+ All Categories
Home > Documents > AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk...

AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk...

Date post: 27-Mar-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
25
UE Project N. 261788 F T ER Global risk assessment AFTER Final Workshop Rome, 27 November 2014 RSE, Alstom Grid, City University London, JRC, SINTEF, Univ. Genoa D. Cirio, RSE
Transcript
Page 1: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

UE Project N.261788

F T ER

Global risk assessment

AFTER Final Workshop

Rome, 27 November 2014

RSE, Alstom Grid, City University London, JRC, SINTEF, Univ. Genoa

D. Cirio, RSE

Page 2: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Outline

• Background & Motivations

• AFTER Risk assessment tools

• Results & Conclusions

2

Page 3: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Severe disturbances in power systems

• Multiple initiating events

3Geographic dependencies Functional dependencies

Page 4: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

• Inadvertent system response

4

Fiber optics damaged by rodents

Wrong settings of protections Cyber security issuesCircuit breaker failure

Severe disturbances in power systems

Page 5: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Cascading phenomena simulation with Statistical PF Model on

Colombian case: 17 Oct 2013

• Cascading effects

Severe disturbances in power systems

Page 6: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Multi-layer perspective of the Power & ICT Systems

6

Page 7: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Threat classification

7

ICT External Internal

Naturale.g. Ice and snow, flood,

Fire and high temperature,

Geomagnetic storm

e.g. ICT component internal faults…

Operation out of range,

Ageing

Human relatede.g. Hacker, Sabotage,

Malicious outsider

e.g. Employee errors,

Malicious actions by

unfaithful employees,

SW bugs

Power External Internal

Naturale.g. lightnings, fires,

ice/snow storms, solar storms

e.g. Component faults,

strained operating conditions

Human related

e.g. unintentional damage

by operating a crane;

Sabotage, terrorismoutsider errors

e.g. Employee errors

Malicious actions by unfaithful employees

Page 8: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Results

• Methods and Tools

– Global Risk Assessment Tool (RSE)

– Preliminary Interdependency Analysis (PIA+)

(City University)

– Statistical Power Flow Tool with Self-

Organised Criticality (SOC) (Alstom Grid)

– Tool for predicting renewable power

generation (Alstom Grid)

8

Page 9: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Approach: The bow tie model

9

How to handle high impact low probability (HILP) contingencies?

Risk approach => Probabilistic models

Page 10: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Black out

10… Uncertainties …

Risk of… what?

Uncontrolled islanding

Cascading

Voltage instability

Loss of load

Current violation

Initiating event(s)

Frequency instability

Angle instability

Voltage violation

F T ER

Page 11: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

AFTER Global Risk Assessment tool

Application contexts:

• Quasi on-line operation

• Operational planning

• (Security analyses in planning)

11

0 20 40 60 80 100 120 140

SSB2_B15Y211_PP_no_signal_to_one_CBSB_B03I301_BUSFAULT_stuckCB_L_IQ36

SB_B24Y221_BUSFAULT_stuckCB_L_YY210SB_B03I301_BUSFAULT_stuckCB_T_B24Y224T2

SSB2_B15Y211_PP_BUSFAULT_stuckCB_L_YY27SB_B24Y221_stuckCB_FAULT_ON_L_YY210

SB_B24Y221_BDP_OOSSSB2_B09Q301_stuckCB_FAULT_ON_T_B11Q211T1

SB_B03I301_stuckCB_FAULT_ON_L_II32SB_B03I301_stuckCB_FAULT_ON_L_IQ36

SSB2_B09Q301_stuckCB_FAULT_ON_L_IQ37SB_B03I301_stuckCB_FAULT_ON_T_B24Y224T2

SSB1_B15Y211_PP_stuckCB_FAULT_ON_L_YY210SSB1_B15Y211_PP_stuckCB_FAULT_ON_L_YW28SSB2_B15Y211_PP_stuckCB_FAULT_ON_L_YW29SSB2_B15Y211_PP_stuckCB_FAULT_ON_L_YY27

