .C7 C aC t C -' L. I- r ~ r~ -. -. -. 0. -. - - - - - - - - - - -

"CC UC L C M 0 -a

-4 -4 -4 -4 -.4

68

Page 82: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

U4

I- 0- -I a0

- C', 1 +* -1 10 10-s

KC -_j 3 ý rL

ede

_jj or4 )g o *-C.C- -- s- It -1CaN .b14 to(j . 4A1)4t o-

- .c. 7 - cC-. _j 111 I 1 Wo W ----

N a0 wf to- a-4 1,.- ,-- T a 44NW 1,-

-j - ( - -J - - -J $- J -i J -J C. C CIS C fl I- W -7C51 C- V C. rC-L 'Z1 L11 C L--lLi L L 7 T C 0 T C III C

- jfr< ) 3 L C: C -' C) C f CI U- Lk (D. C) CJ V 0 C I- C-C -- C! 0 I a.xuC

- - * ~0-L 4 0 0 r i. I.44 U4. i i - f

) -- .4. m - 5- N *0 i"1*~-5- 00 4 4N i 695.

Page 83: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

-4 55- a 0 7fI- #m - _j (LCY-.71A

C-I (CiLi. C 0 C- 0: ~ - -ý 35 , I

- - -5 a4-D Ofr('1'LLJ - --xiA..4 7 -Wx c - -a.m tný -

7 .45 LL.~i -.- -J &(JC : VJ I

_j _ :-C C~ tf-4 a & < - c:ý C a 7

Cc - - CLL.z a J> U aU ft2 Im +0 50-4 C UO I- a'S ZX4 0.T?_-M a 0 a W Ln-gf 0: IJ0 ft04

r C,1- l-aJ 0 ir. 0aC¶-7, .fo fm > 0 0 a L4- I

4~~ 46 N~' L tl Z - 9- Q kC x L

IA .1- C *5-aI Co 0- -C aO a

* W --4(00-qLLg.. (V _-4-- XL/ OL4-4fT 0_ <aC aa0 -,rL Li4rI 9 fn, 4t arC (m~L J' LU- x rl

xi a- - - a Z'- -4 j r.ýu f *c d: 4-4 ft

7 T -I -C -C- c r < 4 )c *C I

M C Cl Co < (% C Czý L N.-. 1A.C C0 - C4 UU- CL M Xa> L- u .W U-% Nx f,)_j i -_j* T (U) t C CUi j0 *- > c I- a M

9A - ..4 -i -4 - a a .4 a a a l -ý . a~ft Lt.c- c I-I...-( - - m- M (rJ. CLu QC> TZ-7 - >%. at - IIJ

*0c .mi , 4- X -: - Iu-- (V ~ _j X M: -4L n_

M - 4 -- 4L * * t- 0 0 M U I,_C no .J ..tt 4O a5- N)c C\- aF' D-4 4 0 0 *a0 +++*++-D -00L; -'L C aI- - )K -l . UI.CC m---..~ LLt ul UC 0IZ- a a 77 w -l-c $on t W

_*O** _ *a-aa a 01- 0 f 4. ..cr . . U< ..-M )( <\D ft <> 0 b-IA - LL.--4----Q0 + + + *- + + C * o1- 1I, ý C WI n47 a.0-T 2 a I.-U- .4 C)-4 -- -CO - a -. W0- MI -~ l..I (n a -1(~ ayt, x f__ ~ x U

N 1^ 0 d U)Ca 0 +> > 0 o<+4 -u.j-N Cat<in xxlf L a -

4*4 0.00M4--I *Cx a fta I-.- .~ - - 4CUj . x -u! - - n- r- LJl-r -- jet :;7 )- r,-.5-XL - w

11 11 S1 - LL LA_ Li. - Li. LL. - If 11 1I 11 - If I Z 4 .C. .O tI . It0fLi w. i-_4 A n 11it115 LA 11 It 4 _ 4 _ A _ 4 LO _j 1 a aN 1<4104- -

+- + ----- ------- - an a *j al C) m. -4A CJ ~ a- C- Li toO 004.<- -- a-)%O0 >(\McvN( 4j0..

