+ All Categories
Home > Documents > Altered Macrophage Differentiation and Immune Dysfunction in Tumor Development

Altered Macrophage Differentiation and Immune Dysfunction in Tumor Development

Date post: 09-Nov-2015
Category:
Upload: cristiangutierrezvera
View: 223 times
Download: 1 times
Share this document with a friend
Popular Tags:
12
Review series The Journal of Clinical Investigation http://www.jci.org      Volume 117      Number 5      May 2007  1155 Altered macrophage differentiation and immune dysfunction in tumor development Antonio Sica 1 and Vincenzo Bronte 2 1 Istituto Clinico Humanitas, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy. 2 Istituto Oncologico Veneto, IRCCS, Padua, Italy. Tumors require a constant influx of myelomonocytic cells to support the angiogenesis and stroma remodeling needed for their growth. This is mediated by tumor-derived factors, which cause sustained myelopoiesis and the accumulation and functional differentiation of myelomonocytic cells, most of which are macrophages, at the tumor site. An important side effect of the accumulation and functional differentiation of these cells is that they can induce lymphocyte dysfunction. A complete understanding of the complex interplay between neoplastic and myelomono- cytic cells might offer novel targets for therapeutic intervention aimed at depriving tumor cells of important growth support and enhancing the antitumor immune response. Although clinical trials evaluating the effectiveness of novel cancer  vaccines indicate that in cancer patients they can induce robust  immune responses against tumor antigens, the clinical benefits of  these vaccines have been limited (1, 2). The reasons behind these  limited clinical responses are not known but might be related,  in part, to the immunosuppressive effects of tumors. Immune  dysregulation and suppression in cancer patients is a composite  event in which tumor-derived factors condition not only periph- eral immune niches, in which dysfunction and even death of  tumor-specific T cells can occur, but also the bone marrow and  other hematopoietic organs (such as the mouse spleen), leading to  abnormal myelopoiesis and the accumulation of immunosuppres- sive myelomonocytic cells at the tumor site (3, 4). Dysregulation  and/or suppression of tumor-specific T cell function(s) is there- fore likely to occur at 2 separate sites: locally, at the tumor-host  interface, where cancer cells directly condition the tumor stroma;  and systemically, where an expanded pool of immature and immu- nosuppressive myeloid cells are free to circulate and mediate sup- pression in the blood and lymphoid organs. This Review attempts  to analyze the main myeloid cell populations that restrain antitu- mor immune responses. Immunosuppression and cancer: history and nomenclature Although a population of not very well defined cells called natural suppressors was associated in the early 1980s with immune suppres- sion and tumor development (5), the first description indicating  that increased numbers of myeloid cells in tumor-bearing hosts  might alter antitumor immune reactivity was provided by Hans  Schreiber’s group (6, 7). In one key experiment, the administra- tion of a Gr-1–specific antibody that recognizes both Ly6C and  Ly6G to immunocompetent mice reduced the growth of a vari- ant of a UV light–induced tumor able to progress more aggres- sively than its parental tumor cell line (6). This variant was known  to attract more leukocytes than the parental cell line, a property  attributed to the release of a noncharacterized chemotactic factor,  and its growth in vivo was known to be restrained mainly by CD8 + T cells. Interestingly, elimination of Gr-1 + cells in athymic nude mice  (which lack most T cells) also slowed the growth of this aggressive  variant, suggesting that Gr-1 + leukocytes in tumor-bearing hosts  might also promote tumor growth and development (7). The effect  of in vivo treatment with this Gr-1–specific antibody was originally  attributed to the elimination of granulocytes (which are known to  express high levels of Ly6G but low levels of Ly6C), but successive  reports from several groups indicated that the Gr-1–specific anti- body could bind and eliminate other cells in the blood. Gr-1 + cells  in tumor-bearing hosts were, in fact, mostly CD11b + and com- prised both polymorphonuclear and mononuclear cells, including  cells at different stages of maturation along the myelomonocytic  differentiation pathway, thereby revealing a profound altera- tion in myelopoiesis during tumor progression (4, 8) (Figure 1).  Myelopoiesis, in fact, is not only increased in the bone marrow and  spleen of tumor-bearing mice but is also altered, since the myelo- monocytic cells cannot properly differentiate into professional  APCs, such as DCs (reviewed in ref. 9). Heterogeneity of myeloid-derived suppressor cells The heterogeneity of the CD11b + Gr-1 + cells has generated some  confusion, in particular because of the nomenclature used pre- viously to define them (i.e., immature myeloid cells or myeloid  suppressor cells). Recently, a panel of leading investigators in the  field agreed to use the common term myeloid-derived suppressor cells (MDSCs) (10). The MDSC definition involves a synthesis of the  functional and phenotypic properties of the cells. MDSCs can be  defined as a population of myelomonocytic cells normally lack- ing the markers of mature myeloid cells and commonly expressing  both Gr-1 and CD11b in mice, with a high potential to suppress  immune responses in vitro and in vivo. The exact nature of the  MDSC population depends on various factors described below,  the most important of which is probably the tumor type. Even though numerous findings suggest that the monocytic,  rather than the granulocytic, fraction of mouse CD11b + Gr-1 + cells  is responsible for the immune dysfunctions induced by this cell  population, both in vitro and in vivo, in antigen-specific CD8 + T cells (11–13), the use of the term  myeloid is justified by the  incomplete understanding of the relationship between the two  Nonstandard abbreviations used: ARG1, arginase 1; CCL2, CC chemokine ligand 2;  CD3ζ, ζ chain of the CD3 component of the TCR complex; CXCL12, CXC chemokine  ligand 12; CXCR4, CXC chemokine receptor 4; HIF-1, hypoxia-inducible factor 1;   IL-4Rα, IL-4 receptor α-chain; MDSC, myeloid-derived suppressor cell; SHIP,   Src homology 2 domain–containing inositol-5-phosphatase; TAM, tumor-associated  macrophage. Conflict of interest: The authors have declared that no conflict of interest exists. Citation for this article: J. Clin. Invest. 117:1155–1166 (2007). doi:10.1172/JCI31422. Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422
Transcript
  • Review series

    TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007 1155

    Altered macrophage differentiation and immune dysfunction in tumor development

    Antonio Sica1 and Vincenzo Bronte2

    1Istituto Clinico Humanitas, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy. 2Istituto Oncologico Veneto, IRCCS, Padua, Italy.

    Tumorsrequireaconstantinfluxofmyelomonocyticcellstosupporttheangiogenesisandstromaremodelingneededfortheirgrowth.Thisismediatedbytumor-derivedfactors,whichcausesustainedmyelopoiesisandtheaccumulationandfunctionaldifferentiationofmyelomonocyticcells,mostofwhicharemacrophages,atthetumorsite.Animportantsideeffectoftheaccumulationandfunctionaldifferentiationofthesecellsisthattheycaninducelymphocytedysfunction.Acompleteunderstandingofthecomplexinterplaybetweenneoplasticandmyelomono-cyticcellsmightoffernoveltargetsfortherapeuticinterventionaimedatdeprivingtumorcellsofimportantgrowthsupportandenhancingtheantitumorimmuneresponse.

    Althoughclinicaltrialsevaluatingtheeffectivenessofnovelcancervaccinesindicatethatincancerpatientstheycaninducerobustimmuneresponsesagainsttumorantigens,theclinicalbenefitsofthesevaccineshavebeenlimited(1,2).Thereasonsbehindtheselimitedclinicalresponsesarenotknownbutmightberelated,inpart,totheimmunosuppressiveeffectsoftumors.Immunedysregulationandsuppressionincancerpatientsisacompositeeventinwhichtumor-derivedfactorsconditionnotonlyperiph-eral immuneniches, inwhichdysfunctionandevendeathoftumor-specificTcellscanoccur,butalsothebonemarrowandotherhematopoieticorgans(suchasthemousespleen),leadingtoabnormalmyelopoiesisandtheaccumulationofimmunosuppres-sivemyelomonocyticcellsatthetumorsite(3,4).Dysregulationand/orsuppressionoftumor-specificTcellfunction(s)isthere-forelikelytooccurat2separatesites:locally,atthetumor-hostinterface,wherecancercellsdirectlyconditionthetumorstroma;andsystemically,whereanexpandedpoolofimmatureandimmu-nosuppressivemyeloidcellsarefreetocirculateandmediatesup-pressioninthebloodandlymphoidorgans.ThisReviewattemptstoanalyzethemainmyeloidcellpopulationsthatrestrainantitu-morimmuneresponses.

    Immunosuppression and cancer: history and nomenclatureAlthoughapopulationofnotverywelldefinedcellscallednatural suppressorswasassociatedintheearly1980swithimmunesuppres-sionandtumordevelopment(5),thefirstdescriptionindicatingthatincreasednumbersofmyeloidcellsintumor-bearinghostsmightalterantitumorimmunereactivitywasprovidedbyHansSchreibersgroup(6,7).Inonekeyexperiment,theadministra-tionofaGr-1specificantibodythatrecognizesbothLy6CandLy6Gtoimmunocompetentmicereducedthegrowthofavari-antofaUVlightinducedtumorabletoprogressmoreaggres-sivelythanitsparentaltumorcellline(6).Thisvariantwasknown

    toattractmoreleukocytesthantheparentalcellline,apropertyattributedtothereleaseofanoncharacterizedchemotacticfactor,anditsgrowthinvivowasknowntoberestrainedmainlybyCD8+Tcells.Interestingly,eliminationofGr-1+cellsinathymicnudemice(whichlackmostTcells)alsoslowedthegrowthofthisaggressivevariant,suggestingthatGr-1+leukocytesintumor-bearinghostsmightalsopromotetumorgrowthanddevelopment(7).TheeffectofinvivotreatmentwiththisGr-1specificantibodywasoriginallyattributedtotheeliminationofgranulocytes(whichareknowntoexpresshighlevelsofLy6GbutlowlevelsofLy6C),butsuccessivereportsfromseveralgroupsindicatedthattheGr-1specificanti-bodycouldbindandeliminateothercellsintheblood.Gr-1+cellsintumor-bearinghostswere,infact,mostlyCD11b+andcom-prisedbothpolymorphonuclearandmononuclearcells,includingcellsatdifferentstagesofmaturationalongthemyelomonocyticdifferentiationpathway, thereby revealingaprofoundaltera-tioninmyelopoiesisduringtumorprogression(4,8)(Figure1).Myelopoiesis,infact,isnotonlyincreasedinthebonemarrowandspleenoftumor-bearingmicebutisalsoaltered,sincethemyelo-monocyticcellscannotproperlydifferentiateintoprofessionalAPCs,suchasDCs(reviewedinref.9).

