+ All Categories
Home > Documents > Analysis of EC Wave Propagation by Beam Tracing Methodfukuyama/pr/2002/Fukuyama-ws… · Analysis...

Analysis of EC Wave Propagation by Beam Tracing Methodfukuyama/pr/2002/Fukuyama-ws… · Analysis...

Date post: 21-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
14
2002/02/04 US-Japan Workshop on RF Physics and Profile Control and Steady State Operation using RF Kyushu Univ, Chikushi Campus Analysis of EC Wave Propagation by Beam Tracing Method A. Fukuyama, S. Nishina Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan Contents Estimation of Driven Current Width Beam Tracing Method Numerical Results Summary
Transcript
  • 2002/02/04US-Japan Workshop on RF Physics and

    Profile Control and Steady State Operation using RFKyushu Univ, Chikushi Campus

    Analysis of EC Wave Propagationby Beam Tracing Method

    A. Fukuyama, S. NishinaDepartment of Nuclear Engineering,

    Kyoto University, Kyoto 606-8501, Japan

    Contents

    • Estimation of Driven Current Width• Beam Tracing Method• Numerical Results• Summary

  • Motivation

    • Current profile control by EC waves◦ Localized profile of driven current◦ Position control by injection angle

    • Control of MHD instability◦ Suppression of island growth due to tearing instability◦ Localized current profile is required

    • Evaluation of the current profile width◦ Doppler broadening, decay length◦ Finite beam size, focusing◦ Defraction

    • Limitation of ray tracing◦ Defraction effect cannot be included

    Beam

    Magnetic Surface

    Beam

    Magnetic Surface

  • Analysis by Ray Tracing for ITER-FEAT• Injection angle dependence

    R [m]

    Z[m]

    0°10°20°

    30°

    40°

    50°

    p abs

    [arb

    .]

    ψ1/2

    0°10° 20° 30°

    0°10°20°

    30°

    40° 50°

    R [m]

    Z[m]

    10°

    20°

    30°

    ψ1/2

    p abs

    [arb

    .]

    40°

    R [m]

    Z[m]

    0°10°20°30°

    40°

    50°

    p abs

    [arb

    .]

    ψ1/2

    0°30°

    40°

    • Current drive efficiency

    0.00

    0.10

    0.20

    0.30

    0 10 20 30 40 50 60

    0510152025303540

    γ

    IAM (R=6.20, B=5.51, T=20)

    θT

    θP

    • Absorption width (single ray)

    0.00

    0.10

    0.20

    0.30

    0.40

    0 10 20 30 40 50 60

    0510152025303540

    ∆r / a

    IAM (R=6.20, B=5.51, T=20)

    θT

    θP

  • Propagation of Short-Wavelength Waves

    • Ray Tracing (Geometrical Optics)◦Wave length λ � Characteristic scale length L of the medium◦ Plane wave: Beam size d is sufficiently large

    — Fresnel condition: L � d2/λ◦ Beam : Diffraction effect determines the beam size d

    • Beam Tracing◦ Propagation of beam with finite size

    — Spatial evolution of beam size

    ◦ References— G. V. Pereverzev, in Reviews of Plasma Physics, Vol. 19, p. 1.— A. G. Peeters, Phys. Plasmas 3 (1996) 4386.— G. V. Pereverzev, Phys. Plasmas 4 (1998) 3529.

  • Ray Tracing Method

    • Maxwell equation for wave electric field E e − iωt

    ∇ × ∇ × E − ω2

    c2↔� · E = 0

    (Dielectric tensor↔� : Hermite part

    ↔� H� Anti-Hermite part ↔� A)

    • Dispersion relation in a homogeneous plasma:Plane wave : constant wave vector k

    K = det[

    c2

    ω2

    (−k2↔I + kk

    )+↔� H

    ]= 0

    • Expansion parameterδ =

    √cωL� 1

    • Eikonal expression of wave electric fieldE(r) = Re

    [va(δ2r) e i s(r)

    ]

    • Solvable condition of Maxwell’s equation with eikonal expressiondrdτ

    =∂K∂k,

    dkdτ

    = −∂K∂r

  • Beam Tracing Method

    • Beam size perpendicular to the beam direction: first order in δ• Beam shape : Weber function Hermite polynomial: Hn)

    E(r) = Re∑

    mn

    Cmn(δ2r)ve(δ2r)Hm(δξ1)Hn(δξ2) e i s(r)−φ(r)

    ◦ Amplitude : Cmn, Polarization : ve, Phase : s(r) + i φ(r)

    s(r) = s0(τ) + k0α(τ)[rα − rα0 (τ)] +

    12

    sαβ[rα − rα0 (τ)][rβ − rβ0(τ)]