0 m 0 C

f. ('y(

70

Page 84: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

c 4

x ft

C C.

c- c2>

z

tLA

lo I-

4C1 C a 1-

* a Y 0

I--- I- -LL ncr NA. 0 *4 *-

*L 0 u M1: _x m 07 ** . - ý

& 77A3 Jl-7C r :0 e _ ýC * * ~ C nCj%If I CN C I IfO xi-

2i I ICf01- -11 11 -0 1 C f x l 4-a + 1 * -J tl owo iý - 0ý 1T1 it. - x ZC11Zu M0x Nn T4M. -W -w01-- 1- r- 7S- ýLfl 0 -1 J1 100- 1C 11 17I Sý

C-, L 1C -' - 1.rI- Z'27- J- J- U ' 'L - T>ý I -C" T 0UI! WIr -4a xoW -xm u ELn u x x-fl xU*714 ,-c o n n

U~ I II d 0 ") *,-(.Z-71

Page 85: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

7. -t

-. 1~ Za . 04 4 cc .,

c Ui2G-4 C- 0 %,-i4ýCY - - -. 4 CID +n Ij a-1 z 00 < -. 1 T~ -DaC~ ci -. -D I- - _j 1 0 cC, W -:A- MWI

U.1 0 j Z -4 * W4 N- l'- -i u * 0t:1. 1,C toj0, I--~ t- * .4O 0 *uja _ Cl

I ft +1) a- C * .- fl - 7- Ii * C*C, : -L.I- X C W 00 LL--+U. + M X r--

P-1 I- cr 7~l W - C -2.*- -,tW 1o Li LXt ) +**C

z -3J7 .4Ci X *- 4 C-4 X 41 J -1-IO 7t- a.

7-:: f.. I - *1 Is Cl . - 4 - -j I I L . - W - + lo- Li. 5 - >INN 0 o C'Jii rOO l- a t Li 0. t % 'cuJ C -OX M.-4.jLJ<

* ;; -; .- C 5 * I-- Z r ---. - < cLA-. - ', I-- .- ) :1- I-- L:7

)l I 7 - 11 1-- §0- 1- 4 r In -2 - Fr I- WZ - P- 11 ' 11 i- tA I I J 0 11 :' 0! M' If 11 UstIs w. l'I- Li < ý '-.4 If it Ii 1I 0 Wi _4 0 _* X 1 M) t- i -a I-- r I.- D 11 _4 Wi 1I X Wi " II )( D 1,-o. 0. :- -1- X M. 0 00 if - W 0A- Li '-0M < 1-1- 27 1- 0 _W 0711 X M 0 _4"I

72-_-j-lo- - 7 -II,, Ifl 17- tt ll7-ý~-OC-W1- o- 06-a4 -r N~

3L rC 0 1, C' " 4f 0 -" WL ra -0 -XC

4 Ii 4 In %0 r

72

Page 86: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

- C 6 .4a-- 4

ft M JLL

oOOx LAJ-) x0 00 ICC4_j '0Sal~~ .L .4 0~

WIC (j0f -4

.4 -~ - LJ -

-~~_ - - ftU.

L) .C C - 0fr. ft. - ...

~ic~----, -C-4 -~0- W' 0f - M~ 0.