    Heterogeneity of myeloid-derived suppressor cellsTheheterogeneityoftheCD11b+Gr-1+cellshasgeneratedsomeconfusion,inparticularbecauseofthenomenclatureusedpre-viouslytodefinethem(i.e.,immaturemyeloidcellsormyeloidsuppressorcells).Recently,apanelofleadinginvestigatorsinthefieldagreedtousethecommontermmyeloid-derived suppressor cells (MDSCs)(10).TheMDSCdefinitioninvolvesasynthesisofthefunctionalandphenotypicpropertiesofthecells.MDSCscanbedefinedasapopulationofmyelomonocyticcellsnormallylack-ingthemarkersofmaturemyeloidcellsandcommonlyexpressingbothGr-1andCD11binmice,withahighpotentialtosuppressimmuneresponsesinvitroandinvivo.TheexactnatureoftheMDSCpopulationdependsonvariousfactorsdescribedbelow,themostimportantofwhichisprobablythetumortype.Eventhoughnumerousfindingssuggestthatthemonocytic,

    ratherthanthegranulocytic,fractionofmouseCD11b+Gr-1+cellsisresponsiblefortheimmunedysfunctionsinducedbythiscellpopulation,bothinvitroandinvivo,inantigen-specificCD8+Tcells (1113), theuseof thetermmyeloid is justifiedbytheincompleteunderstandingoftherelationshipbetweenthetwo

    Nonstandardabbreviationsused:ARG1,arginase1;CCL2,CCchemokineligand2;CD3,chainoftheCD3componentoftheTCRcomplex;CXCL12,CXCchemokineligand12;CXCR4,CXCchemokinereceptor4;HIF-1,hypoxia-induciblefactor1;IL-4R,IL-4receptor-chain;MDSC,myeloid-derivedsuppressorcell;SHIP,Srchomology2domaincontaininginositol-5-phosphatase;TAM,tumor-associatedmacrophage.

    Conflictofinterest:Theauthorshavedeclaredthatnoconflictofinterestexists.

    Citationforthisarticle:J. Clin. Invest.117:11551166(2007).doi:10.1172/JCI31422.

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    1156 TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007

    mainprogenyoftheenhancedmyelopoiesisobservedintumor-bearinghosts(i.e.,granulocytesandmonocytes;Figure1).BothMDSCsandtumor-associatedmacrophages(TAMs)haveaphe-notypesimilartothatofalternativelyactivatedmacrophages(alsoknownasM2macrophages)inthemouse,asdiscussedbelow,andtumor-conditionedgranulocytesmighthavearoleininfluenc-ingthisactivationprocess.Itmustbepointedout,infact,thatinmice,threedifferentneutrophilsubsetshavebeenisolatedthatcanconditionmonocyte/macrophagedifferentiationtowardtheclassicoralternativeactivationpathwaybyreleasingdifferentcytokinesandchemokines(14).Furthermore,humangranulocytesubpopulationsinpatientswithrenalcellcancerhavebeenshowntofunctionasMDSCs(15,16).CD11b+Gr-1+cellsarenormallypresentinthebonemarrowof

    healthymiceandaccumulateinthespleenandbloodoftumor-bearingmice(1720).CD11b+Gr-1+cellspresentinsteady-stateconditionsarenotabletoinducesuppressionofantigen-stimulatedTcells,atleastnottothesameextentasthecellsthataccumulateintumor-bearingmice,andrecentdatasupportthepossibility

    thatexogenouslyprovidedIL-13mightconferonthemsuppres-siveactivity(21,22).BerzofskyandcolleagueshaveshownthatasubsetofNKTcellsrecognizingtumor-derivedglycolipidspresent-edbytheMHC-likemoleculeCD1releasesIL-13.ThisIL-13canthenactivateCD11b+GR-1+cellstosuppresstumor-specificCTLsthroughaSTAT6pathwayinitiatedbytheIL-4receptor-chain(IL-4R),whichiscommontothereceptorsforIL-4andIL-13(21,22).Thiscircuitisactivatedveryearlyaftertumorimplantationinmice,beforeanyincreaseinthenumberofCD11b+Gr-1+cellsisdetected.Inseveralexperimentalmodels,however,systemicaccu-mulationofCD11b+Gr-1+cells,probablyresultingfrombothdif-ferentiationofprecursorsandrecruitmenttoparticularanatomi-calsites,precedesandisimportantformediatingsuppressionofTcells,notonlyincancerbutalsoduringinfections(Table1).

    MDSC suppression of T cell functionThebiologyandpropertiesofMDSCsintumor-bearinghostshavebeenextensivelydescribedinrecentreviews(4,8,23)andaresum-marizedhereinProperties of MDSCs.Themechanismsunderlying

    Figure 1Current view of TAM and MDSC differentiation. HSCs give rise to common myeloid precursors (CMPs), which subsequently originate at least three subsets of cells circulating in tumor-bearing hosts that can be identified by specific markers: monocytes (CD11b+Gr-1+F4/80+), granulocytes (CD11b+Gr-1highF4/80IL-4R), and MDSCs (CD11b+Gr-1medF4/80low/IL-4R+). Circulating monocytes are recruited by tumors and differentiate into TAMs, acquiring protumoral functions. During tumor progression, MDSCs accumulating in blood and in lymphoid organs such as the spleen may also be recruited to the tumor microenvironment, where they become F4/80+. This latter pathway of MDSC-TAM phenotype transition (dashed arrow) was recently proposed (13, 27). Finally, it has been hypothesized that immature forms of granulocytes might differentiate into MDSCs or condition their function and/or further differentiation (red arrows), as suggested by some studies (14).

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007 1157

    theinhibitoryactivityofMDSCsareprobablyvarious,rangingfromthoserequiringdirectcell-cellcontacttoothersindirectlymediatedbymodificationofthemicroenvironment.MDSCsfresh-lyisolatedfromthespleensoftumor-bearingmicewereoriginallyshowntosuppressthefunctionalactivityofCD8+Tcells,butnotCD4+Tcells,byinterferingwiththeirabilitytosecreteIFN-whenstimulatedwithspecificantigens(19,24).ThiseffectwasthoughttoberelatedtothefactthatMDSCsexpressedMHCclassIbutnotMHCclassIIandwasmediatedbycell-cellcontactandtheproductionofROSsuchashydrogenperoxide(H2O2),triggeredbyMDSCexpressionoftheenzymearginase1(ARG1)(19).TheroleofH2O2asamediatorofTcelldysfunctionseemstocorrelate,atleastinsomestudies,withdecreasedexpressionofthechainoftheCD3componentoftheTCRcomplex(CD3)(25).OtherstudieshaveshownthatcirculatingMDSCshavetobeactivatedbyantigen-experiencedTcellstoexecutetheirsuppressiveprogramandthattheycansuppress,inanMHC-independentfashion,bothantigen-activatedCD4+andCD8+Tcells(11,13,20).Moreover,asubsetofMDSCs(expressingCD11b,Gr-1,CD115,andF4/80)isolatedfromthebonemarrowandspleensoftumor-bearingmicecaninducethedevelopmentofFOXP3+CD4+(FOXP3,fork-headboxp3)TregsinvivobyapathwayrequiringIFN-andIL-10(26).Interestingly,productionofNOwasnotrequiredforMDSC

    inductionofTregswhereasNO,releasedbyNOS,hasbeenshowntobeextensivelyinvolvedintheTcelldysfunctioninducedbyMDSCs(Table1),suggestingthatthedifferentbiologicalactivitiesofMDSCsmightbeseparatedatthemolecularlevelandperhapstargetedbydistincttherapeuticapproaches.Someissuesmustbeconsideredwhenanalyzingthepartially

    conflictingresultsonthemechanismofMDSC-dependentsup-pressionofTcells.TheinvitroassaysevaluatingtheinhibitorypropertiesofMDSCsarenotstandardized,soindifferentstudiestheymightdifferbothinthetypeofstimuliandsourceofTcells.WhenTcellsarestimulatedinvitrointhepresenceofsupraphysi-ologicnumbersofMDSCs,themechanismsgoverningsuppres-sionmightdifferfromthoseactivatedininvitroassayswheretheratioofMDSCstoTcellsisthesameasfoundinthelymphoidorgansofmice,whereMDSCsarerecruitedinpathologicalsitu-ations.Incontrasttotheinvitroassays,theabilityofMDSCstoinducetumor-specificCD8+Tcellstobecomenonfunctionalinvivohasbeenrepeatedlyconfirmed,althoughmanystudiesarebasedontheuseofeithersmallmoleculesaffectingMDSCinhibi-torypathwaysorantibodiesdepletingGr-1+cells(11,22,2729).Itmustbeemphasizedthattheinterpretationofinvivoexperi-mentswithinhibitorsiscomplicatedbythepossibilitythatthesemoleculesaffectcellsotherthanMDSCs.

    Table 1Myeloid celldependent suppression of T cells in mice

    Pathology Suppressorcells Phenotype Mousestrain MechanismofTcellinhibition References isolatedfrom:

    Cancer

    Colon carcinomas Spleen and tumor CD11b+Gr-1+ BALB/c ARG and NO dependent (11, 17, (CT26 and C26) 44, 115)Melanoma (B16) Spleen CD11b+Gr-1+ C57BL/6 NOS dependent (45)Lymphoma (EL-4) Tumor CD11b+Gr-1+F4/80+ C57BL/6 ARG and NO dependent (13)Colon adenocarcinoma Tumor F4/80+ C57BL/6 NO and cell-associated form (116) (MCA-38) of TNF-Mammary carcinoma (4T1) Spleen CD11b+Gr-1+CD11c+ BALB/c ARG dependent (20)Lewis lung carcinoma Tumor CD11b+Gr-1F4/80CD80+ C57BL/6 ARG dependent (47)Lewis lung carcinoma Tumor CD31+ C57BL/6 NO and TGF- dependent (117)T cell lymphoma (BW-Sp3) Spleen CD11b+Gr-1intLy6GCD115int AKR ARG and NO independent; (12, 118) partially dependent on PPARFibrosarcoma (C3) Spleen CD11b+Gr-1+ C57BL/6 ARG and H2O2 (19)Transformed fibroblasts Spleen CD11b+Gr-1+ BALB/c NKT cells, IL-13, STAT6, TGF-; (21, 22) (1512RM) NOS independent; ARG not tested

