+ All Categories
Home > Documents > An Agent-Based Competitive Product Diffusion Model for the...

An Agent-Based Competitive Product Diffusion Model for the...

Date post: 15-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
12
©Copyright JASSS Keeheon Lee, Shintae Kim, Chang Ouk Kim and Taeho Park (2013) An Agent-Based Competitive Product Diffusion Model for the Estimation and Sensitivity Analysis of Social Network Structure and Purchase Time Distribution Journal of Artificial Societies and Social Simulation 16 (1) 3 <http://jasss.soc.surrey.ac.uk/16/1/3.html> Received: 02-Nov-2011 Accepted: 04-Aug-2012 Published: 31-Jan-2013 Abstract To maximise the possibility of success for a new product and minimise the risk and opportunity cost of a failed product, firms must understand the diffusion dynamics of competing products. The diffusion dynamics of competing products emerge from the aggregation of consumers' decisions. At the individual level, a consumer's decision consists of "which product to buy among the available products" and "when to buy a product". Individual product choices are affected by local and global social interactions among consumers. It would be helpful for firms to be able to determine the characteristics of the relevant social network for their target market and how changes in this social network influence their market shares. In addition, determining the distribution of product purchase times of consumers and how their variation affects market shares are interesting issues for firms. In this study, therefore, we propose an agent-based simulation model that generates the market share paths (market shares over time) of competing products. We apply the model to estimate the social network and purchase time distribution of the Korean netbook market. Our observation is that Korean netbook consumers tend to buy a product without hesitation, and their social network is rather regular but sparse. We also conduct sensitivity analyses with respect to the social network and the purchase time distribution. Keywords: Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network Structure, Estimation, Sensitivity Analysis Introduction 1.1 Today's product markets are competitive. Because high-tech firms usually have similar levels of technology and utilise similar marketing research methods for the elicitation of consumer needs, it is highly probable that there exist simultaneous innovations (Goldenberg and Efroni 2001). In such market situations, products with similar functions compete with each other to expand their market shares, and a significant percentage of new products disappear from store shelves after their low sales. Therefore, to maximise the possibility for the success of a new product and minimise the risk and opportunity cost of a failed product, firms must understand the diffusion dynamics of competing products. 1.2 The diffusion dynamics of competing products emerge from the aggregation of consumers' decisions. At the individual level, a consumer's decision is composed of "which product to buy among the available products" and "when to buy a product". Individual product choice is affected by social interactions among consumers. Within their social network, consumers communicate their evaluations of products to their friends and influence their friends' purchases. This phenomenon is called the network effect, or word-of-mouth effect. 1.3 Product families have different logical social network structures, even within a single physical social network, consisting of online and offline social connections. For example, a person asks different friends for suggestions when considering high-tech products versus clothes. There are two structural features of a social network that affect the network effect. One feature is the rewiring probability, which affects the number of shortcuts among consumers. The shortcuts are known to reduce the number of steps between consumers by linking people whose friends do not know each other (Granovetter 1973). Because these shortcuts help consumers transfer information to distant consumers, we may say that the rewiring probability contributes to the diffusion of information about products in a global manner. The other feature is the degree of connectivity, which determines the degree of clustered ties in a network, i.e., the number of neighbours. A greater degree of clustered ties in a network is known to provide stronger social reinforcement for buying a new product (Centola and Macy 2007). Because the clustered ties help consumers receive information on products from their neighbours, we may state that the degree of connectivity contributes to the diffusion of product information in a local manner. 1.4 Product purchase timing can be modelled as a probability distribution, and different product families have different purchase time distributions. For example, consumers tend to buy information technology products earlier in the product cycle, and, as a result, their purchase time distribution can be approximately modelled as an exponential-like distribution. In contrast, expensive durables such as automobiles and refrigerators have purchase time distributions in the shape of normal distributions. People tend to take their time and contemplate adopting such durables because these products are costly and have long lifespans. This deliberation results in a small number of people buying the durables early in the product cycle followed by a large number of people buying the durables later. Empirical studies by Rogers (2003) show us that the process of adoption over time is typically illustrated as a normal distribution. 1.5 Based on these conditions of the consumers' social network and product purchase times, we are interested in the problem of how a firm can determine the social network and the purchase time distribution appropriate for a target product market. In addition, we are interested in a sensitivity analysis that predicts what will occur when the social network structure or the purchase time distribution changes from the current market conditions and how a firm can gain market share. We address these problems using a novel experimental approach called agent-based diffusion modelling and simulation, which is capable of predicting the future market share paths (i.e., market shares over time) of competing products. In the agent-based simulation model, a consumer-agent simulates the purchase behaviour of a consumer, and a set of consumer-agents with their interaction structure corresponds to the social network of consumers. The nodes of the social network are consumer-agents, and each link represents a friendship between two consumer-agents. The social network can be modelled as an artificial market. Each consumer-agent chooses products based on their individual evaluations and their neighbours' evaluations (i.e., the network effect) of the products. We propose a fuzzy multi-attribute utility model to formalise their product choice. The product choice model also considers the heterogeneous propensity of consumers—consumers place different weights on the importance of product attributes and varying degrees of sensitivity to the network effect. Some people with strong personalities may not be susceptible to the network effect, whereas others who are very sensitive to the trends of public opinion accommodate themselves to the decisions of early product adopters. 1.6 We choose to use small-world network model for the social network of consumer-agents. Rewiring a small fraction of connections in a ring lattice form, where every node is linked to its neighbours with a fixed degree of connectivity, results in a small-world network (Watts and Strogatz 1998). In this network, nodes are highly clustered, and the information transfer time between nodes is short. It is well known from empirical evidence that the small-world network represents many types of real social networks (Alkemade and Castaldi 2005). Normally, the rewiring probability of a small-world network is within the range of 0.01 and 0.1. As illustrated in Figure 1, a high rewiring probability leads to rapid product information transfer between clusters of nodes, causing the global network effect to increase. The degree of connectivity normally has a value between 4 and 20 (Kim et al. 2011). When the number of network connections is zero, individuals choose products based only on their own product evaluations, without interactions with neighbours to obtain product evaluation information. As shown in Figure 1, a high degree of connectivity leads to rapid product information transfer within clustered ties, causing the local network effect to increase. Therefore, we can observe local and global network effects by varying the rewiring probability and the degree of connectivity from zero to positive values. http://jasss.soc.surrey.ac.uk/16/1/3.html 1 14/10/2015
Transcript
Page 1: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

©CopyrightJASSS

KeeheonLee,ShintaeKim,ChangOukKimandTaehoPark(2013)

AnAgent-BasedCompetitiveProductDiffusionModelfortheEstimationandSensitivityAnalysisofSocialNetworkStructureandPurchaseTimeDistribution

JournalofArtificialSocietiesandSocialSimulation 16(1)3<http://jasss.soc.surrey.ac.uk/16/1/3.html>

Received:02-Nov-2011Accepted:04-Aug-2012Published:31-Jan-2013

Abstract

Tomaximisethepossibilityofsuccessforanewproductandminimisetheriskandopportunitycostofafailedproduct,firmsmustunderstandthediffusiondynamicsofcompetingproducts.Thediffusiondynamicsofcompetingproductsemergefromtheaggregationofconsumers'decisions.Attheindividuallevel,aconsumer'sdecisionconsistsof"whichproducttobuyamongtheavailableproducts"and"whentobuyaproduct".Individualproductchoicesareaffectedbylocalandglobalsocialinteractionsamongconsumers.Itwouldbehelpfulforfirmstobeabletodeterminethecharacteristicsoftherelevantsocialnetworkfortheirtargetmarketandhowchangesinthissocialnetworkinfluencetheirmarketshares.Inaddition,determiningthedistributionofproductpurchasetimesofconsumersandhowtheirvariationaffectsmarketsharesareinterestingissuesforfirms.Inthisstudy,therefore,weproposeanagent-basedsimulationmodelthatgeneratesthemarketsharepaths(marketsharesovertime)ofcompetingproducts.WeapplythemodeltoestimatethesocialnetworkandpurchasetimedistributionoftheKoreannetbookmarket.OurobservationisthatKoreannetbookconsumerstendtobuyaproductwithouthesitation,andtheirsocialnetworkisratherregularbutsparse.Wealsoconductsensitivityanalyseswithrespecttothesocialnetworkandthepurchasetimedistribution.

Keywords:Agent-BasedProductDiffusionModel,IndividualPurchaseTime,SocialNetworkStructure,Estimation,SensitivityAnalysis

Introduction

1.1 Today'sproductmarketsarecompetitive.Becausehigh-techfirmsusuallyhavesimilarlevelsoftechnologyandutilisesimilarmarketingresearchmethodsfortheelicitationofconsumerneeds,itishighlyprobablethatthereexistsimultaneousinnovations(GoldenbergandEfroni2001).Insuchmarketsituations,productswithsimilarfunctionscompetewitheachothertoexpandtheirmarketshares,andasignificantpercentageofnewproductsdisappearfromstoreshelvesaftertheirlowsales.Therefore,tomaximisethepossibilityforthesuccessofanewproductandminimisetheriskandopportunitycostofafailedproduct,firmsmustunderstandthediffusiondynamicsofcompetingproducts.

1.2 Thediffusiondynamicsofcompetingproductsemergefromtheaggregationofconsumers'decisions.Attheindividuallevel,aconsumer'sdecisioniscomposedof"whichproducttobuyamongtheavailableproducts"and"whentobuyaproduct".Individualproductchoiceisaffectedbysocialinteractionsamongconsumers.Withintheirsocialnetwork,consumerscommunicatetheirevaluationsofproductstotheirfriendsandinfluencetheirfriends'purchases.Thisphenomenoniscalledthenetworkeffect,orword-of-moutheffect.

