+ All Categories
Home > Documents > Andrew Simon USDA-ARS National Sedimentation Laboratory, Oxford, MS [email protected]

Andrew Simon USDA-ARS National Sedimentation Laboratory, Oxford, MS [email protected]

Date post: 24-Feb-2016
Category:
Upload: yori
View: 108 times
Download: 0 times
Share this document with a friend
Description:
Equilibrium, Shear Stress, Stream Power and Trends of Vertical Adjustment. Andrew Simon USDA-ARS National Sedimentation Laboratory, Oxford, MS [email protected]. Non-Cohesive versus Cohesive Materials. Non-cohesive: sands and gravels etc. - PowerPoint PPT Presentation
51
Digging Deeper into the Common Core Meeting the Needs of All Students
Transcript
Page 1: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Andrew Simon USDA-ARS National Sedimentation Laboratory, Oxford, MS

[email protected]

Equilibrium, Shear Stress, Stream Power and Trends of Vertical

Adjustment

Page 2: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Non-Cohesive versus Cohesive Materials

• Non-cohesive: sands and gravels etc.Resistance is due solely to particle size, weight, shape and “hiding”.

• Cohesive: silts and clays

Resistance is derived from electro-chemical inter-particle forces under zero normal stress

Page 3: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Shields Diagram

Denotes uncertainty

CohesiveMaterials

Page 4: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Shields Diagram by Particle Diameter

Excludes cohesives

Page 5: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Heterogeneous Beds

ks = 3* D84

Page 6: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Need for a means to determine critical shear stress (c) and the erodibility coefficient (k) in-situ for soils and sediments.

National Sedimentation Laboratory

Erosion of Cohesives by Hydraulic Shear

Page 7: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Erosion Rate is a Function of Erodibility and Excess Shear Stress

= k (o- c) = erosion rate (m/s)

k = erodibility coefficient (m3/N-s)

o = boundary shear stress (Pa)

c = critical shear stress (Pa)

(o-c) = excess shear stress

Critical shear stress is the stress required to initiate erosion.

Obtained from jet-test device

Page 8: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Impinging Jet Applies Shear Stress to Bed

Jet Nozzle

National Sedimentation Laboratory

Page 9: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Impinging Jet Applies Shear Stress to Bed

As scour hole depth increases, shear stress decreases.

Jet Nozzle

National Sedimentation Laboratory

Page 10: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

From Relation between Shear Stress and Erosion We Calculate c and

Time

Eros

ion

Dep

th,

cm

c

National Sedimentation Laboratory

(cm3/Pa/sec)k

Page 11: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

General Relation for Erodibility and Critical Shear StressErodibility, m3/N-s

k = 0.1 c -0.5

Where; c = critical shear stress (Pa), x, y = empirical constants

CRITICAL SHEAR STRESS, IN Pa

0.01 0.1 1 10 100 1000

EROD

IBILIT

Y COE

FFICI

ENT (

k), IN

cm3 /N-

s

0.0001

0.001

0.01

0.1

1

10

k = 0.09 c -0.48

44

Page 12: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Revised Erodibility Relation

y = 1.3594x-0.8345

R2 = 0.5253

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03CRITICAL SHEAR STRESS (Pa)

ERO

DIB

ILIT

Y C

OEF

FIC

IEN

T (k

)

Page 13: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Distributions: Critical Shear Stress

0

10

20

30

40

50

60

70

80

90

100

0.1 1.0 10.0 100.0 1000.0CRITICAL SHEAR STRESS (Pa)

PER

CEN

TILE Yalobusha River System

Kalamazoo RiverJames CreekShades CreekMissouri RiverUpper Truckee RiverW. Iowa, E. NebraskaN Fork Broad RiverTualatin River SystemTombigbee RiverS Branch Buffalo RiverAll Data

Page 14: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Distributions: Erodibility Coefficient

0

10

20

30

40

50

60

70

80

90

100

0.001 0.010 0.100 1.000 10.000 100.000ERODIBILITY COEFFICIENT (k)

PER

CEN

TILE

Yalobusha River SystemKalamazoo RiverJames CreekShades CreekMissouri RiverUpper Truckee RiverW. Iowa, E. NebraskaN Fork Broad RiverTualatin River SystemTombigbee RiverS Branch Buffalo RiverAll Data

Page 15: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Mapping Critical Shear Stress: Yalobusha River Basin, Mississippi

National Sedimentation Laboratory

Page 16: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Idealized Adjustment TrendsIdealized Adjustment Trends

