+ All Categories
Home > Documents > Apm598 Cs Intro

Apm598 Cs Intro

Date post: 14-Apr-2018
Category:
Upload: jay-prakash
View: 236 times
Download: 0 times
Share this document with a friend
54
A N INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks
Transcript

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 1/54

AN INTRODUCTION TO COMPRESSIVE SENSING

Rodrigo B. Platte

School of Mathematical and Statistical Sciences

APM/EEE598 Reverse Engineering of Complex Dynamical Networks

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 2/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

OUTLINE

1 INTRODUCTION

2 INCOHERENCE

3 RIP

4 POLYNOMIAL MATRICES

5 DYNAMICAL SYSTEMS

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 2 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 3/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

THE RICE DSP WEBSITE

Resources for papers, codes, and more ....

http://www.dsp.ece.rice.edu/cs/ 

References:

Emmanuel Candes, Compressive sampling. (Proc. International

Congress of Mathematics, 3, pp. 1433-1452, Madrid, Spain, 2006)Richard Baraniuk, A Lecture on Compressive Sensing. (IEEE

Signal Processing Magazine, July 2007)

Emmanuel Candes and Michael Wakin, An introduction to

compressive sampling. (IEEE Signal Processing Magazine, 25(2),pp. 21 - 30, March 2008)

m-files and some links are available in the course page

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 3 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 4/54

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 5/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

UNDERDETERMINED SYSTEMS

cafeperss.com $20AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 5 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 6/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

UNDERDETERMINED SYSTEMS

 

=Solve

Ax = b ,

where A is m × N 

and m  < N .

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 6 / 37

I I RIP P D

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 7/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

UNDERDETERMINED SYSTEMS

 

=Solve

Ax = b ,

where A is m × N 

and m  < N .

In CS we want to obtain sparse solutions, i.e., x  j  ≈ 0, for several j s .

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 6 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 8/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

UNDERDETERMINED SYSTEMS

 

=Solve

Ax = b ,

where A is m × N 

and m  < N .

In CS we want to obtain sparse solutions, i.e., x  j  ≈ 0, for several j s .

One option: Minimize x 1subject to Ax = b .

x p  =|x 0|p + |x 2|p + · · ·+ |x N |p 

1/

Why p = 1?

Remark: the location of nonzero x  j ’s is not known in advance.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 6 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 9/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

WHY 1?Unit ball:

0, 1/2, 1, 2, 4, ∞

x p  =|x 0|p + · · ·+ |x N |p 

1/p 

or, for 0 ≤ p  < 1,

x p  =|x 0|

+ · · ·+ |x N |p 

x 0= # of nonzero entries in x 

ideal (?) but leads to a NP-complete problem

p , with p  < 1 is not a norm (triangular inequality). Also notpractical.

2 computationally easy but does not lead to sparse solutions.

The unique solution of minimum 2 norm is (pseudo-inverse)

x = A(AA)−1b 

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 7 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 10/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 11/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

SPARSITY AND THE 1-NORM (2D CASE)

EXAMPLE – 2

minx 1,x 2

 x 21 + x 22 subject to a 1x 1 + a 2x 2 = b 1

x1

     x        2

 x2

1+ x

2

2> 0.8944

 x2

1+ x

2

2< 0.8944

!1.5 !1 !0.5 0 0.5 1 1.5!1.5

!1

!0.5

0

0.5

1

1.5

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 8 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 12/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 13/54

MINIMIZING x 2

Recall Parseval’s Formula:f (t ) =

N k =0 x k φk (t ), with φk  orthonormal in L2.

22 =

k =0 |

x k 

|2.

Also, 2 penalizes heavily large values, while small values don’t affect

the norm significantly. In general will not give a sparse representation!

See matlab experiment! (Test-l1-l2.m)

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 9 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 14/54

MINIMIZING x 1

Matlab experimet! (Test-l1-l2.m)

Note: solution may not be unique!

Solve an optimization problem (in practice O (N 3) operations).