1.3 Productfamilieshavedifferentlogicalsocialnetworkstructures,evenwithinasinglephysicalsocialnetwork,consistingofonlineandofflinesocialconnections.Forexample,apersonasksdifferentfriendsforsuggestionswhenconsideringhigh-techproductsversusclothes.Therearetwostructuralfeaturesofasocialnetworkthataffectthenetworkeffect.Onefeatureistherewiringprobability,whichaffectsthenumberofshortcutsamongconsumers.Theshortcutsareknowntoreducethenumberofstepsbetweenconsumersbylinkingpeoplewhosefriendsdonotknoweachother(Granovetter1973).Becausetheseshortcutshelpconsumerstransferinformationtodistantconsumers,wemaysaythattherewiringprobabilitycontributestothediffusionofinformationaboutproductsinaglobalmanner.Theotherfeatureisthedegreeofconnectivity,whichdeterminesthedegreeofclusteredtiesinanetwork,i.e.,thenumberofneighbours.Agreaterdegreeofclusteredtiesinanetworkisknowntoprovidestrongersocialreinforcementforbuyinganewproduct(CentolaandMacy2007).Becausetheclusteredtieshelpconsumersreceiveinformationonproductsfromtheirneighbours,wemaystatethatthedegreeofconnectivitycontributestothediffusionofproductinformationinalocalmanner.

1.4 Productpurchasetimingcanbemodelledasaprobabilitydistribution,anddifferentproductfamilieshavedifferentpurchasetimedistributions.Forexample,consumerstendtobuyinformationtechnologyproductsearlierintheproductcycle,and,asaresult,theirpurchasetimedistributioncanbeapproximatelymodelledasanexponential-likedistribution.Incontrast,expensivedurablessuchasautomobilesandrefrigeratorshavepurchasetimedistributionsintheshapeofnormaldistributions.Peopletendtotaketheirtimeandcontemplateadoptingsuchdurablesbecausetheseproductsarecostlyandhavelonglifespans.Thisdeliberationresultsinasmallnumberofpeoplebuyingthedurablesearlyintheproductcyclefollowedbyalargenumberofpeoplebuyingthedurableslater.EmpiricalstudiesbyRogers(2003)showusthattheprocessofadoptionovertimeistypicallyillustratedasanormaldistribution.

1.5 Basedontheseconditionsoftheconsumers'socialnetworkandproductpurchasetimes,weareinterestedintheproblemofhowafirmcandeterminethesocialnetworkandthepurchasetimedistributionappropriateforatargetproductmarket.Inaddition,weareinterestedinasensitivityanalysisthatpredictswhatwilloccurwhenthesocialnetworkstructureorthepurchasetimedistributionchangesfromthecurrentmarketconditionsandhowafirmcangainmarketshare.Weaddresstheseproblemsusinganovelexperimentalapproachcalledagent-baseddiffusionmodellingandsimulation,whichiscapableofpredictingthefuturemarketsharepaths(i.e.,marketsharesovertime)ofcompetingproducts.Intheagent-basedsimulationmodel,aconsumer-agentsimulatesthepurchasebehaviourofaconsumer,andasetofconsumer-agentswiththeirinteractionstructurecorrespondstothesocialnetworkofconsumers.Thenodesofthesocialnetworkareconsumer-agents,andeachlinkrepresentsafriendshipbetweentwoconsumer-agents.Thesocialnetworkcanbemodelledasanartificialmarket.Eachconsumer-agentchoosesproductsbasedontheirindividualevaluationsandtheirneighbours'evaluations(i.e.,thenetworkeffect)oftheproducts.Weproposeafuzzymulti-attributeutilitymodeltoformalisetheirproductchoice.Theproductchoicemodelalsoconsiderstheheterogeneouspropensityofconsumers—consumersplacedifferentweightsontheimportanceofproductattributesandvaryingdegreesofsensitivitytothenetworkeffect.Somepeoplewithstrongpersonalitiesmaynotbesusceptibletothenetworkeffect,whereasotherswhoareverysensitivetothetrendsofpublicopinionaccommodatethemselvestothedecisionsofearlyproductadopters.

1.6 Wechoosetousesmall-worldnetworkmodelforthesocialnetworkofconsumer-agents.Rewiringasmallfractionofconnectionsinaringlatticeform,whereeverynodeislinkedtoitsneighbourswithafixeddegreeofconnectivity,resultsinasmall-worldnetwork(WattsandStrogatz1998).Inthisnetwork,nodesarehighlyclustered,andtheinformationtransfertimebetweennodesisshort.Itiswellknownfromempiricalevidencethatthesmall-worldnetworkrepresentsmanytypesofrealsocialnetworks(AlkemadeandCastaldi2005).Normally,therewiringprobabilityofasmall-worldnetworkiswithintherangeof0.01and0.1.AsillustratedinFigure1,ahighrewiringprobabilityleadstorapidproductinformationtransferbetweenclustersofnodes,causingtheglobalnetworkeffecttoincrease.Thedegreeofconnectivitynormallyhasavaluebetween4and20(Kimetal.2011).Whenthenumberofnetworkconnectionsiszero,individualschooseproductsbasedonlyontheirownproductevaluations,withoutinteractionswithneighbourstoobtainproductevaluationinformation.AsshowninFigure1,ahighdegreeofconnectivityleadstorapidproductinformationtransferwithinclusteredties,causingthelocalnetworkeffecttoincrease.Therefore,wecanobservelocalandglobalnetworkeffectsbyvaryingtherewiringprobabilityandthedegreeofconnectivityfromzerotopositivevalues.

http://jasss.soc.surrey.ac.uk/16/1/3.html 1 14/10/2015

Page 2: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

Figure1.Examplesofsmall-worldnetworkswithrespecttotheirrewiringprobabilityanddegreeofconnectivitywhenthenumberofnodesis8

1.7 Consumers'productpurchasetimesareassignedrandomlyusingtheshiftedGompertzdistribution.Thisdistributionisawell-knownpurchasetimedistributionwithvariousshapes(BemmaorandLee2002).Equation(1)givesthegeneralformoftheshiftedGompertzdistribution:

(1)

1.8 Figure2plotsshiftedGompertzdistributionswhentheshapeparameter,η,is0.01,0.1,1,and10.Thescaleparameter,b,isfixedat0.4,followingBemmaor(1994).Customers'tendencytobuyfashionableproductscanbemodelledbytheshiftedGompertzdistributionwithη=0.01,whichresemblesanexponentialdistribution.However,theshiftedGompertzdistributionwithη=10hasashapesimilartoanormaldistributionandsatisfactorilyexplainsthepurchasetimesofexpensivedurables.Thus,asmallershapeparameter,whichrepresentsconsumersbuyingproductsearlierinthecycle,leadstoahigherrateofproductdiffusion.Theshape,determinedbyη,ofashiftedGompertzdistributiondeterminesthediffusionspeedofaproductbecauseconsumerspurchaseproductsaccordingtothedistribution.Therefore,wecanobservehowthemarketsharesofcompetingproductsdifferwhenwechangetheshapeparameter.

Figure2.ExamplesofshiftedGompertzdistributions:(a)whentheshapeparameteris0.01andthescaleparameteris0.4,(b)whentheshapeparameteris0.1andthescaleparameteris0.4,(c)whentheshapeparameteris1andthescaleparameteris0.4,and(d)whentheshapeparameteris10andthescaleparameteris0.4.

1.9 Tonarrowourscope,weapplytheagent-basedsimulationmodeltothecaseoftheKoreannetbookmarket.Inthisstudy,ourcontributionsarethreefold.First,wecomparethemarketsharepathsgeneratedbythesimulationwiththerealsalesdataobtainedfromaKoreane-commercecompanytoestimatetherewiringprobabilityandthedegreeofconnectivityofthesocialnetworkandtheshapeparameteroftheshiftedGompertzdistributionmostappropriatefortheKoreanconsumers.Afterestimatingthethreeparameters,weconductsensitivityanalyseswithrespecttotheseparameters.Asstatedabove,therewiringprobabilitydeterminesthespeedofinter-clusteredproductinformationtransfer,thedegreeofconnectivitydeterminesthespeedofintra-clusteredproductinformationexchange,andtheshapeparameterfixesproductdiffusionspeed.Thus,wecontroltheparametersindividuallytogeneratedifferentglobalandlocalnetworkeffectsanddifferentdiffusionspeeds.Basedontheobservedresults,wesuggeststrategicimplicationsforfirmsdesiringtoincreaseormaintainmarketshareineachcase.

1.10 Theremainderofthispaperisorganisedasfollows.Section2explainsrelatedagent-basedsimulationmodelsforproductdiffusion.Section3introducesthedetailsofourproposedmodel.Section4presentstheempiricalstudyandsensitivityanalyseswithmarketingimplications.Finally,Section5presentsadiscussionandconcludingremarks.

LiteratureSurvey

2.1 Simulationmodelsforproductdiffusioncanbedividedmainlyintocellularautomatamodels(GoldenbergandEfroni2001;Goldenbergetal.2001;MoldovanandGoldenberg2004;GuseoandGuidolin2009;SchwarzandErnst2009)andagent-basedsocialnetworkmodels(JanssenandJager2001;JanssenandJager2003;Delreetal.2007a;Delreetal.2007b;Kimetal.2011;Guntheretal.2011).Acellularautomatamodeliscomposedofcellsinaregulargrid.Eachcellhasafinitenumberofstatesandbelongstooneofthestates(e.g.,'0'fornon-adoptionand'1'foradoption).Ateachtimestepofsimulation,thestateofanysinglecellisdeterminedbytheneighbouringcells'previousstatesandatransitionfunctionthatspecifiesanidenticalruleactingoneachoftheadjacentcells.Transitionfunctionscanbedefinedaseithersimplerulesorprobabilityfunctions.Usingaverysimpletransitionfunction,GoldenbergandEfroni(2001)soundlydemonstratedthepropagationofawarenessofemergentneedsinthemarket.Goldenbergetal.(2001)furtherproposedaprobabilistictransitionfunctionforcellsinconsiderationofinterpersonalfactorsandexternalfactorstoexploretheunderlyingprocessofword-of-mouthcommunications.MoldovanandGoldenberg(2004)laterinvestigatedhowtheadverseeffectsofnegativeword-of-mouthandconsumerresistancetochangemaydecreasemarketsize.GuseoandGuidolin(2009)focusedonthestatetransitionsofacellularautomatanetworkratherthanthestatetransitionsofthecellsthemselves.Theyfocusedonthestatetransitionsofedgesamongcellsundertheassumptionthatmarketpotentialisassociatedwiththecollectiveknowledgeinthecommunicationnetwork.Thestateofanedgebetweentwonodesisdeterminedbythestatesofotheredgesconnectedtothetwonodes,andthemarketpotentialisdeterminedbythenumberofactiveedges.Themarketpotentialisappliedtotheadoptionprocessofcells.However,SchwarzandErnst(2009)indicatedthatcellularautomatamodelsyieldspatiallyexplicitresultsbutmerelyusethestatesoftheircellsforthesimulationwithoutcapturingtheheterogeneityofthecellswheresuchheterogeneityexists.