    φ(τ) =12φαβ[rα − rα0 (τ)][rβ − rβ0(τ)]

    ◦ Position of beam axis : r0, Wave number on beam axis: k0

    ◦ Curvature radius of equi-phase surface: Rα = 1λsαα

    ◦ Beam radius dα =√

    2φαα

    • Gaussian beam : case with m = 0, n = 0

    R1

    R2

    d1

    d2

  • Beam Propagation Equation

    • Solvable condition for Maxwell’s equation with beam fielddrα0dτ

    =∂K∂kα

    dk0αdτ

    = − ∂K∂rα

    dsαβdτ

    = − ∂2K

    ∂rα∂rβ− ∂

    2K∂rβ∂kγ

    sαγ − ∂2K

    ∂rα∂kγsβγ − ∂

    2K∂kγ∂kδ

    sαγsβδ +∂2K∂kγ∂kδ

    φαγφβδ

    dφαβdτ

    = −(∂2K∂rα∂kγ

    +∂2K∂kγ∂kδ

    sαδ

    )φβγ −

    (∂2K∂rβ∂kγ

    +∂2K∂kγ∂kδ

    sβδ

    )φαγ

    • By integrating this set of 18 ordinary differential equations, we obtain trace of thebeam axis, wave number on the beam axis, curvature of equi-phase surface, andbeam size.

    • Equation for the wave amplitude Cmn∇ ·

    (vg0|Cmn|2

    )= −2

    (γ|Cmn|2

    )

    Group velocity: vg0, Damping rate: γ ≡ (v∗e ·↔� A · ve)/(∂K/∂ω)

  • Beam Tracing in a Uniform Plasma

    • 170 GHz, Ordinary Mode, Perpendicular InjectionRc dini = 0.01 m dini = 0.03 m dini = 0.05 m dini = 0.08 m

    0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]

    2 m0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.000.00 1.0 2.0 3.0 4.0

    d [m

    ]

    s [m]

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.000.00 1.0 2.0 3.0 4.0

    d [m

    ]

    s [m]0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]

    1 m d [m]

    s [m]0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.000.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]0.00 1.0 2.0 3.0 4.0

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.00

    d [m

    ]

    s [m]

  • Dependence of Initial Beam Radius, dini

    Beam length where d = dmin

    necessary condition:

    dini >√

    Rcλ

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    0 0.02 0.04 0.06 0.08 0.1 0.12

    rc0

    = 0.5 m

    rc0

    = 0.5 m

    rc0

    = 1 m

    rc0

    = 1 m

    rc0

    = 2 m

    rc0

    = 2 m

    rc0

    = 3 m

    rc0

    = 3 m

    L d,m

    in

    rd0

    Minimum beam radius dmin

    dmin ∼ λπdini

    Rc

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0 0.02 0.04 0.06 0.08 0.1 0.12

    rc0

    = 0.5 m

    rc0

    = 0.5 m

    rc0

    = 1 m

    rc0

    = 1 m

    rc0

    = 2 m

    rc0

    = 2 m

    rc0

    = 3 m

    rc0

    = 3 m

    r d,m

    in

    rd0

  • Beam Tracing in ITER-FEAT Plasma: Rc = 2 m, dini = 0.05 m

    θp = 40◦ θp = 50◦ θp = 60◦ θp = 70◦4

    2

    0

    -2

    -44 5 6 7 8

    4

    2

    0

    -2

    -44 5 6 7 8 4 5 6 7 8

    4

    2

    0

    -2

    -4

    4

    2

    0

    -2

    -44 5 6 7 8

    d [m

    ]

    ψ1/20.0 0.2 0.4 0.6 0.8 1.0 1.2

    0.00

    0.02

    0.04

    0.06

    d [m

    ]

    0.00

    0.02

    0.04

    0.06

    ψ1/20.0 0.2 0.4 0.6 0.8 1.0 1.2

    d [m

    ]

    0.00

    0.02

    0.04

    0.06

    ψ1/20.0 0.2 0.4 0.6 0.8 1.0 1.2

    d [m

    ]

    0.00

    0.02

    0.04

    0.06

    ψ1/20.0 0.2 0.4 0.6 0.8 1.0 1.2

    0.90 0.92 0.94 0.96 0.98 1.0

    ψ1/2

    Pab

    s [ar

    b]

    20

    40

    60

    80

    00.82 0.84 0.86 0.88 0.90 0.92

    20

    40

    60

    80

    0

    Pab

    s [ar

    b]

    ψ1/20.70 0.72 0.74 0.76 0.78 0.80

    60

    40

    20

    0

    ψ1/2

    Pab

    s [ar

    b]100

    80

    60

    40

    20

    00.37 0.39 0.41 0.43 0.45 0.47

    ψ1/2

    Pab

    s [ar

    b]