    Infection

    Candida albicans Blood, spleen CD11b+Gr-1+CD80+ BALB/c IFN-/NO and CD80 (119) polymorphonuclear cellsTrypanosoma cruzi Spleen CD11b+Gr-1+ C57BL/6 and Sv129 IFN-/NOS (120)Schistosoma mansoni Spleen CD11b+Gr-1+CD16+ BALB/c and B10.D2 Unidentified soluble factor (121) (not IL-4, IL-10, or TGF-)Taenia crassiceps Peritoneum CD11b+Gr-1+ BALB/c 12/15-Lipoxygenase, NO and ARG (122)Porphyromonas Spleen, BM but CD11b+Gr-1+ BALB/c IFN- (52) gingivalis not lymph nodesSchistosome Peritoneum CD11b+Gr-1+F4/80+ BALB/c and C57BL/6 IFN-/NO; partly IL-10 dependent (123) oligosaccharide (Lacto-N-neotetraose)Cruzipain antigen Spleen CD11b+Gr-1+ BALB/c Not investigated; ARG and NOS (124) from T. cruzi (extramedullary activity increased in macrophages hematopoiesis)

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    1158 TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007

    General properties of MDSCs and their relationship with M2 macrophagesThesuppressiveprogramofMDSCscanbetriggeredbytheirinter-actionwithantigen-activatedCD8+Tcellsbothinvitroandinvivo,throughanIFN-andcell-contactdependentstepthatmightrequiretheexpressionofCD80andCD11bonthesurfaceoftheMDSCs(11,19,30).Interestingly,simpleinvitrocultureofMDSCsalonecanactivatethisprogram.Thereasonbehindthecommonfindingthatcells isolatedeitherwithGr-1specificorCD11b-specificantibodiesandculturedinvitro(withorwithoutGM-CSF)becomemacrophage-likecells(i.e.,theygainaCD11b+Gr-1

    F4/80+CD80+MHCclassII/lowphenotype)withenhancedimmuno-suppressiveactivity(1113)hasnotbeenfullyinvestigated.TheinhibitorypropertiesofMDSCsareprobablymediatedby

    theexpressionofinducibleformsofNOS(i.e.,NOS2)andARG(i.e.,ARG1).BothNOS2andARG1areinvolvedinthemetabolismoftheaminoacidl-Arg(Figure2).NOS2,aheme-containingenzymethatcatalyzesthesynthesisofNOandcitrullinefroml-Arg,isexpressedbyvariouscellsoftheimmunesystem,anditsactiva-tionisconsideredahallmarkofclassicallyactivatedmacrophages(alsoknownasM1macrophages),amacrophagesubsetthatpro-ducesproinflammatorycytokinesandactsastheeffectorcellinthekillingofinvadingpathogens(3133).InM1macrophages,expressionofthegeneencodingNOS2dependsontheactiva-tionoftranscriptionfactors,suchasNF-B,JAK3,andSTAT1aswellasJNK(34),anditcanbetranscriptionallyupregulatedbyproinflammatorycytokines(e.g.,IFNs,IL-1,IL-2,andTNF-),bac-terialLPS,andhypoxia(35,36).Bycontrast,ARG1(alsoknownasliver-typeARGbecauseitisfoundpredominantlyinhepatocytes)isamanganesemetalloenzymethatcatalyzesthehydrolysisofl-Argtol-ornithineandurea(Figure2).However,ARG1isalsoinducedincellsoftheinnateimmunesystembyseveralcytokines

    includingTGF-(37),themacrophage-stimulatingprotein(MSP)actingonthereceptorRON(38),GM-CSF(39),andeitherIL-4orIL-13,bothofwhichactivateaSTAT6signalingpathway(40).IncontrasttoNOS2,whoseactivationisconsideredahallmarkofM1macrophages,ARG1activationhasbeenregardedasoneofthemostspecificmarkersofM2macrophages,whichactasimpor-tantmediatorsofallergicresponses,controlparasiticinfections,mediatewoundrepairandfibrosis,andhavebeenfoundintheleukocyteinfiltratesofvarioushumanandmousetumors,wheretheyhavebeensuspectedofpromotingtumorigenesis(31,32),asfurtherdiscussedbelow.DespitethisdistinctexpressionofNOS2andARG1inM1andM2macrophages,respectively,MDSCshavebeenshowntoexpressNOS2and/orARG1,andrecentstudiesindicatethatMDSCshavecharacteristicsofbothM1andM2macrophages.Indeed,werecentlydescribedintumor-bearingmiceapopulationofcirculatingCD11b+Gr-1+inflammatorymonocytesexpressingIL-4RandabletoreleasebothIL-13andIFN-(11),characteristicsthatarecompatiblewithafunctionintermediatebetweenthoseofM1andM2macrophages.TosuppressCD8+Tcells,thesecirculatinginflammatorymonocyteshadtobeacti-vatedbyIFN-producedbyantigen-stimulatedTcells,releasetheirownIFN-andIL-13,andberesponsivetoIL-13byexpress-ingafunctionalIL-13receptor,includingtheIL-4Rsubunit(11).IL-4RisthereforeausefulmarkerfordiscriminatingbetweenpopulationsofimmunosuppressiveMDSCs(IL-4R+)andnon-suppressivegranulocytes(IL-4R),bothofwhichareincreasedinthebloodandspleensoftumor-bearingmice(Figure1).Coopera-tionbetweenIL-13andIFN-ledtosustainedactivationofbothARG1andNOS2inMDSCpopulations,causingdysfunctionalTcellresponses(11).Importantly,CD11b+TAMsalsorequirethesamecombinationofcytokines(IL-13andIFN-)tomediatesup-pressionofCD8+Tcells(11).TheseresultssuggestthatMDSCs

    Properties of MDSCs

    CoexpressionofthemyeloidcellmarkersCD11bandGr-1mustbeassociatedwiththefunctionalabilitytoinhibitTcellactivation.

    Normallyfoundinthebonemarrow(inthespleenofnormalmicetheynormallyaccountforlessthan5%ofnucleatedcells),MDSCscanbeincreasedinnumbersinspleenandbloodunderpathologicalconditions.AnincreaseinMDSCnumbersinlymphnodeshasbeenreportedbysomestudiesunderpathologicalsituations(27,105).

    MDSCspresentatthetumorsiteandafractionofcellspresentinthespleenofmicebearingtumorsareCD11b+F4/80+Gr-1;thesecellscanariseinvivoandinvitrofromCD11b+Gr-1+precursorsandretaintheirsuppressiveproperties(12,13,17,28).

    Invitroeffects:MDSCsinhibitTcellactivation(CD8+TcellsmorethanCD4+Tcells)inducedbyeitherantigensorpolyclonalstimulithroughanMHC-independentmechanismrequiringcell-cellcontact.

    EventhoughdirectantigenpresentationtotheTcellsbyMDSCsisnotrequiredforinvitrosuppression,MDSCscantakeupandcross-presenttumor-associatedantigensinthecontextofMHCclassImoleculesinvivo(27).Inthiscase,selectiveimpairmentoftumor-specificimmunityhasbeenshown,indicatingthatMHC-dependentresponsesmightberelevantinvivo.

    HumanMDSCequivalentsarenotentirelyknown,butgranulocytesubpopulationsmightbeinvolvedinmediatingsomehumanMDSCinhibitoryactivities(15,16).

    VEGF,GM-CSF,IL-3,M-CSF,andIL-6havebeenshowntobeinvolvedinthealterationofnormalmyelopoiesisandrecruitmentofMDSCstoperipheralorgansunderpathologicalsituations.Cytokinesmightberelevantforenhancedmyelopoiesis,mobiliza-tionofMDSCs,andconditioningthematurationofthesecells(4,9).

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007 1159

    andTAMsrespondwithanM2macrophageorientedprogramtoclassicsignalsdrivingmacrophageactivation(dependentonTh1cytokines)andreconcileconflictingdataattributingaprevalenceofeitherIFN-,NOS2,andSTAT1orIL-4/IL-13,ARG,andSTAT6axesinthesuppressionoftheimmuneresponseintumor-bearinghosts(Table1,Figure2;alsodiscussedfurtherbelow).Manyquestions,however,stillawaitanswers.It isnotclear,

    forexample,whetheralltheMDSCprecursorsinapopulationrespondsimilarly(andsynchronously)toTcellmediatedacti-vationorwhetherMDSCpopulationsareheterogeneous,withsomecellsprogrammedtoactivateanM1phenotypeandotherstoactivateanM2phenotype.Alternatively,someplasticitymightexist,i.e.,MDSCsmightbeabletooscillatebetweenM1andM2phenotypes,dependinguponthestimulationtheyreceive.More-over,withrespecttothestatusofpolarization,somedifferenceshavebeen reportedbetweenmiceandhumans.For example,ARG1isexpressedinmouse,butnothuman,M2macrophages(41).Inhumans,ARG1isconstitutivelyexpressedbygranulocytes

    (42),andARG1-expressinggranulocyteshavebeenreportedtoinducebothdecreasedCD3expressionandattenuatedactivationinTcellsfromrenalcellcarcinomapatients(15).Thesediscrepanciesbetweenhumansandmicemightreflectour incompleteunderstandingof thehighlydynamicprocessofmyeloiddifferentia-tionincancer,andonlytheidentificationofthemoleculesreleasedbytumorsandthetranscrip-tionfactorsactivatedinhematopoieticprecur-sorscanaddresstheseissues.WearecurrentlyevaluatingthepossibilityofgeneratingMDSCsfrombonemarrowprecursorsusingdefinedinvitroculturesystemsinanattempttoaddresssomeoftheseissues.

    l-Arg metabolism as the mechanism of MDSC immunosuppressionIncreasedl-Argmetabolism,eitherinmyeloidcellsinfiltratingthetumorstromaorintumor

    cells,canimpairantigenresponsivenessofTcells,bothatthetumor-hostinterfaceandsystemically(23,29,43).Immuneregulationbyl-Argmetabolismisnotantigen-specific,buttobesusceptibletotheinhibitoryactivityoftheARG-andNOS-dependentl-Argmetabo-lismpathways,aTcellmustbeactivatedthroughitsTCR.Activa-tionthroughtheTCRpromotesTcellcycling,andmanyoftheinhibitoryeffectsofl-Argmetabolizingenzymesrequireactivelyproliferatingcells.NOS2andARG1canfunctionseparatelyorsynergisticallytoalterTcellfunction;activationofeitherenzymealoneinanAPCinhibitsitsabilitytoinduceTcellproliferationbyinterferingwithintracellularTcellsignaltransductionpath-wayswhereasinductionofbothenzymesgenerateshighlyreactiveoxygenandnitrogenspecies,suchasH2O2andperoxynitrites,thatmightinducesignalingdefectsinproximalimmunecellsandforceantigen-activatedTcellstoundergoapoptosis(Figure2andref.23).Therelativelevelsofexpressionofthe2enzymesseemtoberelatedtothestimulusdrivingMDSCaccumulation(Table1).Inthecaseoftumor-inducedMDSCs,themainfactorsdetermining

    Figure 2Inhibitory effects of MDSC l-Arg metabolism on antigen-activated T cells. l-Arg enters MDSCs through a cationic amino acid transporter (CAT-2B) and is mainly metabolized by the inducible forms of NOS and ARG (i.e., NOS2 and ARG1, respec-tively) although the contribution of other isoforms cannot be ruled out. Depending on the balance between these enzymes, depletion of extracellular l-Arg concentration, NO release, and enhanced production of reactive oxygen and nitrogen species (for example, O2 and H2O2, and ONOO, respec-tively) can ensue. T cells that are activated in the MDSC-conditioned environment stop proliferating and eventually die by apoptosis through pathways involving activation of general control nondere-pressible 2 (GCN2) and soluble guanylate cyclase (sGC); tyrosine nitration and S-cysteine nitrosylation of various proteins; loss of CD3; and interference with the IL-2R signaling pathway (reviewed in ref. 23). cEBP-, CCAAT enhancerbinding protein ; MSP, macrophage-stimulating protein.