2.2 Theagent-basedsocialnetworkmodelhasrecentlydrawnattentionfromresearchersinvestigatingcollectivemarketdynamics.JanssenandJager(2001)studiedthedynamicsofmarketsfromapsychologicalperspectiveanddefinedfourcognitiveprocessesforbehaviouraldecisions,relyingonthelevelofuncertaintyandthelevelofsatisfaction,andshowedthatthesebehaviouralrulesdeterminetheartificialconsumer'sdecisionmaking.Inasubsequentstudy,JanssenandJager(2003)exploredtheeffectsofthedifferentsocialnetworkstructuresoftheagentsandshowedthatamarketorganisesitselfviainteractionsamongagents'decision-makingprocesses,productcharacteristics,andthenetworkstructureoftheagents.Delreetal.(2007a)studiedtheeffectofsocialprocessesondiffusiondynamicsandtheeffectsofconsumerheterogeneityandconsumers'networkstructureondiffusionspeed.Delreetal.(2007b)alsoinvestigatedtheeffectivenessofdifferentpromotionalstrategiesforthelaunchofaproduct.However,theagent-basedsocialnetworkmodelsinthesestudiesconsideronlyasingleproductcategory.Thesemodelsdonotconsidercompetitivemarketconditionsunderwhichaconsumerchoosesaproductamongcompetingproducts.Concerningthepurchasetimeoftheagent,thesemodelsalloweveryagenttocomparetheutilityofaproductwithathresholdvaluethatisgivenrandomlyandadopttheproductwhentheutilityexceedsthethreshold.Thethreshold-basedmodelofproductadoptioniseasytoimplementandappropriateforthediffusionmodellingofasingleproductcategorybecauseitinvolvesonlybinaryoptions,suchasadoptionornon-adoption(Granovetter1978).However,whenseveralproductscompeteinamarket,thethreshold-basedmodelisdifficulttoapplybecausetheremaybeseveralproductsthatsimultaneouslyexceedthethresholdofaparticularconsumer.Kimetal.(2011)proposedanagent-basedsimulationforestimatingthediffusionofcompetingproductsinanautomobilemarket.Intheirsimulation,anagentchoosesacarusingamulti-attributedecision-makingheuristiccalledfuzzyTOPSIS(TechniqueforOrderPreferencebySimilaritytoIdealSolution).Underthisheuristic,eachagentselectsthebestcar

http://jasss.soc.surrey.ac.uk/16/1/3.html 2 14/10/2015

Page 3: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

fromamongcompetingmodelsasbeingtheclosesttothepositiveidealsolutionandthefarthestfromthenegativeidealsolution.Theauthorsassumeauniformdistributiontomodelconsumers'purchasetimes.Additionally,ourstudypositsthatconsumers'purchasetimeshavedifferentdistributionsaccordingtoproducttype.Guntheretal.(2011)proposedamodelforassessingmarketingactivitiessuchaslaunchtiming,markettargeting,andpricingforbiomass-basedfuelthatwillbeusedinAustriainthenearfuture.Inthisstudy,anagentadoptseitherbiomass-basedfuelorfossilfuelonthebasisofthreshold-basedadoptionrules.

TheAgent-BasedSimulationModel

3.1 Thismodelhasthreeinputvariables:theexperts'ratingsofproductattributes,theagents'weightsforproductattributes,andtheagents'degreesofsensitivitytothenetworkeffect.Weassumethatallconsumer-agentssharetheexperts'opinionsthroughmassmediainthebeginningofproductdiffusionandfollowtheexperts'opinions.Thus,aconsumer-agent'sevaluationisinitiallysettotheexperts'ratingsofproductattributeswithaconsiderationoftheagent'sownweightsforproductattributes.Inaddition,intherealworld,theextenttowhichconsumersareinfluencedbythenetworkeffectdiffersaccordingtoindividualcharacteristics.Thus,eachagenthasadegreeofsensitivitytothenetworkeffectthatrepresentstheindividual'ssensitivitytohisorherneighbours'opinions.

3.2 WeassumethatthethreeinputvariablesareassessedusingthefivelinguistictermslistedinTable1.Becauselinguisticassessmentisimprecise,modellingusingafuzzysetisaneffectiveapproachtoquantifyingtheseterms.ThevaguenessofeachterminthisstudyischaracterisedasavaluesetwithatriangularmembershipfunctionsshowninFigure3-(a)(Zimmermann2001).AsillustratedinFigure3-(b),avaluesetdefinedas(a,b,c)iscalledatriangularfuzzynumber,andthecorrespondingmembershipfunctionindicatesthedegreeofcertaintythatavalueinthesetbelongstothelinguisticterm.Inparticular,wescaledtriangularfuzzynumberswithintherangeof[0,100],assuggestedbyYehandKuo(2003),downtotherangeof[0,1].Itisalsopossibleforaspecificapplicationdomaintoinducetriangularfuzzynumbersusingsurvey(orexperimental)data(HongandLee1996),butthisworkremainsalargeandchallengingresearchissue.

Table1.Linguisticvariablesandtriangularfuzzynumbers

Figure3.(a)ThefuzzymembershipfunctionsofthefivelinguistictermsinTable1;(b)adepictionofatriangularfuzzynumber

3.3 Thediffusionsimulationconsistsofaninitialisationstageandanexecutionstage.Intheinitialisationstage,weconstructasocialnetworkofconsumer-agentswithaspecificrewiringprobabilityandadegreeofconnectivityandassigneachagentthreepersonalproperties:aproductpurchasetime,weightsforproductattributes,andadegreeofsensitivitytothenetworkeffect.Weassigneachagent'spurchasetimebyusingashiftedGompertzdistributionwithaspecificshapeparametervalue.Forthelasttwoproperties,weconductaquestionnairesurveywiththefivelinguisticterms,buildempiricaldistributions,andassigneachagentrandomlychosenvaluesfromthedistributions.

3.4 Theexecutionstageproceedsasfollows.Weassumethattherearemproductspi(i=1,…,m)inanartificialmarket,andeachproducthasnobservableattributesdj(j=1,…,n).Lettheexperts'ratingsoftheproductswithrespecttotheattributesbegivenasfollows:

(2)

Inthismatrix,r*ijisthetriangularfuzzynumberthatcorrespondstotheexperts'linguisticevaluationofattributedjofproductpi(seeTable1).

3.5 Atthebeginningoftheexecutionstage,eachconsumer-agentacceptstheexperts'opinionswithaconsiderationoftheattributeweights.LetW*k=(w*

1k,…,w*nk)betheattributeweightvectorofconsumer-agent

k,inwhichtheelementsofthevectorarealsodenotedbythetriangularfuzzynumbersinTable1.TheagentmultipliestheattributeweightvectorW*kbytheexperts'productratingmatrixE*.Theresultis

http://jasss.soc.surrey.ac.uk/16/1/3.html 3 14/10/2015

Page 4: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

consumer-agentk'spersonalisedfuzzydecisionmatrixD*k,whichisdefinedas

(3)

wherex*kij=r*ij⊗w*jk.LetA*1=(a1,b1,c1)andA*2=(a2,b2,c2)betwotriangularfuzzynumbers.Themultiplicationoperator⊗ofthetwotriangularfuzzynumbersisthendefinedasA*1⊗A*2=(a1a2,b1b2,

c1c2)(Zimmermann2001).Thenewfuzzynumber,x*kij,canberegardedasthepartialutilityofproductpiwithrespecttoattributedjevaluatedbytheconsumer-agentkwithoutconsideringthenetworkeffect.

3.6 Fortheconsumer-agentktochooseaproduct,itisrequiredthattheattribute-levelfuzzyutilitiesx*ij(i=1,…,m;j=1,…,n)beaggregatedforeachproductandcomparedamongproducts.However,thisfuzzy,multi-attributedecision-makingapproachsuffersfromvariousdrawbackssuchasalackofsensitivitywhencomparingsimilarfuzzynumbers,counterintuitiveoutcomesinsomecircumstances,andcomplexcomputationalprocesses(DengandYeh2006).Toavoidthedrawbacksintheproductchoiceprocess,weemployacommonandusefuldefuzzificationtechniquecalledthecentre-of-gravity(COG)approach(WangandLuoh2000).Infuzzysettheory,defuzzificationhasbeenusedasaneffectivemeansofinterpretingthemembershipdegreeofatriangularfuzzynumberasaspecificcrispvalue.TheCOGisan

expectedgeometriccentreofmass.Givenafuzzynumberx*kij,denotedas(xk(1)ij,xk(2)ij,xk(3)ij),itsCOG,xkij,isdefinedas

(4)

whereSUPijisthesupportofx*kijandμ(x)isthemembershipfunctionofx*kij.Byapplyingthedefuzzificationmethodinequation(4)tothepersonalisedfuzzydecisionmatrixD*kinequation(3),weobtaina

personaliseddecisionmatrixDkthatiscomposedofcrispvalues(equation(5)).Thismatrixcontainsconsumer-agentk'spersonalisedutilitieswithrespecttoproductattributes.