Several codes are available for CS see:

http://www.dsp.ece.rice.edu/cs/ 

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 10 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 15/54

A SIMPLE EXAMPLE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

f (t ) =1√ N 

N k =1

x k  sin(πkt )

N = 1024, number of samples: m = 50

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 11 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 16/54

A SIMPLE EXAMPLE

System of equations:

f (t  j ) =1√ 

1024

1024k =1

x k  sin(πkt  j ), j = 1 . . . 50

SOLVE:min x 1

subject to Ax = b ,

where A has 50 rows and 1024 columns.

A j ,k  =1

√ 1024sin(πkt  j ), b  j  = f (t  j ).

Matlab code on Blackboard: ”SineExample.m” (uses CVX)

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 11 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 17/54

A SIMPLE EXAMPLE

0 200 400 600 800 1000 1200−1.5

−1

−0.5

0

0.5

1

1.5

2

 

original

decoded

Recovery of coefficients is accurate to almost machine precision!

x − x 02

x 02= 7.9611... × 10−11

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 11 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 18/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 19/54

WHY SPARSITY?

Sparsity is often a good regularization criteria because most signals

have structure.

Gray scale please!

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 12 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 20/54

WHY SPARSITY?

Sparsity is often a good regularization criteria because most signals

have structure.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Find wavelet coefficients. Daubechies(6,2), 3 vanish. moments

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 12 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 21/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 22/54

WHY SPARSITY?

Sparsity is often a good regularization criteria because most signals

have structure.

Restored image from 25% of the coefficients.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 12 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 23/54

WHY SPARSITY?

Sparsity is often a good regularization criteria because most signals

have structure.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Relative error

≈3%.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 12 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 24/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 25/54

WHY SPARSITY?

Sparsity is often a good regularization criteria because most signals

have structure.

Reconstructed image from 2% of the coefficients.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 12 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 26/54

SPARSITY IS NOT SUFFICIENT FOR CS TO WORK!

Example: A is a finite difference matrixA maps a sparse vector x  into another sparse vector y .

0

0

...1

−1

0.

..

=

1 0 0

· · ·0

−1 1 0 · · · 00 −1 1 · · · 0

. . . . . . . . . . . . . . . . . . . . .

0 0 · · · −1 1

0

0

...1

0

0.

..

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 13 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 27/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 28/54

SPARSITY IS NOT SUFFICIENT FOR CS TO WORK!

The image below is sparse in physical domain and Haar waveletcoefficients.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 14 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 29/54

A GENERAL APPROACH

Sample coefficients in a representation by random vectors.

y =N 

k =1

< y , ψk  > ψk ,

ψk  are obtained from orthogonalized Gaussian matrices.

Ax = y 

⇒ΨAx = Ψy 

⇒Θx = z 

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 15 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 30/54

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 31/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 32/54

INCOHERENCE + SPARSITY IS NEEDED

NUMERICAL EXPERIMENT

Signal recovered from Fourier coefficients:

0 100 200 300 400 500 600−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

original

decoded

Code ”FourierSampling.m”.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 16 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 33/54

INCOHERENT SAMPLING

Let (Φ,Ψ) be orthonormal bases of R n .

f (t ) =n 

i =1

x i ψi (t ) and y k  = f , ϕk , k = 1, . . . , m .

Representation matrix: Ψ = [ψ1 ψ2 · · · ψn ]Sensing matrix: Φ = [ϕ1 ϕ2

· · ·ϕn ]

COHERENCE BETWEEN Φ AND Ψ

µ(Φ,Ψ) =√ 

n  max1≤ j ,k ≤n 

|ϕk , ψ j |.

Remark: µ(Φ,Ψ) ∈ [1,√ 

n ]Upper bound: Cauchy-Schwarz

Lower bound: ΨT Φ is also orthonormal, hence

|ϕk , ψ j 

|2 = 1

⇒max j 

|ϕk , ψ j 

| ≥1/

√ n 

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 17 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

A

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 34/54

A GENERAL RESULT FOR SPARSE RECOVERY

f (t ) =n 

i =1

x i ψi (t ) and y k  =

f , ϕk 

, k = 1, . . . , m .