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    1160 TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007

    whichl-Argmetabolizingenzymeisexpressedatthehighestlevelareasfollows:tumorhistology,anatomicalsitefromwhichtheMDSCsareisolated(spleen,blood,ortumor),geneticbackgroundofmouse(whichprobablydictatestheTh1vs.Th2orientationoftheimmuneresponse),andtypeofstimulatorysignaldeliveredtotheactivatingTcells(Table1andrefs.4446).Interestingly,asdiscussedabove,activationofARG1canlead

    tolossofcellsurfaceexpressionofCD3inantigen-activatedTcellsbyconsumptionofl-Argandactivationof theaminoaciddeficiencysensorgeneralcontrolnonderepressible2(GCN2)(47,48),asensorthatisalsotriggeredbyanotheraminoacidmetabolizingenzymecausingimmunesuppression,indoleamine2,3-dioxygenase (49,50).The lossofCD3 seemstobemoreimportantforinhibitionofCD4+TcellfunctionthanofCD8+Tcellfunction(51).Indeed,splenicMDSCswereshowntoinducetheCD3chaindownregulationinantigen-stimulatedCD4+butnotCD8+Tcells(51).Moreover,CD3lossmightnotberelat-edexclusivelytotumorMDSCs,sinceMDSCsexpandedduringchronic inflammation inducedby infectionwithPorphyromo-nas gingivaliscanalsoinduceitsdownregulation(52).IthasbeenproposedthatthefunctionalroleofMDSCsistolimitchronicstimulationoftheimmuneresponseandpreventunmitigatedTcellactivation,whichcanbedangerous(53).DownregulationofCD3expressionandtheunresponsivenessofTcellsthatensuescontributetotheinflammatoryresponsebeingattenuated;i.e.,thereleaseofproinflammatorycytokinesandothermediatorsthatmightbedetrimentaltothebodywhenproducedinexcessorforaprolongedperiodisattenuated.LossofCD3Tcellsisnottheonlymechanismbywhichheight-

    enedl-ArgmetabolismmediatesTcellsuppression.Forexample,CD8+tumor-infiltratinglymphocytes(TILs)presentinindividualswithprostatecancerareinhibitedbyapathwaydependentontheintratumoralactivationofARG2andNOS2(expressedbythecan-cercells),buttheseTILsdonotshowalteredexpressionofCD3

    orotherprofounddefectsintheTCRsignalingpathway(54).WethereforethinkthatitisprobablethatCD3downregulationisalateeventintumorprogression,associatedwithadeeperaltera-tioninhostmyelopoiesis.

    Origin and molecular basis of TAM functionsTAMsarethesecondwell-describedpopulationofmyeloidcellsthathavebeenshowntoexertanegativeeffectonantitumorimmuneresponses.TherelationshipbetweenTAMsandMDSCsisnotcompletelydefined,butdatadiscussedbelowsuggestTAMsmight,inpart,bederivedfromorrelatedtoMDSCs(Figure1andProperties of TAMs).Fordecades,solidtumorshavebeenknowntobestrongly

    infiltratedbyinflammatoryleukocytes,andaccumulatingevi-dencehasclearlydemonstrated,invariousmouseandhumanmalignancies,includingcolon,breast,lung,andprostatecan-cer(32,5557),astrictcorrelationbetweenincreasednumbersand/ordensityofmacrophagesandpoorprognosis.Basedonthis,boththerecruitmentandactivationofTAMsareregardedaspivotaltotumorprogression,andTAMsareputativetargetsfortherapeuticintervention.AsoriginallydescribedbyAlbertoMantovaniandcolleaguesin

    theearly1980s(57),circulatingmonocytes(Figure1)arerecruit-edtothetumor,wheretheydifferentiateintoTAMs,byatumor-derivedchemotacticfactor,originallyidentifiedasCCchemokineligand2(CCL2;alsoknownasMCP-1)(32).Followingthisobser-vation,otherchemokinesabletorecruitmonocytesweredetect-edinneoplastictissuesasproductsofeitherthetumorcellsorhoststromalelements(55).Inadditiontorecruitingmonocytes,thesemoleculesplayanimportantroleintumorprogressionbydirectlystimulatingneoplasticgrowth,promotinginflamma-tion,andinducingangiogenesis(58).Evidencesupportingapiv-otalroleforchemokines,inadditiontoCCL2,intherecruitmentofmonocytestoneoplastictissuesincludesadirectcorrelation

    Properties of TAMs

    TAMsarederivedfromcirculatingmonocytesthatarerecruitedtotumorsbychemotacticfactorssuchasCCL2,VEGF,andM-CSF(32,106).

    TAMspreferentiallylocalizeinhypoxicareasoftumors(64,107).

    M2macrophagepolarization:TAMsexpresshighlevelsofM2macrophagemarkers(IL-10,TGF-,ARG1,andthemannoserecep-tor)andlowlevelsofmediatorsofM1macrophagemediatedinflammation(IL-12,TNF-,andIL-6)(32,75,81).

    TAMsexhibitdefectiveNF-BactivityandfunctionalIRF-3/STAT1pathwayactivityinresponsetoTLR4ligands(75).

    TAMsexhibitthefollowingprotumoralfunctions: (a)Inductionofangiogenesisthroughexpressionoftissuefactors,VEGF,CCL2,FGF2,CXCL8,CXCL1,andCXCL2 (32,85,108,109)

    (b)Productionofgrowthfactors(e.g.,PDGF,EGF,andVEGF)(85,110,111) (c)InductionofmatrixremodelingthroughtheproductionofTGF-,CCL2,andMMPssuchasMMP9(32,112) (d)Immunesuppression,throughtheproductionofimmunosuppressivecytokines(e.g.,IL-10andTGF-)(32,75,76) andtherecruitmentofTregsthroughthesecretionofCCL22(113)

    (e)SkewingofadaptiveimmunitytoaTh2-typeimmuneresponsethroughtheproductionofCCL17(32),CCL18(114), andCCL22(113).

    IncreasednumbersofTAMscorrelatewithvesseldensityandpoorprognosis(56).

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007 1161

    betweenchemokineproductionandmonocyteinfiltrationinmouseandhumantumors(32).Moleculesotherthanchemokinescanalsopromotemono-

    cyterecruitment.Inparticular,tumor-derivedcytokinessuchasVEGFandM-CSFpromotemonocyterecruitmentaswellasmacrophagesurvivalandproliferation,andtheirexpressioncor-relateswithtumorgrowth(59).Someofthesefactors,expressedinthetumormicroenvironment,alsoinhibitthedifferentiationofmonocytesintoDCsbyactivatingSTAT3-dependentsignaling(9),therebyimpairingtheinductionofDC-inducedantigen-spe-cificimmuneresponses(60).SeverallinesofevidencesuggestthatsomecirculatingMDSCs

    reachthetumorsiteandbecomepartofthetumorstroma,indi-catingthat,inadditiontoperipheralmonocytes,CD11b+Gr-1+MDSCsmightalsobeprecursorsofF4/80+TAMs.Indeed,ithasbeenshownthatGr-1+cellsisolatedfromthespleensoftumor-bearingmicecanreachthetumorandbecomeF4/80+TAMschar-acterizedbyincreasedSTAT1phosphorylationandconstitutiveexpressionofARG1andNOS2(13,27)(Figure1).Intumor-bear-inghosts,increasedbioavailabilityofVEGFandreleaseofsolubleKITligandinthebonemarrowarepromotedthroughthehighexpressionofMMP9bysplenicCD11b+Gr+cells,whichindirectlypromotetumorvascularizationandregulatethemobilizationofmoreCD11b+Gr+cells.TheseCD11b+Gr-1+cellswerealsofoundtodirectlyincorporateintothetumorendothelium(61),wheretheycontributetotumorgrowthandvascularizationbyproduc-ingMMP9anddifferentiatingintoendothelialcells.Moreover,theconceptofashareddifferentiationpathwaybetweencirculatingMDSCsandTAMs(Figure1)isreinforcedbythecommonmolec-ularpathways(activatedbyIFN-andIL-13)necessaryfortheirimmunosuppressiveactivity,aspreviouslydescribed(11).TAMspreferentiallylocalizetopoorlyvascularizedregionsof

    tumors(62,63).Thisenvironmentpromotesthemetabolicadap-tationofTAMstohypoxiathroughtheactivationofhypoxia-induciblefactor1(HIF-1)andHIF-2(63).WerecentlyhaveshownthatHIF-1activatedinTAMsbyhypoxiainfluencestheposi-tioningandfunctionoftumorcells,stromalcells,andTAMsbyselectivelyupregulatingtheirexpressionofCXCchemokinerecep-tor4(CXCR4)(64).Moreover,HIF-1activationcanhavearoleintheinductionoftheCXCR4ligand,CXCchemokineligand12(CXCL12)(65),achemokineinvolvedincancermetastasis(66).Together,thesedatasuggestthatoxygenavailabilityhasaroleinguidingthemicroanatomicallocalizationandfunctionofTAMs.Moreover,hypoxiacanalsohaveimportantconsequencesonl-ArgmetabolisminTAMsandtherebyonthesuppressionofadaptiveimmunity,sinceitcaninduceNOS2andARGexpression(inthiscasewithacertainvariabilityintermsofARG1andARG2)invari-ouscelltypes(6769).InadditiontoHIF-1,analysisofthemolecularbasisofthe