(5)

3.7 Consumersalsoreflectontheproductratingsoftheirneighboursinmakingpurchasedecisions.Tomodelnetworkeffectsinproductchoice,weaveragetheproductattributeratingsforwardedfromneighbours.Theutilityofconsumer-agentkwithrespecttotheattributedjofproductpiisthendefinedastheweightedaverageofapersonalisedcomponentandanetworkeffectcomponent:

(6)

whereLkisthesetofconsumer-agentk'sneighbours,AkisthesetofadoptersinLk,andαkisthedefuzzifiedsensitivitydegreeofconsumer-agentktothenetworkeffect(0≤αk≤1).Whenaconsumerismoreinnovative,thepersonalisedcomponentisweightedmoreheavily.Incontrast,whenaconsumerislessinnovative,thenetworkeffectcomponentisweightedmoreheavily.Byincorporatingthenetworkeffect

componentintoequation(5),acompleteattributeutilitymatrix,Sk,isobtainedas

(7)

3.8 Fromthebeginningofthesimulation,consumer-agentkupdatestheattributeutilitymatrixSkwiththeattributeratingsforwardedbyneighbouringadopters(seeequation(6)).Whenthesimulationtimereachesthe

givenpurchasetimeoftheagent,theagentchoosesacertainproductwithacertainprobability,Pk(i),usingapopularchoicerulecalledthemultinomiallogitrule(Train2009),whichisdefinedbyequation(8):

(8)

3.9 Whenusingindividualpurchasetimedistributionsasinthesimulationmodel,allconsumer-agentseventuallybuyproductsattheendofthesimulationbecauseeveryagentisassignedapurchasetime.Ingeneral,however,allagentsdonotadoptnewproductsinreal-worldmarkets.Forthiscase,weaddadummyproduct(i.e.,itisnotarealproductbutrepresentsnoadoption)tothesimulationmodel.Becausethedummyproductisequivalenttotheproductinuse,itsutilityiscalculatedbyassumingthattheratingsofalltheproductattributesare"fair".Suchamodificationenablesourmodeltoincorporatenoproductadoptioninequation(8).

3.10 Thefollowingstepssummarisethesimulationprocess:

Initialisation

Step1.Createaconsumer-agentnetworkwitharewiringprobabilityandadegreeofconnectivity.

Step2.Assignweightstoproductattributesandthedegreeofsensitivitytothenetworkeffecttoconsumer-agentsusingempiricaldistributions.

Step3.Generateconsumer-agents'purchasetimesusingashiftedGompertzdistributionwithashapeparameter.

Step4.Establishexperts'linguisticratingsoneachcompetingproduct.

Execution

Step5.Atsimulationtimet=0,introducetheexperts'ratingsofcompetingproductstoallconsumer-agents,whoeachcreatethepersonaliseddecisionmatrixDkinequation(5)usingtheirindividualweightsfortheproductattributes.

Step6.Allconsumer-agentsupdatetheattributeutilitymatrixSkinequation(7)byrequestinginformationfromneighbourswhopurchasedanyproductsbeforethecurrenttimet.Thosewhosepurchasetimesareequaltothecurrenttimetselectproductsusingthemultinomiallogitrule.

Step7.Sett=t+1.Ifthesimulationtimereachestheterminationtime,stopthediffusion;otherwise,returntoStep6.

ExperimentalDesign

Koreannetbookmarket

4.1 NetbooksareafamilyofnotebooksfocusingonmobilityandInternetuse.Netbookproductswerereleasedinonlineshoppingmallsinthefirsthalfof2008inKorea.Theproductsofsixproducersmakeupthe

http://jasss.soc.surrey.ac.uk/16/1/3.html 4 14/10/2015

Page 5: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

netbookmarket,andthreeproductsfromtwoproducersoccupied60percentofthetotalmarket.Thesethreeproductshadsimilarreleasetimes(twoofthethreeproductswereintroducedtwoweeksearlierthantheother,butweignorethistimedifferenceinthisexperiment)andwereintroducedapproximatelythreemonthsearlierthantheotherproducts,forwhichthemarketsharesandvariationsweresmall.

Datadescription

4.2 Productattributeslistedasmajorbuyingcriteriaincommercialexpertreviewwebsites(e.g.,PCWorld)includeCPUperformance,datastoragesize,memorysize,displaysize,batterylife,weight,andprice.ThewebsitesprovidedgradedratingsofthethreenetbooksinJuly2008,justbeforetheproducts'releaseontheKoreanmarket.Weaveragedtheratingsoftheproductsforeachattribute;theresultsaresummarisedinTable2.TheCPUperformance,memorysizes,andpricesofthethreeproductsarethesame.Basedontheratingresults,itwasnoteasytopredictwhichproductwouldbeawinnerinthemarket.

Table2.Experts'productattributeratingsforthethreeproducts

4.3 Weconductedaquestionnairesurveytoobtainindividualconsumers'weightsfortheattributesofanetbookandtheirsensitivityleveltothenetworkeffect.Of153respondents,therewere100validresponsesincludedinouranalysis.ThesurveyresultsaresummarisedinTables3and4.Table3showsthatCPUperformance,weight,andpriceareimportantattributes(i.e.,approximately30%ormoreoftherespondentsratedtheseattributesas"veryhigh").AsshowninTable4,norespondentswereverystronglysensitivetothenetworkeffect;41%oftherespondentsratedthemselvesas"stronglyornormally"sensitivetothenetworkeffect,and59%oftherespondentswere"weaklyorveryweakly"sensitivetothenetworkeffect.

Table3.Consumers'weightsforthenetbookattributes

Table4.Consumersensitivitytonetworkeffects

Descriptionoftheexperiment

4.4 UsingtheNetlogosoftware(http://ccl.northwestern.edu/netlogo),wecreatedasmall-worldnetworkof5,000consumeragentstorepresenttheKoreannetbookmarket.Theexperimentconsistsofanempiricalstudyandasensitivityanalysis.Intheempiricalstudy,weadjustedtherewiringprobabilityandthedegreeofconnectivityoftheconsumer-agentnetworkandtheshapeparameterofindividualpurchasetimedistributionsappropriatefortheKoreannetbookmarket.Wetestedfourrewiringprobabilities(0.01,0.0.5,0.1,and0.25)andfivedegreesofconnectivity(4,6,8,10,and20)fortheconsumer-agentnetwork.Wealsoevaluatedfourshapeparameters(0.01,0.1,1,and10)fortheshiftedGompertzdistributionthatgeneratedfourdifferentindividualpurchasetimedistributions.Thetotalnumberofparametercombinationswas80.Foreachcombination,100simulationrunswerereplicatedsothataperformancemeasureatthelevelofthe95%confidenceintervalwasobtainedbyChebyshev'stheorem(Shannon1975).Theperformancemeasureusedintheempiricalstudywasthemarketsharepathofeachproduct.Themarketshareofaproductatatimewascalculatedasitscumulativesalesvolumedividedbythetotalsalesvolumeatagiventime,anditsmarketsharepathissimplythemarketshareovertime.Inthesensitivityanalysis,wecontrolledthethreeparameters(thedegreeofconnectivity,therewiringprobability,andtheshapeparameter)toobservethechangesinthemarketsharepathsofthethreeproducts.Themeansandthevariancesofthemarketsharepathswereusedasmetricsfortheanalysis.

4.5 Inthisexperiment,wedidnotconsider"noproductadoption"fortworeasons.First,therespondentsofthequestionnairesurveywerewillingtobuyanewproduct,andtheyhadusedproductswithsimilarfunctions.Second,wecomparedoursimulationresultwiththerealmarketsharepathsbasedonthesalesvolumesofonlythreeproducts.Themarketshareofaproductisdefinedastheproportionofthesalesvolumeoftheproducttothetotalsalesvolumeofsimilarproductsinmarket.Buyingnoproductoraproductotherthanthethreestudiedproductswaspreviouslyexcludedfromtherealmarketsharepaths.Therefore,wedidnotincludeanoptionfor"nopurchase".

Notation

Thetermsbelowareusedfrequentlyinthefollowingsections:

T:theentiresalesintervalR:thenumberofsimulationreplicationsyij(·):thesimulatedmarketsharepathofproductioverT,generatedbythejthreplicationzi(·):therealmarketsharepathofproductioverT

Empiricalstudy

http://jasss.soc.surrey.ac.uk/16/1/3.html 5 14/10/2015

Page 6: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

5.1 Wedefinedthedistancebetweentwopathsincomparison(i.e.,thesimulatedmarketsharepathofaproductandthecorrespondingrealmarketsharepath)astheEuclidiandistanceevaluatedbythedynamictimewarping(DTW)technique(SakoeandChiba1978).Thistechniqueisoftenappliedtomeasuretwotime-seriespatternsofdifferentlengthsandpossiblywithdifferenttimescales.Weusedthistechniquebecausethetimelinesbetweentherealmarketsharepath(inweeks)andthesimulationresult(insimulationtimesteps)aredifferent.Thedistance(disti)betweenthesimulatedmarketsharepaths(yij(·))andtherealmarketsharepath(zi(·))ofproductiinRreplicationsisdefinedbyequation(9),inwhichthefunctionDTW(a,b)givesthedifferencebetweentwosequencesaandbasaEuclidiandistance:

(9)

5.2 Becausethereismorethanoneproduct,wedefinetheaggregateddistance(dist)ofmproductsbyequation(10):

(10)

Figure4.Euclidiandistancesbetweensimulation-generatedandrealmarketsharepaths

5.3 Figure4summarisesourresults,depictingthedistancesbetweenthesimulation-generatedmarketsharepathsandtherealmarketsharepathsofthethreenetbooksinKorea.Inthisfigure,asmallaggregateddistanceindicateshighsimilarity.Theresultmostsimilartotherealdataoccurredwhentheshapeparameterofthepurchasetimedistributionwas0.01.ThefigurealsoshowsthatoursimulationresultbecomessimilartotheactualnetbookdiffusioninKoreawhentheshapeparameterissmaller.ThisresultimpliesthatKoreannetbookbuyersarelikelytopurchasenetbooksearlyasfashionableandtrendyproducts.Demandforhigh-techproducts,e.g.,netbooks,notebooks,andsmartphones,isvolatile(Wuetal.2005),andtheproductsexperienceconsiderableup-frontexpenditurefollowedbyrapidobsolescence(PangburnandSundaresan2009).Forexample,thesalesvolumeofeverynewmodelofiPadoriPhonewasveryhighatthebeginningofproductlaunch.Wemayextendourinferencethatconsumers'rapidpurchasesatthebeginningofproductreleaseenticefirmstoprovidenewproductswithshortlifecycles.

