+ All Categories
Home > Documents > Alveolar Gas Equation

Alveolar Gas Equation

Date post: 23-Feb-2016
Category:
Upload: keegan
View: 85 times
Download: 0 times
Share this document with a friend
Description:
Alveolar Gas Equation. Oxygenation www.mecriticalcare.net. The Key to Blood Gas Interpretation: Four Equations, Three Physiologic Processes. Equation Physiologic Process 1) PaCO2 equation Alveolar ventilation 2) Alveolar gas equation Oxygenation - PowerPoint PPT Presentation
Popular Tags:
38
Alveolar Gas Equation Oxygenation www.mecriticalcare.net 1
Transcript
Page 1: Alveolar Gas Equation

Alveolar Gas Equation

Oxygenationwww.mecriticalcare.net

1

Page 2: Alveolar Gas Equation

The Key to Blood Gas Interpretation:Four Equations, Three Physiologic Processes

Equation Physiologic Process1) PaCO2 equation Alveolar ventilation2) Alveolar gas equation Oxygenation3) Oxygen content equation Oxygenation4) Henderson-Hasselbalch equation Acid-base balance

These four equations, crucial to understanding and interpreting arterial blood gas data.

Page 3: Alveolar Gas Equation

Normal Arterial Blood Gas Values*

pH 7.35 - 7.45PaCO2 35 - 45 mm HgPaO2 70 - 100 mm Hg **SaO2 93 - 98%HCO3¯ 22 - 26 mEq/L%MetHb < 2.0%%COHb < 3.0%Base excess -2.0 to 2.0 mEq/LCaO2 16 - 22 ml O2/dl

• * At sea level, breathing ambient air• ** Age-dependent

Page 4: Alveolar Gas Equation

Oxygenation and Ventilation

4

Page 5: Alveolar Gas Equation

Oxygen Saturation Monitoring by Pulse Oximetry

Page 6: Alveolar Gas Equation

O2-Hg Dissociation CurveH

b S

atur

atio

n)%

)

PaO2 (mm Hg)

90%

60 600

100%

90

Page 7: Alveolar Gas Equation

Oxygen Saturation Monitoring by Pulse Oximetry

Page 8: Alveolar Gas Equation
Page 9: Alveolar Gas Equation

Patient Environments• Ambient Light

– Any external light exposure to capillary bed where sampling is occurring may result in an erroneous reading

• Excessive Motion– Always compare the palpable pulse rate with the pulse rate

indicated on the pulse oximetry• Fingernail polish and false nails

– Most commonly use nails and fingernail polish will not affect pulse oximetry accuracy

– Some shades of blue, black and green may affect accuracy )remove with acetone pad)

• Skin pigmentation– Apply sensor to the fingertips of darkly pigmented patients

Page 10: Alveolar Gas Equation

Conditions Affecting Accuracy• Patient conditions

– Carboxyhemoglobin• Erroneously high reading may present

– Methaemoglobin– Anemia

• Values as low as 5 g/dl may result in 100% SpO2– Hypovolemia/Hypotension:

• May not have adequate perfusion to be detected by oximetry

– Hypothermia:• peripheral vasoconstriction may prevent oximetry detection

Page 11: Alveolar Gas Equation

Nasal Cannula: Variable Flow

Page 12: Alveolar Gas Equation

Simple Face Mask: Variable Flow

Page 13: Alveolar Gas Equation

Venturi Mask: Fixed Flow

blue = 24%; yellow = 28%; white = 31%; green = 35%; pink = 40%; orange = 50%

Page 14: Alveolar Gas Equation

Venturi Effect

The pressure at "1" is higher than at "2" because the fluid speed at "1" is lower than at "2."

Page 15: Alveolar Gas Equation

Venturi Effect

A flow of air through a venturi meter, showing the columns connected in a U-shape )a manometer) and partially filled

with water. The meter is "read" as a differential pressure head in cm or inches of water.

4-15 L/min35-45 L/min

Page 16: Alveolar Gas Equation

Variable Performance Device: Nonrebreather Mask

Page 17: Alveolar Gas Equation

100

90

80

70

60

50

40

30

20

10

05 15 25 35 45 55 65 75 85

5 L.min-1

10 L.min-1

20 L.min-1

30 L.min-1

Frac

tion

al in

spir

ed o

xyge

n co

ncen

trat

ion

%

Peak inspiratory flow (liters/minute)

Page 18: Alveolar Gas Equation

Continuous Airway Pressure: CPAP

Page 19: Alveolar Gas Equation

Alveolar-arterial Oxygen Gradient

20

PAO2= (Patm-PH2O) FiO2- PACO2/0.8 760 47 0.21 40

Page 20: Alveolar Gas Equation

Alveolar Gas Equation PAO2 = PIO2 - 1.2 (PaCO2)*

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

A-a Gradient= PAO2- PaO2 =5-25 mm Hg

PAO2 is the average alveolar PO2

PIO2 is the partial pressure of inspired oxygen in the tracheaFIO2 is fraction of inspired oxygen PB is the barometric pressure. 47 mm Hg is the water vapor pressure at normal body temperature* Note: This is the “abbreviated version” of the AG equation, suitable for most clinical purposes. In the longer version, the multiplication factor “1.2” declines with increasing FIO2, reaching zero when 100% oxygen is inhaled. In these exercises “1.2” is dropped when FIO2 is above 60%.