    TAMphenotypehasidentifiedNF-BasthemasterregulatorofTAMtranscriptionalprograms,andsomeevidencesuggeststhatmodulationofNF-Bactivityinthesecellsisanimportantmecha-nismbywhichtheirprotumoralfunctionscanbecontrolled(32).Although in inf lammatory leukocytes, in particular

    macrophages,NF-Bisanessentialtranscriptionfactorguid-ingtheinflammatoryresponse,thisfactorisalsorecognizedasamajoreffectorofcancercellproliferationandsurvival(70).Incan-cer,NF-Binducesmoreaggressivetumorphenotypesbypromot-ingcellstogrowindependentlyofgrowthsignals;byincreasingtheirinsensitivitytogrowthinhibition;byincreasingtheirresis-

    tancetoapoptoticsignals;byimmortalizingthecells;byenhanc-ingangiogenesis;andbyenhancingtissueinvasionandmetastasis(71).TheconstitutiveNF-Bactivationoftenobservedintumorcellsmightbepromotedbyeithersignalsfromthemicroenviron-ment,includingcytokines,hypoxia,andROS,orbygeneticaltera-tions(71).Inparticular,proinflammatorycytokines(e.g.,IL-1andTNF-)expressedbydifferentsubsetsoftumor-infiltratingleuko-cytes(72)canactivateNF-Bincancercellsandcontributetotheirproliferationandsurvival(71).Strikingly,theproliferativeroleofTNF-wasrecentlyconfirmedinprimaryandinvitroestablishedhumanrenalcarcinomacells(73).Thepeculiarabilityoftumorstopromoteleukocyterecruitmentlargelyreliesontheirconstitutiveexpressionofthegenesthatencodeinflammatorychemokines,whoseexpressioniscontrolledbyNF-B(74).Thesedataunder-pinthecentralroleofNF-BinthefunctionalcrosstalkbetweentumorsandtheimmunesystemandsuggestacausalrelationshipbetweenNF-Bmediatedinflammationandtumorigenesis(70).DifferencesareemergingabouttheeffectsofNF-Bincancer

    cellsandTAMs.Incontrastwithcancercells,infact,TAMsfromadvancedtumorsshowdefectiveNF-Bactivationinresponsetodifferentproinflammatorysignals(55,75,76).ThisdefectiveNF-BactivationinTAMscorrelateswithimpairedexpressionofNF-Bdependentinflammatoryfunctions(e.g.,theexpressionofcytotoxicmediatorssuchasTNF-,IL-1,andIL-12)(32).Theseobservationsareinapparentcontrastwithaprotumorfunctionofinflammatoryreactionsobservedinmodelsofspontaneousorchemicallyinducedcarcinogenesis(77,78).Althoughintheselattermodels,NF-Binhibitionresultedintumorgrowthdelay(77,78),intumorsatamoreadvancedstageofprogression,atherapeuticeffectwasachievedthroughthereactivationofNF-Bdependentinflammationinthemyeloidcellcompartment(75,79,80).Thisdiscrepancymightreflectadynamicchangeinthetumormicro-environmentduringthetransitionfromearlyneoplasticeventstoadvancedtumorstages,whichwouldresultinprogressivemodula-tionoftheNF-BactivityexpressedbyinfiltratinginflammatorycellsandprogressiveconversionoftheTAMsfromanM1toanM2macrophagephenotype.Importantly,restorationofNF-Bactiv-ityinTAMsfromadvancedtumorsresultsinincreasedexpressionofinflammatorycytokines(e.g.,TNF-)andisassociatedwithadelayintumorgrowth(75).Sofar,NF-Bpathwayshavebeencharacterized,inpart,inTAMs,andsimilarstudiesshouldberep-licatedinMDSCs.

    TAMs mediate an M2 macrophageoriented persistent inflammationCharacterizationofthetranscriptomeofTAMsisolatedfromamousefibrosarcomaconfirmedthatthesecellsmainlyhaveanM2macrophagephenotypebutalsoexpressIFN-inducibleche-mokines(acharacteristicofM1macrophages) (81).Asimilarmixtureofgeneprofiles(mostlyanM2profilewithM1traits)wasalsorecentlyfoundinmouseMDSCs(11).ThemainlyM2macrophagelikephenotypeofTAMsisassociatedwiththemhav-ingprotumoralfunction.Evidenceforthiscomesfromanumberofstudies.First,pharmacologicalskewingofTAMpolarizationfromanM2macrophagelikephenotypetoafullM1macro-phagephenotypesustainsantitumorimmunity(79,82).Indeed,acombinationofCpGoligodeoxynucleotidesandanIL-10recep-torspecificantibodyswitchedTAMsfromanM2toanM1mac-rophagelikephenotypeandtriggeredaninnateresponsethatwasabletodebulklargetumorswithin16hours(82).Second,

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    1162 TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007

    recentresultssuggestthatSRChomology2domaincontaininginositol-5-phosphatase(SHIP)functionsinvivotorepressskew-ingtoanM2macrophagelikephenotype.PeritonealandalveolarmacrophagesisolatedfromShip/miceconstitutivelyexpresshighlevelsofARG1andshowimpairedLPS-inducedNOproduction.Consistentwiththis,transplantedtumorsgrowmorerapidlyinShip/micethaninwild-typemice(83,84).Third,aDNAvac-cineagainsttheM2macrophageassociatedmoleculelegumain,whichishighlyexpressedbyTAMs,inducedarobustCD8+Tcell

    responseagainstTAMs,reducingtheirdensityintumortissuesandleadingtothesuppressionofangiogenesis,tumorgrowth,andmetastasis(85).Finally,wehaverecentlydemonstratedthatTAMsarecharacterizedbynuclearlocalizationoftheinhibitoryp50NF-Bhomodimer,aphenotypeassociatedwithtumorprogres-sionandalackofM1macrophagelikefunction(75).Interest-ingly, theM2macrophageinducingsignalsPGE2, IL-10,andTGF-wereshowntopromoteincreasednuclearlocalizationofthep50NF-Bhomodimer(75).Moreover,micelackingexpres-

    Figure 3Molecular pathways of macrophage polarization and their role in tumor progression. The major pathways of macrophage polarization and cur-rent evidence linking their activation with either tumor progression (+) or regression () are outlined. The overall view suggests that M2 macro-phagepolarizing signals (such as IL-10, IL-4, and IL-13) are mainly associated with tumor progression. Contrasting evidence associates M1 macrophagepolarizing pathways (such as IFN- and TLR ligation) with either tumor progression or regression. The crosstalk between the M1 and M2 macrophagepolarizing pathways, which results in reciprocal modulation, are also indicated. As shown, IL-10mediated induction of the p50 NF-B homodimer interferes with NF-B activation and M1 macrophageinduced inflammation. The balance between activation of M1 macrophageassociated STAT1 and M2 macrophageassociated STAT3 and STAT6 finely regulates macrophage polarization and activity. A predominance of NF-B and STAT1 activation results in M1 macrophage polarization, which promotes cytotoxic and inflammatory functions. In contrast, a predominance of STAT3 and STAT6 activation results in M2 macrophage polarization, which is associated with immune suppression and tumor progression. As discussed in the text, IL-23 might also contribute to the polarization decision as it activates different STATs, includ-ing STAT1 and STAT3, in TAMs, but direct evidence is missing. CC, colorectal carcinoma; HCC, hepatocarcinoma; Fibr, fibrosarcoma; Mel, melanoma; BC, breast carcinoma; SCC, squamous cell carcinoma; Bl. Carc, bladder carcinoma.

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007 1163

    sionofp50alsolackexpressionoftheM2macrophagepolarizingcytokinesIL-4,IL-5,andIL-13(86),andintumor-bearingmicelackingexpressionofp50,TAMsexpresscytokinescharacteristicofM1macrophages,andsplenocytesproduceTh1cytokines,bothofwhichareassociatedwithadelayintumorgrowth(75).AllthesefindingstogethersuggestthatM2macrophagelike

    inflammationfuelscancerprogressionandleadtothesugges-tionthatNF-BinhibitioninTAMsisassociatedwithM2macro-phagelikeinflammatoryfunctions.Itisprobablethat,althoughfullactivationofNF-Binmacrophagesresidentinpreneoplas-ticsitesmightexacerbatelocalM1macrophagelikeinflamma-tionandfavortumorigenesis(77,78,87),tumorgrowthresultsinprogressiveinhibitionofNF-Bininfiltratingleukocytes,asobservedinbothmyeloid(75,88)andlymphoid(89)cellsfromindividualswithtumors,andintheprogressiveskewingtoM2macrophagelikeinflammation.Ifso,thetherapeuticefficacyofstrategiestargetingNF-Bforthetreatmentofcancersmightbedeterminedbyboththetumorstageandpolarizationstatusoftheinfiltratingleukocytes.

    STATs in TAM and MDSC functionAcentralroleinthepolarizationofmyeloidcellfunctionsaswellasintumorprogressionandthealteredimmuneresponsetocan-cerisemergingforselectedmembersoftheSTATfamilyoftran-scriptionfactors.Inparticular,STAT1,STAT3,andSTAT6havebeenshowntohaveamajorroleintransmittingpolarizingsig-nalstothenucleus(90)andtohavedistinctrolesinmacrophagepolarization(Figure3).STAT1isactivatedinresponsetoM1mac-rophagepolarizingsignals(e.g.,IFN-andLPS)whereasSTAT3andSTAT6areselectivelyactivatedbyM2macrophagepolarizingcytokines(e.g.,IL-10,IL-4,andIL-13)(91).ActivationofspecificSTATs,centralinducersofmacrophagepolarizationprograms,isexpectedtoparalleleithertheantitumoralorprotumoralroleofM1andM2macrophagemediatedinflammation,respectively.OriginalevidenceindicatesthatSTAT1activationisessential

    forimmunesurveillanceagainsttumors(92).Inparticular,micedeficientforeithertheIFN-receptor(signalingthroughwhichactivatesSTAT1;ref.93)orSTAT1displayedenhancedresistancetotheinductionoftumorsbymethylcholanthrene(94).Overtheyears,theSTAT1-mediatedantitumoraleffecthasbeenconfirmedinpreclinicaltumormodels(95,96).However,recentreportsargueagainstthissimpleviewandsuggestthattheIFN-/STAT1pathwaymighthaveaprotumoralrole,atleastincertaintumors.Forexam-ple,STAT1wasrecentlydescribedasresponsibleforTAM-mediatedsuppressiveactivityandtumorprogression,anditwasshownthatTAMsisolatedfromSTAT1-deficientmicefailedtosuppressTcellresponses(13).Inaddition,inamousesquamouscellcarcinoma,STAT1deficiencyenhancedIL-12mediatedtumorregressionbyaTcelldependentmechanism(97).InagreementwiththeroleofSTAT1asthecentralmediatorofthebiologicalactivitiesofIFN-,administrationofneutralizingantibodiesspecificforIFN-inhib-itedtumorgrowthinIL-12treatedStat1+/+mice(97).Morerecent-ly,ithasalsobeenshownthatactivationoftheCD8+Tcellsuppres-siveactivityoftumor-inducedMDSCsrequirestheactionofIFN-,thoughincombinationwithIL-13(11).Inlinewiththispicture,micelackingSOCS1,whicharecharacterizedbyhyperactivationofSTAT1,displayspontaneousdevelopmentofcolorectalcarcino-mas(98),supportingtheideathatpersistentactivationofSTAT1-dependentsignalingmightbeassociatedwithtumorprogression.Interestingly,molecularanalysisofthetranscriptomeofTAMs