5.4 ThediffusionofnetbooksintheKoreanmarketcanbeexplainedbytwostructuralfeaturesofasocialnetwork:therewiringprobabilityandthedegreeofconnectivity.InFigure4,theresultmostsimilartotherealdatawasfoundwhentherewiringprobabilitywas0.05andthedegreeofconnectivitywas4.ThisfindingindicatesthatthesocialnetworkofKoreannetbookconsumersisaregularnetwork,andeachconsumerhasasmallnumberofneighbours.Thatis,thesocialnetworkislogicallywellorganisedbutsparse.Becauseasmall-worldnetworkisdefinedwitharewiringprobabilityrangingbetween0.01and0.1,therewiringprobabilityoftheKoreannetbookconsumernetwork(0.05)appearstobehigh.However,thedegreeofconnectivityoftheKoreannetbookconsumernetwork(4)islow.Thisvalueimpliesthat,inKorea,netbooksarelikelytodiffusenotbyreinforcementfrommanylocalsources(CentolaandMacy2007;Centola2010)butratherbysimplecontactwiththehelpofshortcuts(Granovetter1973).Thatis,anetworkwithmanysmallclustersrepresentsthesocialnetworkofKoreannetbookconsumers.

5.5 Figure5illustratestherealmarketsharepathsandthemarketsharepathssimulatedwithascaleparameterof0.4,ashapeparameterof0.01,arewiringprobabilityof0.05,andadegreeofconnectivityof4.Inthisfigure,therealmarketsharepathsaftert=3inFigure5(a)andthesimulatedmarketsharepathsaftert=0inFigure5(b)aresimilarintermsofrelativedominance.However,wecanobservethatthedifferenceinmarketsharepathsfromt=0tot=3andthedifferenceinthemarketsharepathsofProduct1andProduct2aftert=3.Inthesimulation,wemayhavelostsomefactorsthatcontrolmarketsharepaths.Wesuspecttwofactorsaremissed:

a. Coercivesynchronisationofproductreleasetimes:wehavealignedthereleasetimesofthethreeproductstostartdiffusionatthesametime.Wehavetruncatedthedataofthefirsttwoweeksoftwoproductsthatwerereleasedtwoweeksbeforetheotherone.Wemayhavelostsocialinfluencehappenedinthetwoweeks.Thismayleadtotheresultofthedifferenceinthemarketsharepathsfromt=0tot=3.

b. Noexternalshockfromthemarket:wemayhavemissedexternalshocksthathappenunevenlyinreallife.Theexternalshockscouldbemarketingstrategies(e.g.,pricediscountandpromotion)andchangesintheexperts'opinions.TheabsenceoftheexternalshocksmaycausethedifferenceinthemarketsharepathsofProduct1andProduct2aftert=3.

Figure5.Marketsharepaths:(a)realonesand(b)simulationresultswithascaleparameterof0.4,ashapeparameterof0.01,arewiringprobabilityof0.05,andadegreeofconnectivityof4

Sensitivityanalysis

6.1 Basedontheexperts'evaluationsoftheproductattributesinTable2,wefindthatProduct2isinferiortobothProduct1andProduct3.TheevaluationsofProduct1andProduct3arethesamewithrespecttoeveryproductattributeexceptforbatterylifeandweight.Product3surpassesProduct1inbatterylife,withadifferenceofthreelinguisticlevels.However,Product1beatsProduct3inweightbyadifferenceofonelevel.Product3isthusjudgedtobeslightlybetterthanProduct1intheoverallevaluation,buttheyarecompetitive.

6.2 Inthissituation,weanalysedthelocalnetworkeffectcausedbyneighbours,theglobalnetworkeffectcausedbyshortcutsamongconsumers,andthepurchasetimeeffect(i.e.,theeffectcausedbydifferentindividualpurchasetimedistributions).Here,weusedtwometricsfortheanalysis:themeanmarketsharepathandthemarketsharevariance.First,wedefinethemeanmarketsharepathofproductibyequation(11):

http://jasss.soc.surrey.ac.uk/16/1/3.html 6 14/10/2015

Page 7: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

(11)

ThisequationyieldsthemeanofRsimulationreplicationsandrepresentstheexpectationforthemarketshareofaproductovertime.Withthismetric,wecancompareonemarketsharepathwithanotherandtherebydeducethemagnitudeofthenetworkeffect.Second,wedefinethemarketsharevarianceofproductigeneratedfromRreplicationsbyequation(12),representingtheuncertaintyinforecastingmarketshare:

(12)

Thelocalnetworkeffect:Asensitivityanalysisonthedegreeofconnectivityofsocialnetwork

6.3 Weanalysedthelocalnetworkeffectbyrunningourmodelwithdifferentdegreesofconnectivity(0,4,6,8,10,and20).Wefixedtheotherparameterstothesamevaluesastheestimatedconditionfoundinthepreviousexperiment.Thatis,therewiringprobabilityandtheshapeparameterweresetat0.05and0.01,respectively.

6.4 Figure6confirmsthatthedegreeofconnectivitygreatlyaffectsthediffusionofproducts.Thedifferencebetweenthemeanmarketsharepathofaproductwithoutanetworkeffect(i.e.,whenthedegreeofconnectivity=0)andthatofaproductwithapositivedegreeofconnectivityrevealsthemagnitudeofthelocalnetworkeffect.Whentherewasnonetworkeffect,consumer-agentsarrivedatmutuallydifferentevaluationsofthethreeproductsbyfilteringtheexperts'opinionsinTable2basedontheirownweights.Asaresult,theproductsgaineddifferentbutstablemarketshares.However,asthedegreeofconnectivityincreased,themarketshareofminorproductssuchasProduct1andProduct2fell,butthatofmajorproductssuchasProduct3rose.

6.5 BasedonourjudgementthatProduct3issuperiortotheothersinalmostallattributes(Table2),thelocalnetworkeffectappearstoenableamajorproducttoclaimasuperiormarketpositionbutrelegatesaminorproducttoaninferiorposition.ThisobservationsuggeststhattheriseofProduct3totakethelargestmarketshareresultednotonlyfromitshigherqualitybutalsofromnetworkeffectspromotingconsumer-agentstobuyProduct3morequickly.ExactlythesameexplanationisofferedbyTellisetal.(2009):"Consequently,theentiremarketsettlesonthebetterproductsmorequicklyandatahigherlevelthanitwouldhaveintheabsenceofnetworkeffects".

6.6 Themajorproduct(Product3)hadtheadvantageofgainingmarketsharefromthelocalnetworkeffect—itsmarketsharewasabruptlyincreasedatthebeginningofproductdiffusion.Wesuggestthatthelocalnetworkeffectultimatelybiasedtheevaluationsofmanyconsumer-agentstowardstheexperts'opinionsfortworeasons.First,atthestartofproductdiffusion,consumer-agentshadtheexperts'opinionsasareferencefortheirevaluations.Evenwhentheirweightswereinitiallydifferent,Product3becamethemostfavourableproductamongtheconsumer-agentsbecausetheexpertsratedProduct3asthebestintheiroverallevaluationofproductattributes.Second,therewasinsufficienttimefortheconsumer-agentstosharetheinformationthatProduct1wasalsoacompetitiveproductbecausetheindividualproductpurchasetimedistributionresemblesanexponentialdistribution.Consequently,ifwedefinereliableknowledgeastheexperts'opinions,thenthereliableknowledgepropagatedbythelocalnetworkeffectwithinthesocialnetworkseemedtoleadtheconsumer-agentstothemajorproduct.

6.7 Althoughtheminorproducts(Product1and2)lostmarketshareduetothelocalnetworkeffect,thereremainedsomemarketsharefortheseproducts.Thisphenomenonindicatesthatthelocalnetworkeffectmayencroachonthemarketshareoftheminorproductbutthattherestillaresomepeoplelockedintotheminorproduct.WeknowthatthestructureofthesocialnetworkofKoreannetbookconsumershasmanysmallclustersduetothelargerewiringprobabilityandsmalldegreeofconnectivity.Additionally,wesurmisethatthenetworkeffectmayoccuronlyintheearlystageofproductdiffusionbecausetheshapeoftheindividualpurchasetimedistributionresemblesanexponentialdistribution.AccordingtoourfindingsonthesocialnetworkstructureandthepurchasetimeofKoreannetbookconsumers,wecanstatethatsomeclustersmaynothavesufficienttimeandinformationtoshifttheirpurchasedecisionstobuyproductsotherthanthebestproductsasinitiallyevaluatedbytheconsumersthemselves.

Figure6.Themeansofthemarketsharepathswithrespecttochangesinthedegreeofconnectivity:(a)Product1,(b)Product2,and(c)Product3

6.8 Ourdiscoveryisthatthelocalnetworkeffectdiminishesdiversityinpurchasingandpromotesstandardisationinpurchasingwhenconsumerstendtobuyproductsearlyafterlaunch,asisthecaseforfashionableproducts.However,whentheconsumers'socialnetworkconsistsofmanysmallclusterscharacterisedbyahighrewiringprobabilityandalowdegreeofconnectivity,quickproductpurchasetendenciesdecreasethelocalnetworkeffectandleavesomemarketsharefortheminorproducts.