Page 21: Alveolar Gas Equation

Hypoxemia Due to Hypercapnia

↓PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (↑PaCO2)

Hypercapneic Respiratory Failure

Page 22: Alveolar Gas Equation

Hypoxemia Due to Decreased FiO2

↓PAO2 = ↓FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

Suffocation

Page 23: Alveolar Gas Equation

24

Page 24: Alveolar Gas Equation

High Altitude Hypoxemia

↓PAO2 = FIO2 (↓PB – 47 mm Hg) - 1.2 (PaCO2)

Mountain climbing

Page 25: Alveolar Gas Equation

Alveolar Gas Equation: Test Your Understanding

What is the expected PaO2 in a normal lung patient at sea level in the following circumstances? )Barometric pressure = 760 mm Hg)

A. FIO2 = 1.00, PaCO2 = 30 mm HgPAO2 = 1.00 (713) - 30 = 683 mm Hg, PaO2= 673

B. FIO2 = .21, PaCO2 = 50 mm HgPAO2 = .21 (713) - 1.2 (50) = 90 mm Hg, PaO2 = 80

C. FIO2 = .40, PaCO2 = 30 mm HgPAO2 = .40 (713) - 1.2 (30) = 249 mm Hg, PaO2 = 239

Page 26: Alveolar Gas Equation

Alveolar Gas Equation: Test Your Understanding

What is the PAO2 on the summit of Mt. Everest in the following circumstances? )Barometric pressure = 253 mm Hg)

A. FIO2 = .21, PaCO2 = 40 mm HgB. FIO2 = 1.00, PaCO2 = 40 mm HgC. FIO2 = .21, PaCO2 = 10 mm Hg

A. PAO2 = .21 (253 - 47) - 1.2 (40) = - 5 mm HgB. PAO2 = 1.00 (253 - 47) - 40 = 166 mm HgC. PAO2 = .21 (253 - 47) - 1.2 (10) = 31 mm Hg

Page 27: Alveolar Gas Equation

Alveolar Arterial O2 Gradient

EpitheliumEndothelium

Po2 Po2

Alveolar Gas Capillary Blood

initial Initial

Thickness

A-a Gradient

Page 28: Alveolar Gas Equation

Alveolar Arterial O2 Gradient

EpitheliumEndothelium

Alveolar Gas Capillary BloodThickness

FIO2= 21% PAO2= 100 PaO2= 95

5FIO2= 50% PAO2= 331 PaO2= 326

FIO2= 100% PAO2= 663 PaO2= 657

O2 Sat= 99%

O2 Sat= 100%

O2 Sat= 100%

Page 29: Alveolar Gas Equation

Alveolar Arterial O2 Gradient

EpitheliumEndothelium

Alveolar Gas Capillary BloodThickness

200FIO2= 50% PAO2= 331 PaO2= 131

FIO2= 100% PAO2= 663 PaO2= 463

O2 Sat= 100%

O2 Sat= 100%

Page 30: Alveolar Gas Equation

Alveolar-arterial Oxygen Gradient

31

Page 31: Alveolar Gas Equation

Physiologic Causes of Low PaO2

NON-RESPIRATORY P(A-a)O2Cardiac right-to-left shunt Increased

Decreased PIO2 Normal

Low mixed venous oxygen content* Increased

* Unlikely to be clinically significant unless there is right-to-left shunting or ventilation-perfusion imbalance

Page 32: Alveolar Gas Equation

Physiologic Causes of Low PaO2

RESPIRATORY P(A-a)O2Pulmonary right-to-left shunt Increased

Ventilation-perfusion imbalance Increased

Diffusion barrier Increased

Hypoventilation )increased PaCO2) Normal

Page 33: Alveolar Gas Equation

34

Page 34: Alveolar Gas Equation

A 44-year-old woman with: PaCO2 75 mm Hg, PaO2 95 mm Hg, FIO2 0.28

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

PAO2 = .28 )713) - 1.2 )75) PAO2= 200 - 90 =110 mm HgP(A-a)O2 = 110 - 95 = 15 mm Hg

Despite severe hypoventilation, there is no evidence here for lung disease. Hypercapnia is most likely a result of disease elsewhere in the respiratory system, either the central nervous system or chest bellows

Page 35: Alveolar Gas Equation

A young, anxious man with: PaO2 120 mm Hg, PaCO2 15 mm Hg, FIO2 0.21

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

PAO2 = .21 )713) - 1.2 )15) PAO2= 150 - 18 =132 mm HgP(A-a)O2 = 132 - 120 = 12 mm Hg

Hyperventilation can easily raise PaO2 above 100 mm Hg when the lungs are normal, as in this case

Page 36: Alveolar Gas Equation

A woman in the ICU with: PaO2 350 mm Hg, PaCO2 40 mm Hg, FIO2 0.80

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

PAO2 = .80 )713) - )40) PAO2= 570 - 40 = 530 mm HgP(A-a)O2 = 530 - 350 = 180 mm Hg

Note that the factor 1.2 is dropped since FIO2 is above 60%P)A-a)O2 is increased. Despite a very high PaO2, the lungs are not transferring

oxygen normally.

Page 37: Alveolar Gas Equation

A man with: PaO2 80 mm Hg, PaCO2 72 mm Hg, FIO2 0.21

PAO2 = FIO2 (PB – 47 mm Hg) - 1.2 (PaCO2)

PAO2 = .21 )713) – 1.2)72) PAO2= 150 - 86 = 64 mm HgP(A-a)O2 = 64 - 72 = -16 mm Hg

A negative P)A-a)O2 is incompatible with life )unless it is a transient unsteady state, such as sudden fall in FIO2 -- not the case here). In this example, negative P)A-a)O2 can be explained by any of the following: incorrect FIO2, incorrect blood gas measurement, or a reporting or transcription error.

Page 38: Alveolar Gas Equation

40 Thank You


Recommended