    showedthatthesecellsexpresshighlevelsofIFN-induciblechemo-kinesandSTAT1activity(81).Together,theseresultssuggestthat,alongwithapredominantexpressionofM2macrophagepolarizedfunctionsinTAMsandMDSCs,theparallelactivationofSTAT1inthesecellsmightenhanceimmunedysfunctions,furtherfavoringtumorprogression.ThiscontrastingevidenceontheinfluenceofSTAT1mightbeexplainedbydifferencesamongthetumormodelsinvestigated,thestateoftumorprogression,andthenumberandtypeofinfiltratingleukocytes.STAT3andSTAT6activationareassociatedwithM2macrophage

    polarization(32,91).IthasbeenshownthatSTAT3isconstitu-tivelyactivatedintumorcells(99)andindiversetumor-infiltrat-ingimmunecells,includingTAMs(80),leadingtoinhibitionofproinflammatorycytokineandchemokineproductionandtothereleaseoffactorsthatsuppressDCmaturation.AblatingSTAT3inhematopoieticcellstriggersanintrinsicimmunesurveillancesystemthatinhibitstumorgrowthandmetastasisandisassociatedwithenhancedfunctionalactivityofDCs,Tcells,NKcells,andneutro-phils(80).STAT3/JAK2activationinmyeloidcellsbytumor-derivedfactorscanleadtotheaccumulationofCD11b+Gr-1+MDSCs,pre-ventingtheirdifferentiationintomatureDCs,whereasinterferingwithSTAT3signalingreversestheseinhibitoryeffects(100,101).TAMsfromStat6/tumor-bearingmicedisplayanM1macrophagephenotype,withlowlevelsofexpressionofARG1andhighlevelsofexpressionofNOS2,whichpromotestumorcelldeaththroughthecytotoxicactivityofthehighlevelsofNOthatareproduced.Asaresult,thesemicerejectedspontaneousmammarycarcinomasinanimmunesystemdependentmanner(20,102).Therefore,althoughcurrentliteraturestronglysuggestsacrucialroleforpolar-izedinflammationincancerprogression,additionalstudiesshouldclarifywhetheraccumulatingandcontrastingevidencemightbeascribedtospecificmicroenvironmentalconditionsorrelatedtotumortypeand/orstageofdisease.TherecentobservationthatthecytokineIL-23,amemberof

    the IL-12cytokine family, isexpressed inhumanandmousetumorshasunveiledanotherpotentialplayerinTAM-depen-dentimmunosuppression.Inmousetumormodels,expressionofthemRNAencodingtheIL-23p19subunitwasincreasedinCD11b+andCD11c+cells(probablyTAMsandDCs)presentintumorstroma.SimilarlytoIL-12,IL-23promotes inflamma-toryresponses,buttheneteffectofthecytokineisdeleteriousforantitumorimmunity.IL-23,infact,promotesupregulationofMMP9andincreasestumorangiogenesisbutreducesCD8+Tcellinfiltration(103).Importantly,geneticdeletionstudiesandantibody-mediatedneutralizationofIL-23havedemonstratedadirectnegativeeffectofthecytokineontumorimmunesurveil-lance(103).Furthermore,IL-23stimulationcanactivateSTAT1,STAT3,STAT4,andSTAT5andleadtoenhancedproductionofIL-6(104);itthereforemighthaveanimportantroleininfluenc-ingtheTAMtranscriptomeandfunction.

    For the future: therapeutic perspectivesMDSCsandTAMsprobablyrepresentacontinuumofauniquemyeloidcelldifferentiationprograminducedbytumor-derivedfactorstosupportanincessant influxofcellsthataidtumorinvasionofnearbytissues,stromaremodeling,andcellprolifera-tionandthatinhibittheinnateandadaptiveantitumorimmuneresponse.Targetingthisdynamicprocessmightofferinterestingperspectivesfornewtherapiesforthetreatmentofcancer(4,79).Inapplyingnovelapproachestorelievingtheimmunosuppression

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    1164 TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007

    inducedbyMDSCsandTAMs,oneaspectmustbeconsidered:therelativecontributionofMDSCsandTAMstotheoverallimpair-mentofantitumorTcellresponseshasnotbeenclearlyestimated.ItisprobablethatinhibitionofCD8+TcellantitumorimmunitybyMDSCsandTAMsintumor-bearinghostsmightoccurindif-ferentplaces,primarilythetumorsiteandthedraininglymphnodesbutalsodistantsitesoftheimmunesystem.MDSCsandTAMsmightalsoaffectdifferentlythesubsetsofcirculatingCD8+Tcellsinrelationtothespreadofmalignanttumorsindifferentpatients.WethinkthatcombiningprotocolsthatinterferewithMDSC-and/orTAM-mediatedimmunesuppressionwitheithercancervaccination(activeimmunotherapy)ortheadoptivetrans-ferofexvivoexpandedtumor-infiltratingTcells(passiveimmu-notherapy)mightprovidetherapeuticbenefitforthetreatment

    ofcancer.However,thebenefitofsuchcombinationapproachesislikelytodifferineverypatientaccordingtothestateofimpair-mentoftheantitumorimmuneresponse.

    AcknowledgmentsWethankAlbertoMantovaniforhiscriticalreadingandconstantsuggestions.ThisworkhasbeensupportedbygrantsfromtheItal-ianMinistryofHealth,theItalianFoundationforMultipleSclero-sis(FISM),theItalianAssociationforCancerResearch(AIRC),andtheEuropeanCommunity.

    Addresscorrespondenceto:VincenzoBronte,IstitutoOncologicoVeneto,ViaGattamelata64,35128Padua,Italy.Phone:39-049-8215897;Fax:39-049-8072854;E-mail:[email protected].

    1.Mocellin,S.,etal.2004.PartI:Vaccinesforsolidtumours.Lancet Oncol.5:681689.

    2.Rosenberg,S.A.,Yang,J.C.,andRestifo,N.P.2004.Cancerimmunotherapy:movingbeyondcurrentvaccines.Nat. Med.10:909915.

    3.Rabinovich,G.A.,Gabrilovich,D., and Soto-mayor,E.M.2007.Immunosuppressivestrate-giesthataremediatedbytumorcells.Annu. Rev. Immunol.25:267296.

    4.Serafini, P., Borrello, I., and Bronte, V. 2006.Myeloidsuppressorcellsincancer:recruitment,phenotype, properties, and mechanisms ofimmunesuppression.Semin. Cancer Biol.16:5365.

    5.Maier,T.,Holda,J.H.,andClaman,H.N.1989.Natu-ralsuppressorcells.Prog. Clin. Biol. Res.288:235244.

    6.Seung,L.P.,Rowley,D.A.,Dubey,P.,andSchreiber,H.1995.SynergybetweenT-cellimmunityandinhi-bitionofparacrinestimulationcausestumorrejec-tion.Proc. Natl. Acad. Sci. U. S. A.92:62546258.

    7.Pekarek,L.A.,Starr,B.A.,Toledano,A.Y.,andSch-reiber,H.1995.Inhibitionoftumorgrowthbyelim-inationofgranulocytes.J. Exp. Med.181:435440.

    8.Kusmartsev,S.,andGabrilovich,D.I.2006.Roleofimmaturemyeloidcellsinmechanismsofimmuneevasion in cancer.Cancer Immunol. Immunother.55:237245.

    9.Gabrilovich,D.2004.Mechanismsandfunctionalsignificance of tumour-induced dendritic-celldefects.Nat. Rev. Immunol.4:941952.

    10.Gabrilovich,D.I.,etal.2007.Theterminologyissueformyeloid-derivedsuppressorcells.Cancer Res.67:425;authorreply426.

    11.Gallina,G.,etal.2006.TumorsinduceasubsetofinflammatorymonocyteswithimmunosuppressiveactivityonCD8Tcells.J. Clin. Invest.116:27772790.doi:10.1172/JCI28828.

    12.VanGinderachter, J.A., etal.2006.Peroxisomeproliferator-activatedreceptorgamma(PPARga-mma)ligandsreverseCTLsuppressionbyalterna-tivelyactivated(M2)macrophagesincancer.Blood.108:525535.

    13.Kusmartsev,S.,andGabrilovich,D.I.2005.STAT1signalingregulatestumor-associatedmacrophage-mediatedTcelldeletion.J. Immunol.174:48804891.

    14.Tsuda,Y.,etal.2004.Threedifferentneutrophilsubsetsexhibitedinmicewithdifferentsuscepti-bilitiestoinfectionbymethicillin-resistantStaphy-lococcusaureus.Immunity.21:215226.

    15.Zea,A.H.,etal.2005.Arginase-producingmyeloidsuppressorcellsinrenalcellcarcinomapatients:a mechanism of tumor evasion. Cancer Res.65:30443048.

    16.Schmielau,J.,andFinn,O.J.2001.Activatedgranu-locytesandgranulocyte-derivedhydrogenperoxidearetheunderlyingmechanismofsuppressionoft-cellfunctioninadvancedcancerpatients.Cancer Res.61:47564760.

    17.Bronte,V.,etal.1999.Unopposedproductionofgranulocyte-macrophagecolony-stimulatingfac-

    torbytumorsinhibitsCD8+Tcellresponsesbydysregulatingantigen-presentingcellmaturation.J. Immunol.162:57285737.

    18.Melani,C.,Chiodoni,C.,Forni,G.,andColombo,M.P.2003.Myeloidcellexpansionelicitedbytheprogressionofspontaneousmammarycarcinomasinc-erbB-2transgenicBALB/cmicesuppressesimmunereactivity.Blood.102:21382145.

    19.Kusmartsev, S., Nefedova, Y., Yoder, D., andGabrilovich,D.I.2004.Antigen-specificinhibitionofCD8+Tcellresponsebyimmaturemyeloidcellsincancerismediatedbyreactiveoxygenspecies.J. Immunol.172:989999.

    20.Sinha,P.,Clements,V.K.,andOstrand-Rosenberg,S.2005.Reductionofmyeloid-derivedsuppressorcellsandinductionofM1macrophagesfacilitatethe rejectionof establishedmetastaticdisease.J. Immunol.174:636645.

    21.Terabe,M.,etal.2000.NKTcell-mediatedrepres-sionoftumorimmunosurveillancebyIL-13andtheIL-4R-STAT6pathway.Nat. Immunol.1:515520.

    22.Terabe,M.,etal.2003.Transforminggrowthfac-tor-{beta}productionandmyeloid cells are aneffectormechanismthroughwhichCD1d-restrict-edTcellsblockcytotoxicTlymphocyte-mediatedtumorimmunosurveillance:abrogationpreventstumorrecurrence.J. Exp. Med.198:17411752.