I Sal -1-W-0M

7~C ..40. C LL

Iý 0 - -4 -C'CMCIC' 0 4 t

o kit -mc%-tI-K -o

us or W~ - - J LLa L

ui x> cm 39 rml- -0

~ 40.4 W~ C: L LLC

LL 1- Li) ft a

Ur1 _j .. 4 0,-1-_ , 1-0 -0 ft - M-Z - N<LLM4 X -4 M <- MO < -N.' . 0 1-L-i .- C'. -+W&~ 1IC .5 V&Uf ,-% CC. 0. I"'CfC-C (% -Cfr_0ý*1.-47-1w* -4*1.-41 04 0 0 C (r r.,. C -N'~c

Li..)4#A-IDUfL) -'-4 -o U. O -Li-4 0 ft1.-C' I * c"I Lrtt'-U1 C As .f .4 - fICAs

m'14*-100 C 0 ,r a, CO-3--WO j

~~t +i Pq tn 'aJ AI iLi1 - - . 0 z .

0. CL C .ufr 0A. -j l-1aaV0 V -. 1cJ~~ 0 .... aaL LjJ . -x7 7 * I LDO' IW+ ?~~'IJ~' aLI- 07U In~ - 40I- --LL

0.L 0L. a U V C+e c'.40 I0 m. -10 .1N 40.C- 4I. 1. 7L 0~ W L J 6-. -- <-L < fl0 LL

L 4L L C L. * I- - V. 1,-0 - C. -'c\ 11 . -, (,,, I,- I.- Cv 0 1.- czc CL1 I--3rý -I rc I I :)~ - CC0 -1 m U

LJ L' y t r-1-141-Ca -tu14*ri o -- - ~ L04t ULJ-

Li- -> -) o- ** i * a 1 511 Li ii-4N a: T :IL - -3 X 't 47 -t .. I . II -4 )C -- -4 Ir TI I.- r -j *~ 0. I I y -ý T Wo - : T - "-i Cr '

UG II Z 1 I4 II (I00I I :) oo c l u .4 -ý -if - a/ 0/ 7 -1- 1.- = 1 7 4 C) 4) (D' 0Li I 1- X - i I lo I- I C C I Id I L; I ar C i ii ii -j L&~ (; u d U I-- ~4Z Q U - -

1.- 0. 0 Li 0 T l'- If IL -01 If .4 N~ 4i 1- 4c < 1-- 7 '.4 w X<4NU> X _4 7 -7 5 C -C - I- .C - ft C a- M" -j W" '1 - - " w- 1,- C W 7 CV. lo- I.- 1ý- 41 7 1,-C ts -. . - f .r Ls' V P . VL Vt Vt i -u C C' tj 7 Ll Li c r c I, c, I. - c c r - - i

C -X -lQtan-LCO C 1-

73

Page 87: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

u or ~fl4- - 7 L"z _j o 4 I-

ZI- I- -cr 3. to 0n >- OT

NLnZLLiJ < - '1 .4 I- '.

3- --ý 7 _J 7 -a.

IL. .. X n _j 40 _j 4 LI )(

*r Ln U' - I.- (D - 4-

N _j U -4 -- <

0,jlx- ~ f w Z >, )w -01

~h-am-'- z x -z M11 Z z- '

aaI5-x) cJ -M 0- .7 IC Tk Z

77 Xi 77 7C. Ti - .- a =

X 4a ~a C or- I %..a C -7i)Uca..0 - w L _j a -4C - 47 U.

I- ~ )Kfl La - D0.U. .4c C Ci- -a

z, 7x c 5-- a _j ft; - -. I-s~a.4 4M 0n Li ona '4 .- a-t

JAS 1 m I.- " a, a -'- x a

'Z:- >CIJ 1K C SJ1jJ4 C _j 0Z aa

I-. a D _5- 7 a 70 7~ ---- 0.- T 4 FnC

'- 1 1 - .I- >- &- 0 a'-J'L 1.0 xx 0'c' *m0 .f ' ,;