SSB1_B09Q301_stuckCB_FAULT_ON_L_KQ311SSB1_B09Q301_stuckCB_FAULT_ON_L_IQ36

SSB1_B09Q301_stuckCB_FAULT_ON_T_B12Q212T3SB_B03I301_BDP_OOS

N-3_Ln_10 _Ln_36 _2WND_B24YT2N-2_Ln_36 _2WND_B24YT2

N-1_B01I301_B03I301N-1_B24YT2N-1_B24YT2

N-2_Ln_10 _2WND_B24YT2N-2_Ln_10 _Ln_36

N-1_B03I301_B09Q301N-1_B15Y211_B24Y221

SSB2_B09Q301SSB1_B09Q301

SB_B24Y221SSB2_B15Y211_PPSSB1_B15Y211_PP

SB_B03I301

Angle instability Risk (dt = 10 minutes)- TOTAL Risk= 0.02686

dB (Level O = 1e-015)

Novelties:

– Threat & Vulnerability models to evaluate component failure probability

– Link to actual weather conditions for contingency identification

– Multiple, dependent contingencies

– Effect of hidden failure and operator delays on cascading risk

– Dependency of risk on forecastuncertainties (renewables & loads)

From threats and component vulnerability probabilistic modeling …

… to risk basedcontingencyranking …

… through criticalcomponent

identification …

0 50 100 150 200 250 300180

200

220

240

260

280

300

320

ISBA111ISBA811ISBA821ISBA822ISBA831

RIZN111RIZN311RIZN312

ANPP211ANPP212ANPP731ANPP741

BLLP211BLLP311BLLP312

CRCP211CRCP311CRCP312CRCP313

CHGP111CHGP211CHGP311

CMRP211CMRP311CMRP312

CORP211CORP311

FAVP211FAVP311FAVP312

FULP211FULP311

MLLP211MLLP311MLLP312MLLP313

MSBP211MSBP311MSBP312

PNAP211PNAP311PNAP312

PRRP211

PTRP111PTRP311

PRGP211PRGP711PRGP811

RAGP211RAGP311

SFMP211SFMP212SFMP221SFMP231SFMP711SFMP821SFMP831SRGP111SRGP211SRGP311SRGP312

TIMP211TIMP711TIMP811

km

km

0.01 0.015 0.02 0.025 0.03 0.035 0.040

0.5

Stress distribution and vulnerability for element nr 16 of line 14

stress variable

0.01 0.015 0.02 0.025 0.03 0.035 0.040

500

Page 12: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

12

Probability of

occurrence

of threats

LightningsSolar stormsLandslidesEarthquakesageing…

Threat & Vulnerability modeling

Experts’ knowledge

Statistical analyses on

historical data

+ real time monitoring

systems

12

Vulnerabilitydistribution

functionExperts’ knowledge

Fragility curvesfrom records and ad hoc tests…

Knowledge on physical protectionsystemsAssumptions on reactions to terrorist attacks

Statistical analyses on

historical data

Human errorsMalicious attacksSabotageTheft…

Page 13: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Set of contingenciesfor analyses

Contingency selection

13Contingency screening based on ex-ante risk

Calculation of “ex-ante” risk

Calculation of

contingency probabilityCalculation of ex-ante impact (i.e. prior to detailed analysis)

Defining N-1, N-k contingencies(including component dependencies)

Critical components screening(cumulative sum screening method based on probability)

Calculating probability of failure for power/ICT components

Threat modeling Vulnerability modeling

Complete set

of N-1 ctgs,

some N-2 ctgs

selected by

operators

Page 14: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

14

System response

• Quasi-static cascading engine (enhanced power flow with steady state response of regulation, protection & operator action)

• Event tree(hidden failure and relay setting uncertainties)

• Time domain simulation, to evaluate the dynamic response by detailed dynamic model

Probabilistic Cascading

Different time sequences of protection intervention

(primary / backup)

Page 15: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Impact & Risk indicators

Impact• Indices based on immediate post-fault steady-state quantities

(currents and voltages)

• Indices based on cascading outcome (loss of load, cost of unsupplied energy)

• Indices related to instability mechanisms (angle and voltage deviations)

15

( )

=

=

×

=Nbranches

k

knom

Nbranches

k

knomkj

totj

A

ASev

iSev

1

1

,

,

0 0.5 1 1.50

1

2

3

4

5

6

7

current, I [p.u.]