For a given discharge (Q)

VS

Se

n

c

d

National Sedimentation Laboratory

Page 17: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment: Boundary Shear Stress

Page 18: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment: Increasing Resistance

Page 19: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment: Increasing Resistance

Page 20: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment: (Excess Shear Stress)Degrading Reach

Page 21: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Boundary Shear Stress: Range of FlowsSh

ear s

tress

, in

N/m

2

Page 22: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment: Excess Shear Stress

Degrading ReachEx

cess

shea

r stre

ss

Page 23: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment: (Excess Shear Stress)Aggrading Reach

Page 24: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment of Force and Resistance

Page 25: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Results of Adjustment

Decreasing Sediment Loads with Time

Toutle River System

Page 26: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Experimental Results

Page 27: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Total and Unit Stream Power = w y V S = Q S = total stream power per unit length of channel = specific weight of water w = water-surface width y = hydraulic depth v = mean flow velocity Q = water discharge S = energy slope

w = / ( w y) = V S where w = stream power per unit weight of water

Page 28: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment: Unit Stream Power

Page 29: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Flow Energy• Total Mechanical EnergyTotal Mechanical Energy

H = z + y + (H = z + y + ( v v22 / 2 g)/ 2 g)where H = total mechanical energy (head)where H = total mechanical energy (head)

z = mean channel-bed elevation (datum head)z = mean channel-bed elevation (datum head) = coefficient for non-uniform distribution velocity= coefficient for non-uniform distribution velocityy = hydraulic depth (pressure head)y = hydraulic depth (pressure head)g = acceleration of gravityg = acceleration of gravity

• Head Loss over a reach due to FrictionHead Loss over a reach due to Friction hhff = [z = [z11 + y + y11 + ( + (11 v v1122 / 2g)]- [z/ 2g)]- [z22 + y + y22 + ( + (22 v v2222 / /

2g)]2g)]• Head, Relative to channel bedHead, Relative to channel bed EEss = y + ( = y + ( vv22 / 2g) =/ 2g) = y + [y + [ Q Q22 / (2 g w / (2 g w22 y y22)])]

Page 30: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

As a working hypothesis we assume that a fluvial system has been disturbed in a manner such that the energy available to the system (potential and kinetic) has been increased. We further assume that with time, the system will adjust such that the energy at a point (head) and the energy dissipated over a reach (head loss), is decreased.

Now, for a given discharge, consider how different fluvial processes will change (increase or decrease) the different variables in the energy equations.

Adjustment: Total Mechanical Energy

Page 31: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Adjustment: Energy Dissipation

Minimization of energy dissipation

Page 32: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Trends of Vertical Adjustment and Determining Equilibrium

Page 33: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Determining Equilibrium

Recall definitionA stream in equilibrium is one in which over a

period of years, slope is adjusted such that there is no net aggradation or degradation on the channel bed (or widening or narrowing)

ORThere is a balance between energy conditions at

the reach in question with energy and materials being delivered from upstream

Page 34: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Causes of Channel Incision

Page 35: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Trends of Incision: Channelization

Page 36: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Trends of Incision: Below Dams

Page 37: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Bed-level Trends Along a Reach

Page 38: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Bed-level Trends Along a Reach

Page 39: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Empirical Functions to Describe Incision E = a t b

E = elevation of the channel beda = coefficient; approximately, the pre-disturbance elevationt = time (years), since year before start of adjustmentb = dimensionless exponent indicating rate of change on the bed (+) for aggradation, (-) for degradation

E/ Eo = a + b e-kt

E = elevation of the channel bedEo = initial elevation of the channel bed

a = dimensionless coefficient, = the dimensionless elevation a > 1 = aggradation, a < 1 = degradationb = dimensionless coefficient, = total change of elevation b > 0 = degradation, b < 0 = aggradationk = coefficient indicating decreasing rate of change on the bed

Page 40: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Empirical Model of Bed-level Response

Page 41: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Comparison of the Two Bed-level Functions

Page 42: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

A Natural Disturbance (Toutle River System)

Page 43: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Bed-Level Response

Page 44: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Bed Response: Toutle River System

Upstream disturbance, addition of potential energy, sub-alpine environment

Page 45: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Comparison with Coastal Plain Adjustment

Downstream disturbance, increase in gradient, coastal plain environment

Page 46: Andrew Simon  USDA-ARS National Sedimentation Laboratory, Oxford, MS  andrew.simon@ars.usda.gov

Model of Long-Term Bed Adjustment


Recommended