+ All Categories
Home > Documents > An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

Date post: 07-Jan-2016
Category:
Upload: randy
View: 36 times
Download: 0 times
Share this document with a friend
Description:
An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process. Arunesh Mishra Minho Shin William Arbaugh University of Maryland College Park,MD,USA ACM SIGCOMM Computer Communications Review Volume 33 , Issue 2 (April 2003) Speaker: Yu Yung-Lin. Outline. Introduction - PowerPoint PPT Presentation
Popular Tags:
20
1 An Empirical Analysis of An Empirical Analysis of the IEEE 802.11 MAC Layer the IEEE 802.11 MAC Layer Handoff Process Handoff Process Arunesh Mishra Minho Shin William Arbaugh University of Maryland College Park,MD,U SA ACM SIGCOMM Computer Communications Revi ew Volume 33 , Issue 2 (April 2003) Speaker: Yu Yung-Lin
Transcript
Page 1: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

1

An Empirical Analysis of the IEEE An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process802.11 MAC Layer Handoff Process

Arunesh MishraMinho ShinWilliam ArbaughUniversity of Maryland College Park,MD,USA

ACM SIGCOMM Computer Communications Review Volume 33 ,  Issue 2  (April 2003)

Speaker: Yu Yung-Lin

Page 2: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

2

Outline

• Introduction

• Handoff process

• Design of the experiments

• Experiment Result

• Analysis of the probe phase

• Conclusion

Page 3: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

3

Introduction

• Present an empirical study of this handoff process

• The primary contributor to the overall handoff process is probe

• Discuss optimizations on the probe phase

Page 4: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

4

Introduction

• 802.11 Wireless LAN architecture

•Wireless LAN Station (STA)•Access Points (AP)•Basic Service Set (BSS)•Distribution System (DS)•Extended Service Set (ESS).

Page 5: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

5

Introduction

• Two different ways to configure a network

Ad-hocAd-hoc•No structure•Every node can talk to each other

InfrastructureInfrastructure•Fixed APs with which mobile nodes can communicate•APs are connected to DS

Page 6: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

6

Handoff process

• Definition– Mobile node moves from coverage area of one

AP to that of another AP

• Handoff process can be divided into two distinct logical steps– Discovery– Reauthentication

Page 7: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

7

Handoff process

• Discovery– The client needs to find the potential APs– Accomplished by a MAC layer function: scan

• The card listens for beacon message on assigned channels.

• Created a candidate set of APs prioritized

– Two scanning mode• Passive

• Active

William
藉由接收到的訊號強度可以建立起一個專用的AP優先權集合
William
剛剛所講的handoff定義是,我們的mobile node從一個AP覆蓋的範圍移動到另外一個AP。從另外一個角度來解釋可以是說由於訊號下降到一定的比例,導致原AP無法去提供STA服務,因此就需要開始做handoff。在這樣的情況下STA可能無法去跟任何AP做溝通,因此需要有辦法去find一個AP,這找AP的工作就是MAC layer的function:scan要去做的
William
IAPP中定義,當一個Client在兩個AP之間漫遊時,Client會將舊AP的位址傳給新AP,由新AP來通知舊AP此Client已經漫遊走了若AP有支援IAPP則Client並不需要重新做802.1x的認證,而是新AP除了要通知舊AP此Client已經離開它的基本服務區外,還要由舊AP傳遞過來屬於此Client的認證資訊以及計價資訊繼續服務此Client,新AP還可以傳遞一新的WEP key給Client來使用。若AP與Client都具備802.11e QoS的功能,則屬於此Client的QoS資訊也可由舊AP漫遊到新AP。
Page 8: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

8

Handoff process

• Reauthentication– The STA attempts to reauthenticate to an AP ac

cording to the priority list– Authentication and a reassociation to the poster

ior AP (new-AP)– Transfer of credentials and other state informati

on from the old-AP to new-AP• This can be achieved through IAPP

Page 9: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

9

Handoff process

Page 10: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

10

Design of the experiments

• The wireless network environment– The umd network

• 35 Cisco350 APs distributed on channel 1,6,11

• Open authentication

– The nist network• 17 Soekris APs distributed on channel 1,6,11

• Open authentication

– The cswireless network• 8 Lucent APs on other 8 different channels

• Use WEP

Page 11: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

11

Design of the experiments

• The sniffer system– For umd and nist network(APs are on 1,6,11)

• Two linux machines– One with one wireless NIC

– One with two wireless NICs

• Sniffing the 3 channels

– For cswireless network• Six linux machines

– One with one wireless NIC

– Five with two wireless NIC

• Sniffing all 11 channels

Page 12: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

12

Design of the experiments

• The clients– IBM Thinkpad T30 with P-IV and 512MB RA

M with three different NICs• Lucent Orinoco

• Cisco 340

• ZoomAir prism 2.5

Page 13: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

13

Experiments Result

• Probe delay accounts for more than 90% of the overall handoff delay

Page 14: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

14

Experiments Result

• The wireless hardware used affects the handoff latency

Page 15: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

15

Experiments Result

• Different wireless

cards follow different

sequence– ZoomAir and Lucent

Different procedure

From the Cisco NIC

Page 16: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

16

Analysis of the probe phase

• Probe-wait latency– STA waits on one

channel after sending

the probe request

• Total probe delay : t• N*MinChannelTime≤ t ≤ N*MaxChannelTime

Page 17: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

17

Analysis of the probe phase

• Probe-wait Optimizations

Page 18: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

18

Analysis of the probe phase

• Improvement– Set MinChannelTime = 6.5ms

– Set MaxChannelTime = 11ms

– We can get the probe delay on 11 channel• 11ms * 11 channels = 121 ms

Page 19: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

19

Analysis of the probe phase

399.8

121

Page 20: An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process

20

Conclusion

• Contribution– Detailed analysis of the handoff process

• Optimizing two parameters to improve the handoff latency

• Future work– Reduce the latency of the handoff within accept

able bounds for VoIP on WLAN


Recommended