Severity

function, S

ev(I)

Proximity base severity function

continuous function N=15, M=12

ramp-wise function

Risk = {Contingency, Probability, Impact}

Risk indicators are defined as

Expected Value of Impact

e.g. Expected cost of energy not supplied

Page 16: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Risk assessment tool applications (I)

• Identifying most risky multiple contingencies in short term – combining component failure probabilities

– complementing traditional N-1 criterion

• Identifying most vulnerable components in current

weather/environment conditions– probabilistic models of threats and

component vulnerability

• Evaluating sensitivity of specific

component parameters on the

probability of failure of ICT/Power components– to improve vulnerability with targeted

interventions

– To quantify the reduction of expected costs16

0 50 100 150 200 250 300180

200

220

240

260

280

300

320

ISBA111ISBA811ISBA821ISBA822ISBA831

RIZN111RIZN311RIZN312

ANPP211ANPP212ANPP731ANPP741

BLLP211BLLP311BLLP312

CRCP211CRCP311CRCP312CRCP313

CHGP111CHGP211CHGP311

CMRP211CMRP311CMRP312

CORP211CORP311

FAVP211FAVP311FAVP312

FULP211FULP311

MLLP211MLLP311MLLP312MLLP313

MSBP211MSBP311MSBP312

PNAP211PNAP311PNAP312

PRRP211

PTRP111PTRP311

PRGP211PRGP711PRGP811

RAGP211RAGP311

SFMP211SFMP212SFMP221SFMP231SFMP711SFMP821SFMP831SRGP111SRGP211SRGP311SRGP312

TIMP211TIMP711TIMP811

km

km

0 20 40 60 80 100 120 140

SB_B03I301_no_signal_to_one_CBSB_B03I301_no_signal_to_one_CB

SSB2_B09Q301_BUSFAULT_stuckCB_L_IQ37SSB2_B09Q301_BUSFAULT_stuckCB_T_B11Q211T1SSB1_B15Y211_PP_BUSFAULT_stuckCB_L_YY210

SB_B24Y221_BUSFAULT_stuckCB_T_B24Y224T2SSB1_B09Q301_BUSFAULT_stuckCB_L_KQ311

SSB1_B15Y211_PP_BUSFAULT_stuckCB_L_YW28SSB2_B15Y211_PP_BUSFAULT_stuckCB_L_YW29

SSB1_B09Q301_BUSFAULT_stuckCB_L_IQ36SB_B24Y221_stuckCB_FAULT_ON_T_B24Y224T2

SB_B03I301_BUSFAULT_stuckCB_L_II32SSB1_B09Q301_BUSFAULT_stuckCB_T_B12Q212T3

SSB1_B15Y211_PP_no_signal_to_one_CBSSB1_B15Y211_PP_no_signal_to_one_CBSSB2_B15Y211_PP_no_signal_to_one_CBSSB2_B15Y211_PP_no_signal_to_one_CBSB_B03I301_BUSFAULT_stuckCB_L_IQ36

SB_B24Y221_BUSFAULT_stuckCB_L_YY210SB_B03I301_BUSFAULT_stuckCB_T_B24Y224T2

SSB2_B15Y211_PP_BUSFAULT_stuckCB_L_YY27SB_B24Y221_stuckCB_FAULT_ON_L_YY210

SB_B24Y221_BDP_OOSSSB2_B09Q301_stuckCB_FAULT_ON_T_B11Q211T1

SB_B03I301_stuckCB_FAULT_ON_L_II32SB_B03I301_stuckCB_FAULT_ON_L_IQ36

SSB2_B09Q301_stuckCB_FAULT_ON_L_IQ37SB_B03I301_stuckCB_FAULT_ON_T_B24Y224T2

SSB1_B15Y211_PP_stuckCB_FAULT_ON_L_YY210SSB1_B15Y211_PP_stuckCB_FAULT_ON_L_YW28SSB2_B15Y211_PP_stuckCB_FAULT_ON_L_YW29SSB2_B15Y211_PP_stuckCB_FAULT_ON_L_YY27