6.9 Ourresultsalsoshowthatanincreaseinthedegreeofconnectivitydidnotincreasethemagnitudeofthelocalnetworkeffectcritically.Thedegreeofconnectivityreferstothenumberofcommunicationchannelsandthenumberofneighboursinfluencingproduct-purchasingdecisions.WecaneasilyconfirmthattheranksoftheproductratingsbytheexpertsarestraightforwardinTable2;thus,consistent(orreliable)informationonproductevaluationmayflowthroughthesocialnetworkevenwhenfewneighbourssharethisinformation.Therefore,theinitialevaluationofproductsbytheexpertsisthemostdecisivefactorwhenconsumersbuyproductsearly.

http://jasss.soc.surrey.ac.uk/16/1/3.html 7 14/10/2015

Page 8: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

Figure7.Variancesofthemarketshareswithrespecttochangesinthedegreeofconnectivity

6.10 Figure7illustratesthemarketsharevariancesofthethreeproductswithrespecttothedegreeofconnectivity.Marketsharevarianceisimportanttoafirmbecauseuncertaintythereinisdirectlyrelatedtotheriskofinvestmentinanewproduct.Weobservedthatthemajorproduct(Product3)hadagreatervariancecomparedwiththeminorproducts(Product1andProduct2).Figure6showsthatthemeanmarketsharepathofProduct3risesastheothersfall,indicatingthattheevaluationofProduct3diffusedwellcomparedwiththeevaluationsoftheotherproducts,andthenumberofconsumerswhoconsideredbuyingProduct3increased.Thus,thechanceofProduct3todiffuseroseduetothediffusionoftheproductevaluation,butthisincreasedchancealsoincreasedthevarianceofthemarketsharepathofthisproduct.

6.11 Wealsoobservedthatthemarketsharevariancesofthethreeproductsapproachthevariancesgeneratedwithnonetworkeffectasthedegreeofconnectivityincreases.Consumerstendtobuyaproductbyusingtheirownevaluationsoftheproductswhenthereisnolocalnetworkeffect.However,asthedegreeofconnectivityincreases,consumersareinfluencedbyneighbours,anditbecomesmorelikelythataconsumerwillchooseoneofthethreeproducts.Thus,thevarianceincreases.However,afteracertainpoint,thevariancebecomessmaller,anditappearsthatitapproachesthevariancewhenthereisnonetworkeffect.Wecanexplainthisphenomenonastheresultofanaveragingeffect.Withasmallnumberofneighbours,aconsumer'spurchasemaybebiasedtowardsthoseneighbours'tastes.However,whenthenumberofneighboursissufficientlylarge,theconsumerwillbeexposedtoalmostalltheopinionsofotherpeople.Thissituationmayleadtheconsumertoobtainasomewhatless-biasedevaluationfromneighboursbyaveragingalltheiropinions.Althoughwedonotknowwhatproducteachconsumerpurchases,wecanconcludethatasthedegreeofconnectivityincreases,theuncertaintyinachievingthemeanmarketsharepathsofthethreeproductsreturnstothepointatwhichwherethereisnonetworkeffect.

6.12 Whentheindividualpurchasetimedistributionresemblesanormaldistribution,consumer-agentsthenhavesufficienttimetoconsiderpurchasingaproduct,andthedegreeofconnectivitywillaffectthemagnitudeofthelocalnetworkeffectcrucially,andthemarketsharepathsoftheproductsshoulddisplayvariouspatterns.Ifthissimilarityholdstrue,thisimpliesthatafirmdesiringtoincreasethemarketsharesoftheirproductsshouldinvestconstantlyinsocialnetworkingservicemarketingandprovideconsumerswithmorecommunicationchannelswiththeirfriends.

Theglobalnetworkeffect:Asensitivityanalysisontherewiringprobabilityofasocialnetwork

6.13 Asdiscussedabove,therewiringprobabilitydeterminesthenumberofshortcutsamongconsumer-agents.Asthenumberofshortcutsincreases,itisevidentthatinformationflowswellthroughouttheclustersofthesocialnetworkofconsumers.Thus,wevariedtherewiringprobabilityandobservedtheglobalnetworkeffect.Thedegreeofconnectivityandtheshapeparameterwerefixedat4and0.01,respectively.

Figure8.Themeanmarketshareswithrespecttochangesintherewiringprobability:(a)Product1,(b)Product2,and(c)Product3

6.14 Figure8presentsthemeanmarketsharepathsofthethreeproductswhenwechangedtherewiringprobabilityby0.01,0.05,0.1,and0.25,illustratingthatthemeanmarketsharepathremainsalmostthesameregardlessoftherewiringprobability.Wesuspectthattherapidpurchasesofconsumersdidnotcauseastrongglobalnetworkeffect.Additionally,itisknownthatthenumberofshortcutsbetweendistantconsumersisproportionaltothenumberoflocalneighbours(i.e.,thedegreeofconnectivity)becauseeachshortcutismadebydisconnectingalocallinkandrewiringthelinktoadistantconsumer.Becausethenumberoflocalneighboursinthissocialnetwork(4)wassmall,theabsolutenumberofshortcutsgeneratedevenwhentherewiringprobabilitywasatthemaximumvalueof0.25maynothavebeensufficienttocreateasignificantglobalnetworkeffect.Thus,theglobalnetworkeffectwouldbeinfluencednotonlybytherewiringprobabilitybutalsobythedegreeofconnectivity.Basedontheanalysisoftheresults,wesurmisethattheglobalnetworkeffectmayincreasewiththerewiringprobabilitywhentheindividualpurchasetimedistributionresemblesadistributionandthedegreeofconnectivityishigh.

http://jasss.soc.surrey.ac.uk/16/1/3.html 8 14/10/2015

Page 9: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

Figure9.Variancesofthemarketsharepathswithrespecttochangesintherewiringprobability

6.15 However,inFigure9,adifferenceinthemarketsharevariancesofthethreeproductscanbeobserved.ThisfiguredemonstratesthatthevarianceofProduct3isgreaterthanthoseoftheotherproducts.Forthemajorproduct,Product3,thevariancebecomessmallerwhentherewiringprobabilityis0.05or0.1comparedwith0.01or0.25,meaningthatarewiringprobabilitythatistoosmallortoolargemayincreasetheuncertaintyinreachingthemeanmarketsharepathofthemajorproduct.Thisfindingstandsincontrasttotheprevioussensitivityanalysisrevealingthatatoo-smallortoo-largeconnectivityreducestheuncertainty.

6.16 Forconditionsunderwhichconsumershaveasmallnumberofneighboursandarerapidpurchasers,amoderatenumberofshortcuts(neithertoofewnortoomany)shouldprovidetheproducerofahigh-qualityproduct(e.g.,Product3)withagreaterchancetoachievethemeanmarketsharefortheproduct.Fromtheperspectiveofsocialnetworkservices,itisthusundesirableforafirmthatproducesahigh-qualitynetbooktoprovideonlinecommunicationspacesthatenableKoreannetbookconsumerstotransferproductinformationwithtoomanynewacquaintancesbecausethisconnectivitycouldcausethesocialnetworkofKoreannetbookconsumerstoclustersufficientlytoincreasetheuncertaintyinachievingthemeanmarketshare.

Thepurchasetimeeffect:Asensitivityanalysisontheshapeparameterofindividualpurchasetimedistribution

6.17 Theprevioustwoexperimentsexaminedasensitivityanalysisforthesocialnetwork;wenowexaminepurchasetime.Figure10illustratesthemeanmarketsharepathsofthethreeproductswithrespecttochangesintheshapeparameteroftheindividualpurchasetimedistribution.Wevariedtheshapeparameter,settingitat0.01,0.1,1,or10.However,wefixedthedegreeofconnectivityat0.01andtherewiringprobabilityat0.05.AsillustratedinFigure2,thelargershapeparametercausesashiftofpeakintheindividualpurchasetimedistribution.Forexample,whentheshapeparameteris10,theindividualpurchasetimedistributionresemblesanormaldistribution,anditspeakisformedatTimeStep8inthesimulation.

6.18 Figure10showsthatashapeparametergreaterthan1resultsindifferentmarketsharepatternsforthethreeproducts.Astheshapeparameterwasincreasedfrom0.01to1,themarketsharepathsofProduct1andProduct2fellslightly,whereasthemarketsharepathofProduct3rose.Whentheshapeparameterbecamegreaterthan1,themarketsharepathofProduct1fellinitiallyandroseagainatTimeStep8.Underthesameconditions,Product2lostmoremarketshareafterTimeStep8(i.e.,Product2lost8%),andProduct3lostlessmarketshare(approximately1%).

Figure10.Themeanmarketsharepathswithrespecttochangesintheshapeparameter:(a)Product1,(b)Product2,and(c)Product3

6.19 ItappearsthatProduct1stolethemarketsharesofProduct2andProduct3afterTimeStep8,whentheshapeparameterwasgreaterthan1.Thesingletimedistributionwiththeshapeparametergreaterthan1representsadecreasingnumberofearlyadopters;potentialconsumershavemoretimetoconsidertheirproductchoices,andlocalandglobalnetworkeffectsmayhavetimetoinfluencethepotentialsales.Hence,themarketsharegainofProduct1indicatesthatpurchasetimeeffectshelpedconsumersfavourProduct1insteadofProduct2.Here,theworstproduct(Product2)lostmoremarketsharethanundertheexponential-likeindividualpurchasetimedistribution.Table2reportsthatProduct1andProduct3havesimilarevaluationsforeachproductattribute,buttherearedifferencesinbatterylifeandweight.TheexpertsevaluatedthebatterylifeofProduct1as"poor"butthatofProduct3as"verygood".TheyalsoevaluatedtheweightofProduct1as"verygood"butthatofProduct3as"good".BecauseTable3tellsusthatbatterylifeisnotasimportantasweight,wemayconcludethatsomeconsumersreceivedinformationthatProduct1isbetterthanProduct3withrespecttothemoreimportantproductattributeofweightastimeprogressedandthatthespreadofthisinformationaffectedthemarketshareofProduct1,causingittoriseagainwhentheshapeparameterwas10.