0. aM a0 - ~ .0 >~ _j LL m- %000._4-

a. a1- 2-1 Xd- 4''C im tOW I rý a a7 > CLa U

a. I-( X ft- ta4I a4 4 4'. X C in '.0' -a>-1-

x n (D-4 MX CLfl4 t0 ~ x A.....I. I- a f..(

C -Jag 6--xa '-1-4 <4 ofN')Q 9t- ax =O

.4a 0± 1,'.. Mr 4 0 4 I- _j a- I. *- W -)LLU

0.- . 0-4 -a ~ -ctj C)C C 4a L ,~ CD a)'.'1iJX

c o- 'I ( 1,0 - 0. - j l- w4 .%J w.4 Z 4 I,, asi 4 0 5 a a w

07: . -c M .. a- ar WF- 6--4 -1O.- _j _ONN_ 0-4

WC -C ' C L >~s~ .C -W, Z C C-CC

m o w c_ 0 N0 a LILLtot- 0. 0 Z0 .

'4 -I -O -41-- N

%00 >N N _j mw 41w x 00 *74NnWj< <70 - to w CP-

Page 88: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

n I.-.' V- Z LAI _j %,t- X LAC\ Lk Is

)( V~~0 I.- - 04lJ

LA Z 0 .4I\ .- -- -, - I-i<4 I-O.). w4 I. _jJ0- '-K.5~~ x u -C; I.--.f'- r ; L' N

0. 0 41-... a. N 1 UXO

C L L4 c L&JA)k -C i~ l'. I- 2

(7. c 0 7

W4 ;4 0; .4 N CM 'Ccj'I- Pý - .4 ti

1-. ;W X. N 0.. U

FL. X -7 * 7 CX a1-oN 0 in 0 ' _j *q I- - i Cj

Cv. 7 7 X x owi 0! V-

-X I -t'- .:. C 4 x LI C

U ) 4nI Mr-: . X ft -l'- > U- ) -Ul -C -C Li *J X4 ft. * uA .cj >L

U>x- -s4f 7. In Z

C3lii 4Iz :iJW . 2.471 -. 4 U 0. 4 No " _j V-C 1-zI-1aOC -X X" ft ft a .4 I-40 c

2 %D1. -,a 47 4c(j 07 I-

0 t tr -J-J IAJU-4 0-4-M4 LO M- .i x- 0. .4c 0 c 4 <- 41NOC*L -JL .Cr I - n u -0.) - 0 M, Ur W 0- LL.4. X4OI- OW 7N-I-- 0 .4 4M 0. C LI

I-* c=- c- .- X -z 1-.- W N N4 ý I.-4 0 - IX b-.

-Ai .(- * -. J - -.4-0l -AJ U 1'- 0 0 -1c *lJ00C CX eU 7-S *~ CC It I- c'.c 7X It ~ w)41 4 ~ - ~ %u k -4

-CTy 0WXt v-~L C4 ?7- 0- .x 47 q-C0w x 1 0J~)4 X C) -1- fX01 * N <I CI- I.- I. t, 1-

.0 Z1<-, LI- 0 i- z.1- of .4. lfwu m 0 .- *tflNO tr W 0.- ~ NZ0- 7 X 0-Z .M -I.- . - - (.-N T Z0 0*( -I- - -0t- C W