  • Beam Tracing in ITER-FEAT Plasma

    θp = 60◦ θp = 70◦

    Rc = 3 m dini [m] Rc = 4 m

    0.02

    0.04

    0.06

    0.08

    0.10

    0.000.0 0.2 0.4 0.6 0.8 1.0 1.2

    d [m

    ]

    ψ1/20.70 0.72 0.74 0.76 0.78 0.80

    Pab

    s [ar

    b]

    60

    40

    20

    0

    ψ1/2

    0.050.02

    0.04

    0.06

    0.08

    0.10

    0.00

    d [m

    ]

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    100

    80

    60

    40

    20

    0

    ψ1/2

    Pab

    s [ar

    b]

    d [m

    ]

    0.02

    0.04

    0.06

    0.08

    0.10

    0.000.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    Pab

    s [ar

    b]

    60

    40

    20

    00.70 0.72 0.74 0.76 0.78 0.80

    ψ1/2

    0.060.02

    0.04

    0.06

    0.08

    0.10

    0.00

    d [m

    ]

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    d [m

    ]

    100

    80

    60

    40

    20

    0

    Pab

    s [ar

    b]

    0.37 0.39 0.41 0.43 0.45 0.47ψ1/2

    d [m

    ]

    0.02

    0.04

    0.06

    0.08

    0.10

    0.000.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    Pab

    s [ar

    b]

    60

    40

    20

    00.70 0.72 0.74 0.76 0.78 0.80

    ψ1/2

    0.080.02

    0.04

    0.06

    0.08

    0.10

    0.00

    d [m

    ]

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    100

    80

    60

    40

    20

    0

    Pab

    s [ar

    b]

    0.37 0.39 0.41 0.43 0.45 0.47ψ1/2

  • Beam Tracing in ITER-FEAT Plasma: Rc = 2 m, dini = 0.05 m

    θt = 0◦ θt = 10◦ θt = 20◦4

    2

    0

    -2

    -44 5 6 7 8

    -2.0

    -1.0

    0.0

    1.0

    2.0

    4.0 5.0 6.0 7.0 8.0-2.0

    -1.0

    0.0

    1.0

    2.0

    4.0 5.0 6.0 7.0 8.0 4.0 5.0 6.0 7.0 8.0-2.0

    -1.0

    0.0

    1.0

    2.0

    d [m

    ]

    ψ1/2

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.0 0.2 0.4 0.6 0.8 1.0 1.2d

    [m]

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    d [m

    ]

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    0

    20

    40

    60

    0.82 0.86 0.90 0.94

    Pab

    s [ar

    b]

    ψ1/20

    10

    20

    30

    Pab

    s [ar

    b]

    0.82 0.86 0.90 0.94

    ψ1/20

    4

    8

    12

    Pab

    s [ar

    b]

    0.82 0.86 0.90 0.94

    ψ1/2

  • Beam Tracing in ITER-FEAT Plasma: Rc = 2 m, dini = 0.05 m

    θt = 0◦ θt = 10◦ θt = 20◦4

    2

    0

    -2

    -44 5 6 7 8

    -2.0

    -1.0

    0.0

    1.0

    2.0

    4.0 5.0 6.0 7.0 8.0-2.0

    -1.0

    0.0

    1.0

    2.0

    4.0 5.0 6.0 7.0 8.0-2.0

    -1.0

    0.0

    1.0

    2.0

    4.0 5.0 6.0 7.0 8.0

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    d [m

    ]

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    d [m

    ]0.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    d [m

    ]

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    ψ1/2

    0

    20

    40

    60

    80

    0.38 0.42 0.46 0.50

    Pab

    s [ar

    b]

    ψ1/20

    10

    20

    30

    40

    50

    Pab

    s [ar

    b]

    0.38 0.42 0.46 0.50

    ψ1/20

    10

    20

    30

    40

    Pab

    s [ar

    b]

    0.38 0.42 0.46 0.50

    ψ1/2]

  • Summary

    • Based on the formulation of beam tracing, the wave propagation codeTASK/WR was extended to calculate the spatial evolution of the EC beamsize.

    •We have confirmed the diffraction effect and the initial wave front curva-ture dependence of the beam size.

    dmin ∼ λπdini

    Rc

    • In the case of ITER-FEAT (170GHz), initial beam radius of 5cm is re-quired to focus with beam length 3m.

    • For toroidally oblique injection, Doppler broadening may mask the effectof diffraction.

    • To dos:◦ Coupling with Fokker-Planck Analysis◦ NTM stabilization


Recommended