SSB1_B09Q301_stuckCB_FAULT_ON_L_KQ311SSB1_B09Q301_stuckCB_FAULT_ON_L_IQ36

SSB1_B09Q301_stuckCB_FAULT_ON_T_B12Q212T3SB_B03I301_BDP_OOS

N-3_Ln_10 _Ln_36 _2WND_B24YT2N-2_Ln_36 _2WND_B24YT2

N-1_B01I301_B03I301N-1_B24YT2N-1_B24YT2

N-2_Ln_10 _2WND_B24YT2N-2_Ln_10 _Ln_36

N-1_B03I301_B09Q301N-1_B15Y211_B24Y221

SSB2_B09Q301SSB1_B09Q301

SB_B24Y221SSB2_B15Y211_PPSSB1_B15Y211_PP

SB_B03I301

Angle instability Risk (dt = 10 minutes)- TOTAL Risk= 0.02686

Contingency ID

dB (Level O = 1e-015)ContingencyRanking lists

Spatial distributionof threat magnitude

Component failure probabilityvs threat magnitude

Page 17: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Risk assessment tool applications (II)

• Quantifying the effects of hidden failures and

operators’ delay on the

cascading risk

• and in the future

…linking the contingency

probabilities to real time data from monitoring

systems– to improve vulnerability with

targeted interventions

17

0 10 20 30 40 500

0.5

1

1.5

2

2.5

3LOL Risk Index Cumulative Curve (time interval = 10 minutes)

Contingency

1% Hidden failures

one path (no hidden failures)

0

0.02

0.04

0.06

0.08

0.1

0.12

no control S_d1200 S_d180 S_d60 S_d30

MW

lo

st

operators' delay scenario

Loss of load severity [MW] - ctg: N-2_Ln_B01-B03_Ln_B03-B09

Loss of load severity [MW]

Cumulative curves for loss of load

risk indicators as a function of hidden failure probability

Loss of load severity of a specific

N-2 contingency for different values

of operators’ delay

Page 18: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Application for control center: risk assessment of a system state (uncertainty on contingencies)

18operator

EMS

Powersystem

SCADA

RTU’s, PMU’s

Security level

requirements

Alarms/alerts/

(suggested

control

actions)

On-line alert systems

Control actions

Some N-2’s

N-1’s

Conventional

security

assessment

Se

cu

rity

Asse

ssm

en

t

State Estimation / Power flow

Risk basedsecurity

assessment

Co

ntin

ge

ncy

se

lectio

n

0 5 10 15 20 25 30 35 400

2

4

6

8x 10

-4 High current Risk Index Cumulative Curve (time interval = 10 minutes)

Contingency

ctg: N-2-Ln-10 -Ln-36 ( cum % risk: 94.3)

ctg: N-1-B15Y211-B24Y221 ( cum % risk: 32.0)

ctg: SB-B24Y221 ( cum % risk: 99.6)

0 20 40 60 80 100 120 140

SB_B03I301_no_signal_to_one_CBSB_B03I301_no_signal_to_one_CB

SSB2_B09Q301_BUSFAULT_stuckCB_L_IQ37SSB2_B09Q301_BUSFAULT_stuckCB_T_B11Q211T1

SSB1_B15Y211_PP_BUSFAULT_stuckCB_L_YY210SB_B24Y221_BUSFAULT_stuckCB_T_B24Y224T2

SSB1_B09Q301_BUSFAULT_stuckCB_L_KQ311SSB1_B15Y211_PP_BUSFAULT_stuckCB_L_YW28SSB2_B15Y211_PP_BUSFAULT_stuckCB_L_YW29