X L.IA 0 LL i( 42-X. ,- 3* Ui .. 4= LL- -4t 3 -Li Ci- 3c u Oc4L3 L a3

.0~~ 0' 0 too * ~ ~ -. ~ j~ 7 0 *d C n CD

0 C .01 *C II--Xt CZV. wl .0Z ~ W7. a,0 .4% $ ,

0 x aa 4 L4 VA1 4-I 4L 4 04 wILi4 -4.i4 I'-L.401 LI 4 -4 ZNL

75

Page 89: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

4 In4 4 4.LL <- LLcl 7

0c- C) .Z 1-1 0 - 0NOz O I-a

)-O if) X4 w~cLL4~- _Lj~ ,

< I. -. C' a C

U -a C L-a C - 4 c 7 tL &JiIC ) C t-. r C LA0t

M. 0. :r - 01 m

N>N> N> O> x aZ

c~ io- C-N I.- -C

'. NU5 .7 >7- N7 N

4 47 CL 4C C.I-

M- I. - .( to ar

N > N > N > I' > MI- 7 IC

NC LL t- Lý N, C. N~~-c -M N 0 ( - ) Caj

In %% t %. I N % en ~ . a I-10

N ~ X' e al. 0 *m LL

.Jl Z~ CU Z" C~ CC-C

* - 4 -f .o Li I.-x

_C - _ C C. N N C\U. I rzc

ri N N N x t- I.- I. *-h u cN LL.L x~L .4 x7 x71 u0C _ * CUf

NZ %,Z- C.- C- C- I I -ty 7- 4N- ..- NN> iCZO. -i & _0 X-

I- LL 4- 7.- C-L I. N >".C. p.-N N N N CC c -4M I.- L-* NC

c* " 0~ ar X 0-4 cr *0 ~ ~ ~ ~ l ^)0 - 0j U) . 0 La LL u 0

- N ff N r N N - LiZLL C t U: . Il U,'~.a' _j M C _j -MC Cj N > XC - 4 Ct. 7 IJ2

* IL -IL 1- ~( '- -i Ct r- X - C.

ftc r-C LL\ I-~ h It I I al C,. 4:L LrL -II1 rC iL

x m-4C-NC4~J~. 2Ct) 4- l--- u t2-C0m t0 ZLC:.wLT,

tfl ey l C~ a'0 M ý-0IL , 0ý 101- iru)~ I' =)I-

r. t' N- -~N- C C N' C4 C.' Ne - C : C~ B- e-Li -L . C' r- Or L - C IILC *- n- C± V

Iiý LLL >- 3 3U.> 33 L >- 3: 3: U >- 3: C. LL; i La. Cr X C: U LL X. U M U Z: C, C: - C. x-a a

o c c 0c C 0 .4 N 0-4 -d N N N 0-u

76

Page 90: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

/

00000000 0000

9"-

U

.J

u

II

0w

c .

C..I,-

* Lii

C-- if

I .- xXC" -C = c .

CVc - 10 I.- on-

-j l' I C .CU c-xITL

"- J )I-. I. .c MIT 47 c 0 .t o

S" II I" -- -* < " I-- If

. h ' 1 ,- * - N I. --II .' lI

C ' u- C O) -.1 ~U, 7

u * 0~ cr I\vU I. -D '3 t va CC C< -1 i - N

or II- wN V +ICL)')' I - op -Ii. . C. ,

VC . 'I 9- * X L. X i - i It- LI.-.. r 7 -3 <* . .C to- -+ 1 - ' C- C .1 _-- h I.- Li

a +C a.Ic--.1U I- .- .- 0 ; Zm -- 71 w- le B-

C - *- If ~I! _j C j C, - -- NlCMi t :u

-1 y *L n -,;, j 11i 1 0 - 1 0 cN, * 4 . - s- 4 PI< - W

it 1.4- 5 7 C L. f- -C -- & * , C (* * I- >* . L. Lai ' - or r - or a, r. z u, -~

7'17 -I - :; a C, -- l-I. X- I- -~ L&. - T 7 rrI- -l f1, .I .- C Q 7 U V I , -& I.) Uf U4 I- U L - I '. : 7 1- C0. C: - C' - C I. C-L a. C 4C

fI L ~ C i - C I ->4 CK X X I- I-- X X LW :6 W,~ C C C X C < ~ rI - C 10 Ur C-

40~t. NOI In4X )(4/0 Ln IgLn

77

Page 91: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

I.-~~~- "4o . #_4aO~ P.4 W4* u

CC

IS'.

o emejC

CC

04 0. 0

orC, fir-

4.0 .4 o..40 .

o z -r 0 <f In 0j -a* flZ a In cr_ o < O 7 - z IfZ0 O

+ f M - . C '-.M -4 -4-f- It -1 CU M t - Ir - f -It 1 < 1 It .I

_4 -L I. I.4 -Y .4t- _j Z Zt 00 0- jUj-.41 - j a%,00 <-1f 0r UL 9x ~ I e<- I D4 rcu0 uj