6.20 Figure11illustratesthattheuncertaintyinreachingthemeanmarketsharepathsrisesabruptlywhentheshapeparameteris10.ThevariancesofProduct1andProduct2areapproximately0.000095whentheshapeparameterislessthan1,andthevarianceofProduct3isapproximately0.00013.However,thevariancesriseabruptlywhentheshapeparameteris10.ThevariancesofProduct1and2are0.0002,andthevarianceofProduct3is0.00026.Thispatternsuggestsagreatercertaintyofreachingtheexpectedmarketsharepathswhentheshapeparameterissufficientlysmall(i.e.,smallerthan1).Thismetricisimportanttoafirmbecauseuncertaintyisdirectlyrelatedtorisk.However,theproducerofProduct1wouldpreferanindividualpurchasetimedistributionsimilartoanormaldistribution,evenwhentheuncertaintyishighandthereisachanceofearningamarketsharethatislessthantheexpectedshare.Thispreferencearisesbecausethemarketshareoftheproductishigherwhenanindividualpurchasetimedistributionfollowsanormaldistributionthanwhentheindividualpurchasetimedistributionfollowsanexponentialdistribution.

http://jasss.soc.surrey.ac.uk/16/1/3.html 9 14/10/2015

Page 10: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

Figure11.Variancesofthemarketsharepathswithrespecttochangesintheshapeparameter

6.21 Figures10and11revealseveralmarketingimplications.Thebestandtheworstproductstakeadvantageofanexponential-likeindividualpurchasetimedistribution,butthesecond-bestproductdoesnotbenefitfromthisdistribution.Thus,whenafirmproducesaproductthatearnsthelargestmarketshareamongcompetingproducts,thefirmhasanadvantageousposition,butthefirmwouldstillpreferpeopletopurchaseitsproductearly.Forafirmthatproducesthesecond-bestproductsuchasProduct1(i.e.,afirmproducesahigh-qualityproductbutfailstobecomethefirstinthemarket),thefirmshouldgivepeopleenoughtimetoconsideritsproductandletthenetworkeffecthelpthefirmdisseminategoodinformationonitsproducteventhoughthefirmmaylosecertaintyinachievingitsmeanmarketshare.Whentheindividualpurchasetimedistributionofconsumersresemblesanormaldistribution,thefirmsthatproducelow-qualityproducts,suchasProduct2,mayneedtosellouttheirproductsearly.

Conclusions

7.1 Inthisstudy,weproposedanagent-basedsimulationmodeltopredictthebrand-leveldiffusionofnewproductsinamarket.Totesttheperformanceofthemodel,weappliedthemodeltothediffusionofnetbookproductscompetingintheonlinemarketinKorea.Wefocusedontheindividualpurchasetimedistributionandsocialnetworkstructurethatinfluenceconsumers'productchoices.Socialinfluenceistransferredvialocalandglobalnetworkeffectsoneachproductattribute,bothfromexpertsandpreviousadopters.Thelocalnetworkeffectrepresentsthenetworkeffectcausedbythedegreeofconnectivity(i.e.,thenumberofneighbours),whereastheglobalnetworkeffectisthenetworkeffectattributedtotherewiringprobability(i.e.,thedeterminantofthenumberofshortcuts).Consumerscollectinformationonproductattributesthroughthesenetworkeffects.Eachconsumerthenapplieshis/herownweightsforproductattributestochoosetheproductwithmaximumutility.Wemodelthisproductchoiceprocessusingafuzzymulti-attributeutilitymodel.Finally,weaddindividualproductpurchasetimedistributions(i.e.,thetimewhenaconsumerconsidersbuyingaproduct)tothemodel.Withthiscompletemodel,wethensimulatetheproductdiffusiondynamics.

7.2 WeconductedanempiricalstudytoestimatetheindividualpurchasetimedistributionandthesocialnetworkstructureofKoreannetbookconsumersbyestimatingtheshapeparameterofthedistributionandthedegreeofconnectivityandtherewiringprobabilityofthesocialnetwork.Weuseddynamictimewarpingtocalculatetheaggregateddistancebetweentheactualmarketsharepathsandthemarketsharepathsgeneratedbythesimulation.Weobservedthatthereal-worldindividualpurchasetimedistributionissimilartoanexponentialdistribution(i.e.,theshapeparameteris0.01),andthesocialnetworkhasasmallnumberofneighboursbutalargernumberofshortcuts(i.e.,therewiringprobabilityis0.05,andthedegreeofconnectivityis5).ThisobservationmeansthattheKoreannetbookconsumerislikelytobuyaproductearly;italsomeansthattheKoreannetbookconsumerhasasmallnumberofcommunicationchannelsthroughwhichtoshareinformationonproductsbuteasytoaccessother,distantconsumers.

7.3 Wesuspectthatconstantexternalshocksandthelackofacoercivesynchronisationofproductreleaseswillnecessitateupgradingourmodel.First,weassumedthateveryconsumer-agentreferstotheexperts'opinionsatthebeginningofproductdiffusion.Wemayhaveneglectedseveralexternalshocks(e.g.,marketingstrategiessuchaspricediscountsandpromotions,changesintheexperts'opinions,andoperationalproblems)thatoccurunevenlyinreallife.Second,wealignedproducts'releasetimesinthesimulationsothatthediffusionoftheproductsbegansimultaneously.Inparticular,wetruncatedthetwoweeksofexistingmarketsharesforProducts1and2,whichwerereleasedtwoweeksbeforeProduct3.Asaresult,wemayhavelostthenetworkeffectonProduct1and2accumulatedduringthesetwoweeks.

7.4 Wevariedthedegreeofconnectivity,therewiringprobability,andtheshapeparametertoperformasensitivityanalysis.Asthedegreeofconnectivitywasincreased,thelocalnetworkeffectincreased.However,themarginaleffectwasthegreatestwhenthelocalnetworkeffectfirstarose(i.e.,whenthedegreeofconnectivitywasincreasedfrom0to4).Ourresultshowsthatthelocalnetworkeffectincreasesthemarketshareofthemajorproduct(Product1)butreducesthemarketshareofminorproducts(Products1and2).Thisresultinformsusthatconsumerstendtofollowthemajority,buttherearesomeconsumerswhoarelockedintominorproducts.Thevariancesofthemarketsharepathstellusthattheuncertaintyinachievingthemeanmarketsharepathsisconcavewithrespecttothedegreeofconnectivity.Theglobalnetworkeffectissimilarregardlessofthevalueoftherewiringprobability.Theinitialevaluationofproductsisbiasedtowardstheexperts'opinions,andthepurchasetimesofKoreannetbookconsumersareearly;thus,theglobalnetworkeffecthaslittletimetoinfluencetheseconsumers.Finally,astheshapeparameteroftheindividualpurchasetimedistributionwasincreaseduptoavalueof1,themarketshareofthemajorproduct(Product3)rose,butthatoftheminorproductsfell.However,astheshapeofthedistributionchangedintoanormal-likedistribution,thepurchasetimeeffectwasabletoshednewlightonProduct1(i.e.,thesecond-bestproduct),andthemarketshareofthisproductroseagainafterthefall.Aminorproduct(inparticular,theworst-evaluatedproduct,Product2)isbenefittedastheindividualpurchasetimedistributionchangesfromanormaldistributionshapetoanexponentialdistributionshape,whenamajorproductisnegativelyaffected.

7.5 Infuturework,weplantoincludethefollowingissues:

1. Itisnecessarytoconductananalysisofvarianceonthedegreeofconnectivity,therewiringprobability,andtheshapeparameteroftheindividualpurchasetimedistributiontodeterminetheinteractioneffectsonthemarketsharepath.

2. WemayoptimiseoursimulationmodeltobetterreflecttheactualKoreannetbookmarketsharesbyobservingappropriateexternalshockeventsoccurringinreallife.ThisconsiderationwillleadustoupgradeourmodeltopredicttheKoreannetbookmarketsharemoreprecisely.

3. Oursimulationmodelassumesthatallconsumer-agentshavewillingnesstobuyproductsfromthebeginningofsimulation.However,itmaybenecessaryforourmodeltoreflectasituationthatsomeconsumer-agentsstarttohavewillingnesstobuyproductsandacceptproductevaluationinformationfromneighboursinthemiddleofsimulation.

4. Inthisstudy,welistedseveralthresholdmodelsandtheirshortcomings.However,acomparativestudyisrequiredtodeterminetheconditionsunderwhicheachmodelisapplicable.5. Producersmaydesiretoknowtheconditionsunderwhichtheirproductscanclaimadditionalmarketshare.Weaimtodevelopanoptimisedstrategythatgeneratesthebestdesignforproductattributesto

maximisethemarketshareoftheproducer.