SSB1_B09Q301_BUSFAULT_stuckCB_L_IQ36SB_B24Y221_stuckCB_FAULT_ON_T_B24Y224T2

SB_B03I301_BUSFAULT_stuckCB_L_II32SSB1_B09Q301_BUSFAULT_stuckCB_T_B12Q212T3

SSB1_B15Y211_PP_no_signal_to_one_CBSSB1_B15Y211_PP_no_signal_to_one_CBSSB2_B15Y211_PP_no_signal_to_one_CBSSB2_B15Y211_PP_no_signal_to_one_CBSB_B03I301_BUSFAULT_stuckCB_L_IQ36

SB_B24Y221_BUSFAULT_stuckCB_L_YY210SB_B03I301_BUSFAULT_stuckCB_T_B24Y224T2

SSB2_B15Y211_PP_BUSFAULT_stuckCB_L_YY27SB_B24Y221_stuckCB_FAULT_ON_L_YY210

SB_B24Y221_BDP_OOSSSB2_B09Q301_stuckCB_FAULT_ON_T_B11Q211T1

SB_B03I301_stuckCB_FAULT_ON_L_II32SB_B03I301_stuckCB_FAULT_ON_L_IQ36

SSB2_B09Q301_stuckCB_FAULT_ON_L_IQ37SB_B03I301_stuckCB_FAULT_ON_T_B24Y224T2

SSB1_B15Y211_PP_stuckCB_FAULT_ON_L_YY210SSB1_B15Y211_PP_stuckCB_FAULT_ON_L_YW28SSB2_B15Y211_PP_stuckCB_FAULT_ON_L_YW29SSB2_B15Y211_PP_stuckCB_FAULT_ON_L_YY27

SSB1_B09Q301_stuckCB_FAULT_ON_L_KQ311SSB1_B09Q301_stuckCB_FAULT_ON_L_IQ36

SSB1_B09Q301_stuckCB_FAULT_ON_T_B12Q212T3SB_B03I301_BDP_OOS

N-3_Ln_10 _Ln_36 _2WND_B24YT2N-2_Ln_36 _2WND_B24YT2

N-1_B01I301_B03I301N-1_B24YT2N-1_B24YT2

N-2_Ln_10 _2WND_B24YT2N-2_Ln_10 _Ln_36

N-1_B03I301_B09Q301N-1_B15Y211_B24Y221

SSB2_B09Q301SSB1_B09Q301

SB_B24Y221SSB2_B15Y211_PPSSB1_B15Y211_PP

SB_B03I301

Angle instability Risk (dt = 10 minutes)- TOTAL Risk= 0.02686

Co

ntin

ge

ncy

ID

dB (Level O = 1e-015)

N-2’s

N-1’s

«Risky»N-k’s

Page 19: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Application for operational planning: risk assessment of a forecast system state

(uncertainty on contingencies and initial state)

19

Prob(Risk > Acceptable R*)

> εεεε?

operator

EMS Security level requirements

Driving operational

planning decisions …

k-hour ahead

forecasts for RES and

load

Forecasting critical gridscenarios (weather

forecasts, monitoringequipment conditions

over days…)

Allocate resources to

preservedesired security

levels

global risk assessmentAFTER tool

Conventionalplanning

tools

subset

of N-2’s

«Risky»

N-k’s

N-1’s

Risk basedOperational

planning supporttool

Contingency

selection

2 2.5 3 3.5 4 4.5

x 10-5

0

0.2

0.4

0.6

0.8

1

CTG N-2-Ln-248 -Ln-249 : probability of overcoming the value of risk of high currents on x axis

0 1 2 3 4

x 10-5

mean standard deviat ion

-0.5 0 0.5 1

skewnesskurtosis

CTG N-2-Ln-248 -Ln-249 - skewness and ku rtosis of ris k o f high currents

3.3 3.4 3.5 3.6 3.7 3.8

x 10-5

0

0.2

0.4

0.6

0.8

1

CTG N-2-Ln-248 -Ln-249 : probability of overcoming the value of risk of low voltages on x axis