    23.Bronte,V., andZanovello,P. 2005.RegulationofimmuneresponsesbyL-argininemetabolism[review].Nat. Rev. Immunol.5:641654.

    24.Gabrilovich,D.I.,Velders,M.P.,Sotomayor,E.M.,andKast,W.M.2001.Mechanismofimmunedys-functionincancermediatedbyimmaturegr-1(+)myeloidcells.J. Immunol.166:53985406.

    25.Otsuji,M.,etal.1996.Oxidativestressbytumor-derivedmacrophagessuppressestheexpressionofCD3zetachainofT-cellreceptorcomplexandanti-gen-specificT-cellresponses.Proc. Natl. Acad. Sci. U. S. A.93:1311913124.

    26.Huang,B., et al. 2006.Gr-1+CD115+ immaturemyeloidsuppressorcellsmediatethedevelopmentoftumor-inducedTregulatorycellsandT-cellanergyintumor-bearinghost.Cancer Res.66:11231131.

    27.Kusmartsev, S., Nagaraj, S., and Gabrilovich,D.I.2005.Tumor-associatedCD8+Tcell toler-anceinducedbybonemarrow-derivedimmaturemyeloidcells.J. Immunol.175:45834592.

    28.Bronte,V.,etal.1998.ApoptoticdeathofCD8+Tlymphocytesafterimmunization:inductionofasuppressivepopulationofMac-1+/Gr-1+cells.J. Immunol.161:53135320.

    29.Serafini,P.,etal.2006.Phosphodiesterase-5inhibi-tionaugmentsendogenousantitumorimmunitybyreducingmyeloid-derivedsuppressorcellfunc-tion.J. Exp. Med.203:26912702.

    30.Yang,R.,etal.2006.CD80inimmunesuppres-sionbymouseovariancarcinoma-associatedGr-1+CD11b+myeloidcells.Cancer Res.66:68076815.

    31.Gordon, S. 2003. Alternative activation of

    macrophages.Nat. Rev. Immunol.3:2335. 32.Mantovani,A.,etal.2002.Macrophagepolariza-

    tion:tumor-associatedmacrophagesasaparadigmforpolarizedM2mononuclearphagocytes.Trends Immunol.23:549555.

    33.Mantovani,A.,etal.2004.Thechemokinesystemindiverse formsofmacrophageactivationandpolarization.Trends Immunol.25:677686.

    34.Ganster,R.W.,Taylor,B.S.,Shao,L.,andGeller,D.A.2001.Complexregulationofhumaninduc-iblenitricoxidesynthasegenetranscriptionbyStat1andNF-kappaB.Proc. Natl. Acad. Sci. U. S. A.98:86388643.

    35.Kleinert,H.,Schwarz,P.M.,andForstermann,U.2003.Regulationoftheexpressionofinduciblenitricoxidesynthase.Biol. Chem.384:13431364.

    36.Melillo,G.,etal.1995.Ahypoxia-responsiveele-mentmediatesanovelpathwayofactivationoftheinduciblenitricoxidesynthasepromoter.J. Exp. Med.182:16831693.

    37.Boutard,V.,etal.1995.Transforminggrowthfactor-betastimulatesarginaseactivityinmacrophages.Implications for the regulationofmacrophagecytotoxicity.J. Immunol.155:20772084.

    38.Morrison,A.C.,andCorrell,P.H.2002.Activationofthestemcell-derivedtyrosinekinase/RONrecep-tor tyrosinekinasebymacrophage-stimulatingproteinresultsintheinductionofarginaseactiv-ityinmurineperitonealmacrophages.J. Immunol.168:853860.

    39.Jost,M.M.,etal.2003.DivergenteffectsofGM-CSFandTGFbeta1onbonemarrow-derivedmac-rophagearginase-1activity,MCP-1expression,andmatrixmetalloproteinase-12:apotentialroledur-ingarteriogenesis.FASEB J.17:22812283.

    40.Munder,M., Eichmann, K., andModolell,M.1998. Alternative metabolic states in murinemacrophages reflectedby thenitricoxide syn-thase/arginasebalance:competitiveregulationbyCD4+TcellscorrelateswithTh1/Th2phenotype.J. Immunol.160:53475354.

    41.Raes,G.,etal.2005.Arginase-1andYm1aremark-ersformurine,butnothuman,alternativelyacti-vatedmyeloidcells.J. Immunol.174:6561;authorreply65616562.

    42.Munder,M., et al. 2006.SuppressionofT cellfunctionsbyhumangranulocytearginase.Blood.108:16271634.

    43.Rodriguez,P.C.,andOchoa,A.C.2006.Tcelldys-functionincancer:roleofmyeloidcellsandtumorcellsregulatingaminoacidavailabilityandoxida-tivestress.Semin. Cancer Biol.16:6672.

    44.Bronte,V.,etal.2003.IL-4-inducedarginase1sup-pressesalloreactiveTcellsintumor-bearingmice.J. Immunol.170:270278.

    45.Mazzoni,A.,etal.2002.Myeloidsuppressorlinesinhibit T cell responses by anNO-dependentmechanism.J. Immunol.168:689695.

    46.Apolloni,E.,etal.2000.Immortalizedmyeloidsup-

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007 1165

    pressorcellstriggerapoptosisinantigen-activatedTlymphocytes.J. Immunol.165:67236730.

    47.Rodriguez,P.C., etal.2004.Arginase Iproduc-tioninthetumormicroenvironmentbymaturemyeloidcellsinhibitsT-cellreceptorexpressionandantigen-specificT-cellresponses.Cancer Res.64:58395849.

    48.Rodriguez,P.C.,Quiceno,D.G.,andOchoa,A.C.2006.L-ArginineavailabilityregulatesTlympho-cytecellcycleprogression.Blood.109:15681573.

    49.Fallarino,F.,etal.2006.Thecombinedeffectsoftryptophan starvationand tryptophancatabo-litesdown-regulateTcellreceptorzeta-chainandinducearegulatoryphenotype innaiveTcells.J. Immunol.176:67526761.

    50.Munn,D.H.,etal.2005.GCN2kinaseinTcellsmediatesproliferativearrestandanergyinductioninresponsetoindoleamine2,3-dioxygenase.Immu-nity.22:633642.

    51.Sinha,P.,Clements,V.K.,andOstrand-Rosenberg,S.2005.Interleukin-13-regulatedM2macrophagesincombinationwithmyeloidsuppressorcellsblockimmunesurveillanceagainstmetastasis.Cancer Res.65:1174311751.

    52.Ezernitchi,A.V.,etal.2006.TCRzetadown-regula-tionunderchronicinflammationismediatedbymyeloidsuppressorcellsdifferentiallydistributedbetween various lymphatic organs. J. Immunol.177:47634772.

    53.Baniyash,M.2004.TCRzeta-chaindownregula-tion:curtailinganexcessiveinflammatoryimmuneresponse.Nat. Rev. Immunol.4:675687.

    54.Bronte,V.,etal.2005.Boostingantitumorrespons-esofTlymphocytesinfiltratinghumanprostatecancers.J. Exp. Med.201:12571268.

    55.Sica,A.,Schioppa,T.,Mantovani,A.,andAllavena,P.2006.Tumour-associatedmacrophagesareadis-tinctM2polarisedpopulationpromotingtumourprogression:potentialtargetsofanti-cancerthera-py.Eur. J. Cancer.42:717727.

    56.Bingle,L.,Brown,N.J.,andLewis,C.E.2002.Theroleoftumour-associatedmacrophagesintumourprogression:implicationsfornewanticancerthera-pies.J. Pathol.196:254265.

    57.Mantovani,A.,etal.1992.Theoriginandfunctionoftumor-associatedmacrophages.Immunol. Today.13:265270.

    58.Balkwill,F.2003.Chemokinebiologyincancer.Semin. Immunol.15:4955.

    59.Pollard,J.W.2004.Tumour-educatedmacrophagespromotetumourprogressionandmetastasis.Nat. Rev. Cancer.4:7178.

    60.Mellman,I.,andSteinman,R.M.2001.Dendriticcells:specializedandregulatedantigenprocessingmachines.Cell.106:255258.

    61.Yang,L.,etal.2004.ExpansionofmyeloidimmunesuppressorGr+CD11b+cellsintumor-bearinghostdirectlypromotestumorangiogenesis.Cancer Cell.6:409421.

    62.Lewis,C.E.,andPollard,J.W.2006.Distinctroleofmacrophagesindifferenttumormicroenviron-ments.Cancer Res.66:605612.

    63.Leek,R.D.,etal.2002.Relationofhypoxia-induc-ible factor-2alpha (HIF-2alpha) expression intumor-infiltrativemacrophagestotumorangio-genesisandtheoxidativethymidinephosphory-lasepathwayinhumanbreastcancer.Cancer Res.62:13261329.

    64.Schioppa,T.,etal.2003.Regulationoftheche-mokinereceptorCXCR4byhypoxia.J. Exp. Med.198:13911402.

    65.Ceradini,D.J.,etal.2004.ProgenitorcelltraffickingisregulatedbyhypoxicgradientsthroughHIF-1inductionofSDF-1.Nat. Med.10:858864.

    66.Muller,A.,etal.2001.Involvementofchemokinereceptors in breast cancer metastasis. Nature.410:5056.

    67.Albina,J.E.,etal.2005.Macrophagearginaseregu-

    lationbyCCAAT/enhancer-bindingproteinbeta.Shock.23:168172.

    68.Morris,S.M.,Jr.2002.Regulationofenzymesoftheureacycleandargininemetabolism.Annu. Rev. Nutr.22:87105.

    69.Semenza,G.L.2003.TargetingHIF-1forcancertherapy.Nat. Rev. Cancer.3:721732.

    70.Karin,M., andGreten, F.R. 2005.NF-kappaB:linking inflammationand immunity to cancerdevelopmentandprogression.Nat. Rev. Immunol.5:749759.

    71.Karin,M.,andLin,A.2002.NF-kappaBatthecross-roadsoflifeanddeath.Nat. Immunol.3:221227.

    72.Balkwill,F.,Charles,K.A.,andMantovani,A.2005.Smolderingandpolarizedinflammationintheini-tiationandpromotionofmalignantdisease.Cancer Cell.7:211217.

    73.Falkensammer,C.,etal.2006.IL-4 inhibitstheTNF-alphainducedproliferationofrenalcellcar-cinoma(RCC)andcooperateswithTNF-alphatoinduceapoptoticandcytokineresponsesbyRCC:implications forantitumor immuneresponses.Cancer Immunol. Immunother.55:12281237.

    74.Richmond,A.2002.Nf-kappaB,chemokinegenetranscriptionandtumourgrowth.Nat. Rev. Immu-nol.2:664674.