- 0 DIf) <L4- 3L 11 4-4. "4-W _J4 I- ir-L,- Z 4-4 at -. -LJ _J- - +J b Z-

M oZo0I f f. i 0 114 4 D I±j co ZO -2 21)- O ZO13011_

0 4e -t S IIn 0 P 5o0% 0 -4(\J--t4 u) P_ cc m c -.4c ) 4,U)Zr r

G Z C cU-j4S 4 co c 4v 4 ý o_ 4 64 cmce Y NJII~~~~ 000 co0o40U U I25OLIS5 )-~) 4-I 0 Z 0 COC II 00 0 c 0 'f c

In 0000 0000 I0I0)ulu)ul m 000 LC 0 0000 00000

78

Page 92: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

c cc Occc 0 Cc.c Cl~l 00 zo 0 0c* 0 0 - 0 c 0%D JON c& C, C4 to) 4r in~ %D Pc. C, 0 -4 Yon zt 0 f% .C r- w 0' c -

X, ~ o o~ fl r r-- l- r- r-r- x (L

VI oq00O0o OOOOOO~OOAO~tLOOo

.13

c0

"AI

1; -

IIf Ix(Y -3C 1--i- -

ym-mrW C)I s -V I- )- <1

0 L)U7 - --cn C _j-1 4 r

C r to)-- - o; t C :z6-~~ ~ 7- LC fr 0-

if ~ ~ 0 -if -3c7n-5i 5w

-A 9 4- 7C:;; .- 0. 1- - Ne D 0 0 0-4D-D4r 55 7 - Il. If -Q- 11 ý- 0 4

6 Ce' L C C. C C CC to>. >1 L( > )C L 7b

&Cc, a' m --l 0 .4N C InclJ F) V0 c )- CD O y **t 0 0~

00 000 %P in0O*C

79

Page 93: AFAPL-TR-78-6 ROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN · PDF fileROTOR-BEARING DYNAMICS TECHNOLOGY DESIGN GUIDE ... (AFAPL/SFL), Project Engineers. The report ... Figure 4 Bearing

REFERENCES

1. Lewis, P. and Malanoski, S.B., "Rotor Bearing Dynamics Design Technology.Part IV: Ball Bearing Design Data Technical Report," AFAPL-TR-65-45,Part IV. Air Force Aero Propulsion Laboratory, Wright Patterson AFB,Ohio.

2. Mauriello, J.A., LaGasse, and Jones, A.B., "Rolling Element BearingRetainer Analysis," DAAJ02-69-C-0080, TR105.7.10, USAAMRDL-TR-72-45.

3. Crecelius, W.T. and Pirvics, J., "Computer Program Operation Manual on"SHABERTH" a Computer Program for the Analysis of the Steady State andTransient Thermal Performance of Shaft Bearing Systems," AFAPL-TR-76-90,Air Force Aero Propulsion Laboratory, Wright Patterson AFB, Ohio,October 1976.

4. Jones, A.B. and McGrew, J.M., "Rotor Bearing Dynamics Technology DesignGuide--Part II: Ball Bearings," AFAPL-TR-78-6, Part II, February 1978,Air Force Aero Propulsion Laboratory, Wright Patterson Air Force Base,Ohio.

5. Pan, C.H.T., Wu, E.R., and Krauter, A.I., "Rotor Bearing DynamicsTechnology Design Guide: Part I, Flexible Rotor Dynamics," AFAPL-TR-78-6,Part I, June 1978, Air Force Aero Propulsion Laboratory, Wright-PattersonAir Force Base, Ohio.

6. Lundberg, G., "Elastische Beruhrung Zweier Halbraume," Forschung aufdem Gebiete des Ingenieurwesens, September/October, 1939.

80

*U.s.Govunmrflt rinting Office: 1979 - 657-002/43


Recommended