0 1 2 3 4

x 10-5

mean standard deviat ion

-0.6 -0.4 -0.2 0 0.2

skewnesskurtosis

CTG N-2-Ln-248 -Ln-249 - skewness and kurtosis of risk of low voltages

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

x 10-4

0

0.5

1

Probability of overcoming the value of total risk of high currents on x axis

6.7 6.8 6.9 7 7.1 7.2 7.3 7.4

x 10-5

0

0.5

1

Probability of overcoming the value of total r isk of low voltages on x axis

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10-3

0

0.5

1Probability of overcoming the value of total risk of loss of load on x axis

SE

Page 20: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Risk assessment tool - Synthesis

• Possible to link the risk based security assessment

prototype to real time monitoring systems

• Identification of most vulnerable components

• Assessment of effects of human behaviour

(operators’ delays) on security

• Improved awareness of what is going on

• Helpful in operational planning studies to evaluatethe impact of RES and load uncertainties on

operational security

• Easy-to-intepret visualisation of results

20

Page 21: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Studies with PIA+

21

Risk of cyber attacks on the modelled power system• Base case (no attacks) vs. system under attack cases (Adversary is active)• Two modelled attacks were compared

(switch off a power element vs. changing the protection threshold of a power line)

• Operator “inspection” restores the settings modified by the attacker, thus

assuring correct protection response following component outages

Increasingfrequency of inspections

Increasingfrequency of inspections

Distribution of «average value of the loadover a time series of operating states»

Distribution of «minimum supplied loadover a time series of operating states»

Page 22: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

• If not countered by a suitable maintenance/inspection regime, the potency of attacks on

line-protection thresholds tends to increase over time.

• In some cases, we observe an increasingly significant impact on the quality of service

provided, with increasing certainty

• These time-series were also very useful model validation tools: unwanted statistical

properties of our complex models were easily detected

PIA+: Validation of Complex Models

22

Increasingfrequency of inspections

No inspection

Increasing frequency of inspections

Statistical analysis of supplied load over a short time interval

Page 23: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Power Grid

Power Grid + random events

Improvements in

operating policies,

maintenance,

equipment, controls, …

DC/AC Power Flow + optimization

+ Statistical Estimation (cascading)

+ Decision support

Feedback

Power Grid + random events + environment (actions)

Identify the need for transmission enhancements over planning horizons, based on the

analysis of sequences of operating states

10-1

100

101

102

103

104

10-4

10-3

10-2

10-1

100

Shed power (MW)

Pro

babi

lity

Real historical data

Simulated with ideal dispatch

Simulated with network dispatch

Simulated with coordinated dispatchUniversal

behavior

Statistical power flow tool withSelf-Organised Criticality

Self Organized Critical – Power Flow model

ΣΣΣΣ Line capacity = constant

ΣΣΣΣ Demand

Mean line loading = constant

Page 24: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Tool for predicting renewable power generation

Intermittent power generationElia North Sea Off-shore Windfarm

• Estimation of Intermittent resources

• Model MS(3)AR(2) & Bayesian technique

• Efficiency & Robustness over time resolution (from 15 mn to 1-4 hours)

• Exogenous variables for middle & long term forecast

Input to the risk

assessment

(uncertainty of

forecast state)

Page 25: AFTER FinalWorkshop WP4 WEB - ENEA — it · 2014. 12. 17. · Calculation of “ex-ante” risk Calculation of contingency probability Calculation of ex-ante impact (i.e. prior to

Operational Risk Assessment

Conclusions

25

Together with probabilistic tools for analysis of…

• cyber risk exposure

• need for grid reinforcements due to security issues

…accounting for uncertainties

• Power system response(hidden failures)

• Renewables & loads(forecast errors)

«smart» probabilistic N-k

contingency analysis

• accounting for dependencies

• avoiding combinatorialexplosion

• adapted to the current threatexposure (e.g. weather)

From deterministic N-1 security assessment …


Recommended