    75.Saccani,A.,etal.2006.p50nuclearfactor-{kappa}Boverexpressionintumor-associatedmacrophagesinhibitsM1inflammatoryresponsesandantitu-morresistance.Cancer Res.66:1143211440.

    76.Sica,A.,etal.2000.AutocrineproductionofIL-10mediatesdefectiveIL-12productionandNF-kappaBactivation in tumor-associatedmacrophages.J. Immunol.164:762767.

    77.Greten,F.R.,andKarin,M.2004.TheIKK/NF-kap-paBactivationpathway-atargetforpreventionandtreatmentofcancer.Cancer Lett.206:193199.

    78.Pikarsky,E.,etal.2004.NF-kappaBfunctionsasatumourpromoterininflammation-associatedcancer.Nature.431:461466.

    79.Colombo,M.P.,andMantovani,A.2005.Targetingmyelomonocyticcellstorevertinflammation-depen-dentcancerpromotion.Cancer Res.65:91139116.

    80.Kortylewski,M.,etal.2005.InhibitingStat3signal-inginthehematopoieticsystemelicitsmulticompo-nentantitumorimmunity.Nat. Med.11:13141321.

    81.Biswas,S.K.,etal.2006.Adistinctanduniquetran-scriptionalprogramexpressedbytumor-associatedmacrophages(defectiveNF-kappaBandenhancedIRF-3/STAT1activation).Blood.107:21122122.

    82.Guiducci,C.,etal.2005.Redirectinginvivoelicitedtumorinfiltratingmacrophagesanddendriticcellstowardstumorrejection.Cancer Res.65:34373446.

    83.Rauh,M.J.,etal.2005.SHIPrepressesthegenera-tionofalternativelyactivatedmacrophages.Immu-nity.23:361374.

    84.Mantovani,A.,Sica,A.,andLocati,M.2005.Mac-rophage polarization comes of age. Immunity.23:344346.

    85.Luo,Y.,etal.2006.Targetingtumor-associatedmacrophagesasanovel strategyagainstbreastcancer.J. Clin. Invest.116:21322141.doi:10.1172/JCI27648.

    86.Das,J.,etal.2001.AcriticalroleforNF-kappaBinGATA3expressionandTH2differentiationinaller-gicairwayinflammation.Nat. Immunol.2:4550.

    87.Moore,R.J.,etal.1999.Micedeficientintumornecrosisfactor-alphaareresistanttoskincarcino-genesis.Nat. Med.5:828831.

    88.Sica,A.,etal.2000.Defectiveexpressionofthemonocytechemotacticprotein-1receptorCCR2inmacrophagesassociatedwithhumanovariancarci-noma.J. Immunol.164:733738.

    89.Ghosh,P.,etal.1994.AlterationsinNFkappaB/RelfamilyproteinsinsplenicT-cellsfromtumor-bearingmiceandreversalfollowingtherapy.Cancer Res.54:29692972.

    90.Yoshimura,A.2006.Signaltransductionofinflam-

    matorycytokinesandtumordevelopment.Cancer Sci.97:439447.

    91.OShea,J.J.,Pesu,M.,Borie,D.C.,andChangelian,P.S.2004.Anewmodalityforimmunosuppression:targetingtheJAK/STATpathway.Nat. Rev. Drug Discov.3:555564.

    92.Dunn,G.P.,Koebel,C.M.,andSchreiber,R.D.2006.Interferons,immunityandcancerimmunoediting.Nat. Rev. Immunol.6:836848.

    93.Bach,E.A.,Aguet,M.,andSchreiber,R.D.1997.TheIFNgammareceptor:aparadigmforcytokinerecep-torsignaling.Annu. Rev. Immunol.15:563591.

    94.Kaplan,D.H.,etal.1998.Demonstrationofaninterferongamma-dependenttumorsurveillancesysteminimmunocompetentmice.Proc. Natl. Acad. Sci. U. S. A.95:75567561.

    95.Lesinski,G.B.,etal.2003.TheantitumoreffectsofIFN-alphaareabrogatedinaSTAT1-deficientmouse.J. Clin. Invest.112:170180.doi:10.1172/JCI200316603.

    96.Zhou,Y.,Wang,S.,Gobl,A.,andOberg,K.2001.InterferonalphainductionofStat1andStat2andtheirprognosticsignificanceincarcinoidtumors.Oncology.60:330338.

    97.Torrero,M.N.,etal.2006.Stat1deficiencyinthehost enhances interleukin-12-mediated tumorregression.Cancer Res.66:44614467.

    98.Hanada,T.,etal.2006.IFNgamma-dependent,spon-taneousdevelopmentofcolorectalcarcinomasinSOCS1-deficientmice.J. Exp. Med.203:13911397.

    99.Wang,T.,etal.2004.RegulationoftheinnateandadaptiveimmuneresponsesbyStat-3signalingintumorcells.Nat. Med.10:4854.

    100.Nefedova,Y.,etal.2004.HyperactivationofSTAT3isinvolvedinabnormaldifferentiationofdendriticcellsincancer.J. Immunol.172:464474.

    101.Nefedova,Y.,etal.2005.Activationofdendriticcells via inhibition of Jak2/STAT3 signaling.J. Immunol.175:43384346.

    102.Ostrand-Rosenberg,S.,etal.2002.ResistancetometastaticdiseaseinSTAT6-deficientmicerequireshemopoieticandnonhemopoieticcellsandisIFN-gammadependent.J. Immunol.169:57965804.

    103.Langowski,J.L.,etal.2006.IL-23promotestumourincidenceandgrowth.Nature.442:461465.

    104.Watford,W.T.,etal.2004.SignalingbyIL-12andIL-23andtheimmunoregulatoryrolesofSTAT4.Immunol. Rev.202:139156.

    105.Serafini,P.,etal.2004.High-dosegranulocyte-macrophagecolony-stimulatingfactor-producingvaccinesimpairtheimmuneresponsethroughtherecruitmentofmyeloidsuppressorcells.Cancer Res.64:63376343.

    106.Condeelis,J.,andPollard,J.W.2006.Macrophages:obligatepartnersfortumorcellmigration,inva-sion,andmetastasis.Cell.124:263266.

    107.Talks,K.L.,etal.2000.Theexpressionanddistribu-tionofthehypoxia-induciblefactorsHIF-1alphaandHIF-2alphainnormalhumantissues,cancers,andtumor-associatedmacrophages.Am. J. Pathol.157:411421.

    108.Bolat,F.,etal.2006.Microvesseldensity,VEGFexpression,andtumor-associatedmacrophagesinbreasttumors:correlationswithprognosticparam-eters.J. Exp. Clin. Cancer Res.25:365372.

    109.Ueno,T.,etal.2000.Significanceofmacrophagechemoattractantprotein-1inmacrophagerecruit-ment,angiogenesis,andsurvivalinhumanbreastcancer.Clin. Cancer Res.6:32823289.

    110.Kataki,A.,etal.2002.Tumorinfiltratinglympho-cytesandmacrophageshaveapotentialdualroleinlungcancerbysupportingbothhost-defenseandtumorprogression.J. Lab. Clin. Med.140:320328.

    111.OSullivan,C.,Lewis,C.E.,Harris,A.L.,andMcGee,J.O.1993.Secretionofepidermalgrowthfactorbymacrophagesassociatedwithbreastcarcinoma.Lancet.342:148149.

    112.vanKempen,L.C.,andCoussens,L.M.2002.MMP9

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422

  • review series

    1166 TheJournalofClinicalInvestigation http://www.jci.org Volume117 Number5 May2007

    potentiatespulmonarymetastasisformation.Can-cer Cell.2:251252.

    113.Curiel,T.J.,etal.2004.Specificrecruitmentofregu-latoryTcellsinovariancarcinomafostersimmuneprivilegeandpredictsreducedsurvival.Nat. Med.10:942949.

    114.Schutyser,E.,etal.2002.Identificationofbiologi-callyactivechemokineisoformsfromasciticfluidandelevatedlevelsofCCL18/pulmonaryandacti-vation-regulatedchemokineinovariancarcinoma.J. Biol. Chem.277:2458424593.

    115.Bronte,V.,etal.2000.IdentificationofaCD11b+/Gr-1+/CD31+myeloidprogenitorcapableofactivatingorsuppressingCD8+Tcells.Blood.96:38383846.

    116.Saio,M.,Radoja,S.,Marino,M.,andFrey,A.B.2001. Tumor-infiltratingmacrophages induceapoptosisinactivatedCD8(+)Tcellsbyamecha-nismrequiringcellcontactandmediatedbyboththecell-associatedformofTNFandnitricoxide.

    J. Immunol.167:55835593.117.Young,M.R., et al.1996.SuppressionofTcell

    proliferationbytumor-inducedgranulocyte-mac-rophageprogenitorcellsproducingtransforminggrowthfactor-betaandnitricoxide.J. Immunol.156:19161922.

    118.Liu,Y.,etal.2003.Nitricoxide-independentCTLsuppressionduringtumorprogression:associa-tionwitharginase-producing(M2)myeloidcells.J. Immunol.170:50645074.

    119.Mencacci,A.,etal.2002.CD80+Gr-1+myeloidcellsinhibitdevelopmentofantifungalTh1immunityinmicewithcandidiasis.J. Immunol.169:31803190.

    120.Goni, O., Alcaide, P., and Fresno, M. 2002.Immunosuppression during acute Trypano-soma cruzi infection: involvement of Ly6G(Gr1(+))CD11b(+)immaturemyeloidsuppressorcells.Int. Immunol.14:11251134.

    121.Marshall,M.A., et al. 2001.Mice infectedwith

    Schistosomamansonidevelopanovelnon-T-lym-phocyte suppressor populationwhich inhibitsvirus-specificCTLinductionviaasolublefactor.Microbes Infect.3:10511061.

    122.Brys,L.,etal.2005.Reactiveoxygenspeciesand12/15-lipoxygenasecontributetotheantiprolif-erativecapacityofalternativelyactivatedmyeloidcellselicitedduringhelminthinfection.J. Immunol.174:60956104.

    123.Terrazas,L.I.,etal.2001.Theschistosomeoligo-saccharide lacto-N-neotetraose expandsGr1(+)cells that secrete anti-inflammatory cytokinesandinhibitproliferationofnaiveCD4(+)cells:apotentialmechanismforimmunepolarizationinhelminthinfections.J. Immunol.167:52945303.

    124.Giordanengo,L.,etal.2002.Cruzipain,amajorTrypanosomacruziantigen,conditionsthehostimmuneresponseinfavorofparasite.Eur. J. Immu-nol.32:10031011.

    Downloaded from http://www.jci.org on April 25, 2015. http://dx.doi.org/10.1172/JCI31422


Recommended