Pseudocode

Function main Foreach rewiring probability Foreach degree of connectivity Foreach replication setup simulateEnd

Function setup setup-individual-product-purchase-distribution make-consumers setup-globals assign-agent-attribute make-init-neighbors

http://jasss.soc.surrey.ac.uk/16/1/3.html 10 14/10/2015

Page 11: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

rewire-neighbors renew-linksEnd

Function setup-individual-product-purchase-distribution Foreach consumer agent Assign values to parameters (i.e., η=0.01, 0.1, 1, 10 and b=0.4) to initialise individual product purchase distribution Assign product purchase time from individual product purchase distributionEnd

Function make-consumers Create some given number of consumersEnd

Function setup-globals Initialise decision matrix of every consumer agent Assign 0 to time step Assign 0 to adopter number for each product Assign expert's opinion on products' attributes in linguistic form Assign crisp numbers to expert's linguistic opinion Assign crisp numbers to consumer's linguistic weights on product attributes Assign the probability of consumer's sensitivity to social influence in linguistic formEnd

Function assign-agent-attribute Foreach consumer agent Initialise and assign consumer weights on product attributes, purchase time, sensitivity to social influenceEnd

Function make-init-neighbors Foreach consumer agent Assign neighbors as many as the degree of connectivityEnd

Function rewire-neighbors Foreach consumer agent Connect to its own neighbors Rewire the connections in probability of rewiring probabilityEnd

Function renew-links Foreach consumer agent if the number of connections is NOT equal to the degree of connectivity Add/Delete connections until the number of connections is equal to the degree of connectivityEnd

Function simulate init-product-adopt-count make-consumer-weighted-decision-matrix init-early-adopter get-socio-decision-matrix get-alternatives-mnlEnd

Function init-product-adopt-count Initialise adoption count for each productEnd

Function make-consumer-weighted-decision-matrix Foreach consumer agent Retrieve expert's opinion Convert expert's opinion on product attributes into crisp numbers using triangular fuzzy number Retrieve consumer's weights on product attributes Convert consumer's weight on product attributes into crisp numbers using triangular fuzzy number Foreach product attribute Induce consumer's value on a product attribute by multiplying expert's opinion by consumer's weight on the product attribute Update the ideal product attributes in best case and the ideal product attributes in the worst caseEnd

Function init-early-adopter Assign early adopters among consumer agents Foreach early adopter Buy a product according to multi-nomial logit modelEnd

Function get-socio-decision-matrix Foreach consumer agent with no product purchase Retrieve all the neighbors' decision matrix and average them Reassign decision matrix by (1 - sensitivity to social influence) * my decision matrix + (sensitivity to social influence * the averaged decision matrix of all the neighborsEnd

Function get-alternatives-mnl Foreach consumer agent with no product purchase, whose purchase time is equal to or more than the current time step Buy a product according to multi-nomial logit modelEnd

Acknowledgements

ThisresearchwassupportedbytheBasicScienceResearchProgramthroughtheNationalResearchFoundationofKorea(NRF)fundedbytheMinistryofEducation,ScienceandTechnology(2010-0009267).

References

ALKEMADE,F.,&Castaldi,C.(2005).StrategiesfortheDiffusionofInnovationsonSocialNetworks.ComputationalEconomics,25(1),3-23.[doi:10.1007/s10614-005-6245-1]

BEMMAOR,A.C.(1994).Modelingthediffusionofnewdurablegoods:word-of-moutheffectversusconsumerheterogeneity(withcommentsbyF.M.BassandV.Mahajan).In:Laurent,G.,Lilien,G.L.,Pras,B.,&Management,E.I.f.A.S.i.,ResearchTraditionsinMarketing(Eds.)(pp.201-229).KluwerAcademic.

BEMMAOR,A.C.,&Lee,J.(2002).TheImpactofHeterogeneityandIll-ConditioningonDiffusionModelParameterEstimates.MarketingScience,21(2),209-220.[doi:10.1287/mksc.21.2.209.151]

http://jasss.soc.surrey.ac.uk/16/1/3.html 11 14/10/2015

Page 12: An Agent-Based Competitive Product Diffusion Model for the ...jasss.soc.surrey.ac.uk/16/1/3/3.pdf · Agent-Based Product Diffusion Model, Individual Purchase Time, Social Network

CENTOLA,D.,&Macy,M.(2007).ComplexContagionsandtheWeaknessofLongTies.AmericanJournalofSociology,113(3),702-734.[doi:10.1086/521848]

CENTOLA,D.(2010).Thespreadofbehaviorinanonlinesocialnetworkexperiment.Science,329,1194-1197.[doi:10.1126/science.1185231]

DELRE,S.,Jager,W.,&Janssen,M.(2007a).Diffusiondynamicsinsmall-worldnetworkswithheterogeneousconsumers.Computational&MathematicalOrganizationTheory,13(2),185-202.[doi:10.1007/s10588-006-9007-2]

DELRE,S.A.,Jager,W.,Bijmolt,T.H.A.,&Janssen,M.A.(2007b).Targetingandtimingpromotionalactivities:Anagent-basedmodelforthetakeoffofnewproducts.JournalofBusinessResearch,60(8),826-835.[doi:10.1016/j.jbusres.2007.02.002]

DENG,H.,&Yeh,C.-H.(2006).Simulation-basedevaluationofdefuzzification-basedapproachestofuzzymultiattributedecisionmaking,IEEETransactionsonSystems,ManandCybernetics,PartA:SystemsandHumans,36(5),968-977.[doi:10.1109/TSMCA.2006.878988]

GOLDENBERG,J.,&Efroni,S.(2001).Usingcellularautomatamodelingoftheemergenceofinnovations.TechnologicalForecastingandSocialChange,68(3),293-308.[doi:10.1016/S0040-1625(00)00095-0]

GOLDENBERG,J.,Libai,B.,&Muller,E.(2001).TalkoftheNetwork:AComplexSystemsLookattheUnderlyingProcessofWord-of-Mouth.MarketingLetters,12(3),211-223.[doi:10.1023/A:1011122126881]

GRANOVETTER,M.(1973).Thestrengthofweakties.AmericanJournalofSociology,78(6),1360-1380.[doi:10.1086/225469]

GRANOVETTER,M.(1978).Thresholdmodelsofcollectivebehavior.AmericanJournalofSociology,83(6),1420-1443.[doi:10.1086/226707]

GUNTHER,M.,Stummer,C.,Wakolbinger,LM.,&Wildpaner,M.(2011).Anagent-basedsimulationapproachforthenewproductdiffusionofanovelbiomassfuel.JournaloftheOperationalResearchSociety,62,12-20.[doi:10.1057/jors.2009.170]

GUSEO,R.,&Guidolin,M.(2009).Modellingadynamicmarketpotential:Aclassofautomatanetworksfordiffusionofinnovations.TechnologicalForecastingandSocialChange,76(6),806-820.[doi:10.1016/j.techfore.2008.10.005]

HONG,T-P.,&Lee,C-Y.(1996).Inductionoffuzzyrulesandmembershipfunctionsfromtrainingexamples.FuzzySetsandSystems,84,33-47.[doi:10.1016/0165-0114(95)00305-3]

JANSSEN,M.A.,&Jager,W.(2001).Fashions,habitsandchangingpreferences:Simulationofpsychologicalfactorsaffectingmarketdynamics.JournalofEconomicPsychology,22(6),745-772.[doi:10.1016/S0167-4870(01)00063-0]

JANSSEN,M.A.,&Jager,W.(2003).SimulatingMarketDynamics:InteractionsbetweenConsumerPsychologyandSocialNetworks.ArtificialLife,9(4),343-356.[doi:10.1162/106454603322694807]

KIM,S.,Lee,K.,Cho,J.K.,&Kim,C.O.(2011).Agent-baseddiffusionmodelforanautomobilemarketwithfuzzyTOPSIS-basedproductadoptionprocess.ExpertSystemswithApplications,38(6),7270-7276.[doi:10.1016/j.eswa.2010.12.024]

MOLDOVAN,S.,&Goldenberg,J.(2004).Cellularautomatamodelingofresistancetoinnovations:Effectsandsolutions.TechnologicalForecastingandSocialChange,71(5),425-442.[doi:10.1016/S0040-1625(03)00026-X]

PANGBURN,M.S.,&Sundaresan,S.(2009).Capacitydecisionsforhigh-techproductswithobsolescence.EuropeanJournalofOperationalResearch,197,102-111.[doi:10.1016/j.ejor.2008.05.026]

ROGERS,E.M.(2003).TheDiffusionofinnovations,(FifthEds.)(FirstEd.,1962),NewYork:FreePress.

SAKOE,H.,&Chiba,S.(1978).Dynamicprogrammingalgorithmoptimizationforspokenwordrecognition.Acoustics,SpeechandSignalProcessing,IEEETransactionson,26(1),43-49.[doi:10.1109/TASSP.1978.1163055]

SCHWARZ,N.,&Ernst,A.(2009).Agent-basedmodelingofthediffusionofenvironmentalinnovations-Anempiricalapproach.TechnologicalForecastingandSocialChange,76(4),497-511.[doi:10.1016/j.techfore.2008.03.024]

SHANNON,R.E.(1975).Systemssimulation:theartandscience:Prentice-Hall.

TELLIS,G.J.,Yin,E.,&Niraj,R.(2009).Doesqualitywin?Networkeffectsversusqualityinhigh-techmarkets.JournalofMarketingResearch,46(2),135-149.[doi:10.1509/jmkr.46.2.135]

TRAIN,K.(2009).Discretechoicemethodswithsimulation(2nded.).Cambridge;NewYork:CambridgeUniversityPress.[doi:10.1017/CBO9780511805271]

WANG,W.-J.,&Luoh,L.(2000).Simplecomputationforthedefuzzificationsofcenterofsumandcenterofgravity.JournalofIntelligentFuzzySystems,9(1-2),53-59.

WATTS,D.J.,&Strogatz,S.H.(1998).Collectivedynamicsof`small-world'networks.Nature,393(6684),440-442.[doi:10.1038/30918]

WU,S.D.,Erkoc,M.,&Karabuk,S.(2005).Managingcapacityinthehigh-techindustry:areviewofliterature.TheEngineeringEconomist,50,125-158.[doi:10.1080/00137910590949887]

YEH,C.-H.,&Kuo,Y.-L.(2003).EvaluatingpassengerservicesofAsia-Pacificinternationalairports.TransportationResearchPartE,39,35-48.[doi:10.1016/S1366-5545(02)00017-0]

ZIMMERMANN,H.J.(2001).Fuzzysettheory--anditsapplications(4theds.).Dordrecht;Boston:KluwerAcademicPublishers.[doi:10.1007/978-94-010-0646-0]

http://jasss.soc.surrey.ac.uk/16/1/3.html 12 14/10/2015


Recommended