Consider the optimization problem:

minx ∈R n 

x 1subject to y k  = Ψx , ϕk , k = 1, . . . , m .

THEOREM (CANDES AND ROMBERG, 2007)

Fix f  ∈ R n  and suppose that the coefficient sequence  x  of f  in the 

basis Ψ is s -sparse. Select m  measurements in the Φ domain 

uniformly at random. Then if 

m ≥ C  µ2(Φ,Ψ) S  log(n /δ )

for some positive constant C , the solution of the problem above is 

exact with probability exceeding 1

−δ .

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 18 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 35/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

M SO O S O O

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 36/54

MULTIPLE SOLUTIONS OF MIN 1-NORM

f (t ) =a 0

2+

k =1

a k 

cos(πkt ) +N 

k =1

b k 

sin(πkt ), t ∈[−

1, 1]

Data: f (−1) = 1, f (0) = 1, f (1) = 1

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 20 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

MULTIPLE SOLUTIONS OF MIN NORM

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 37/54

MULTIPLE SOLUTIONS OF MIN 1-NORM

f (t ) =a 0

2+

k =1

a k 

cos(πkt ) +N 

k =1

b k 

sin(πkt ), t ∈[−

1, 1]

Data: f (−1) = 1, f (0) = 1, f (1) = 1

even function: b k  = 0

Solutions of min 1:

{a 2 = 1, a k  = 0(k 

= 2)

},

{a 4 = 1, a k  = 0(k 

= 4)

},

. . .AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 20 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 38/54

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 39/54

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 40/54

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 41/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

POLYNOMIAL MATRICES

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 42/54

POLYNOMIAL MATRICES

Back to Dr. Lai’s dynamical system problem:

d x

dt = F(x(t )),

with

[F(x(t ))] j  =k 1

k 2 · · ·k m 

(a  j )k 1k 2···k m x k 1

1 (t ) . . . x k m m  (t )

This does not fit in classical CS-results.

monomial basis becomes ill-conditioned even for small powers

we know condition numbers of Vadermonde depend on where x  isevaluated.

Some CS results are available for orthogonal polynomials.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 25 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

ORTHOGONAL POLYNOMIALS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 43/54

ORTHOGONAL POLYNOMIALS

For Chebyshev polynomials expansions we have that

f (x ) ≈N 

k =0

λk cos (k arccos (x ))

If we let y = arccos(x ) or x = cos (y ),

f (cos (y )) ≈N 

k =0

λk cos (ky )

A Chebyshev expansion is equivalent to a cosine expansion on the

variable y .

Results carry over from Fourier expansions but with samples chosenindependently according to the chebyshev measure

d ν (x ) = π−1(1 − x 2)−1/2dx 

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 26 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

SPARSE LEGENDRE EXPANSIONS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 44/54

SPARSE LEGENDRE EXPANSIONS

Rauhut and Ward (2010) proved that the same type sampling applies

for Legendre exapasions.

How about polynomial expansions as power series?

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 27 / 37

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 45/54

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

ROBERT THOMPSON’S EXPERIMENTS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 46/54

m/N 

     k     /   m

1d polynomial recovery for N = 36, uniform sampling

 0.25 0.5 0.75 1

0.75

0.5

0.25

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.2

0

m/N 

     k     /   m

1d polynomial recovery for N = 36, Chebyshev sampling

 0.25 0.5 0.75 1

0.75

0.5

0.25

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.2

0

Each pixel, 50 experiments: choose random polynomial with knon-zero Gaussian i.i.d coefficients, measure m samples, attempt to

recover polynomial coefficients.Sampling at Chebyshev points give (very) slightly better results thanuniform points.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 29 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

ROBERT THOMPSON’S EXPERIMENTS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 47/54

Consider linear combinations of Chebyshev polynomials:

y =�N 

i=1 T i(t), T i(t) = cos(i arccos(t))Φm: m randomly chosen rows of identity matrix.

And assume that x is K -sparse.

td according to some distribution in (−1, 1).

ym =

f (td1)f (td2)

...

...

f (tdm)

m

= Φm

T 0(t0) T 1(t0) . . . T  N (t0)T 0(t1) T 1(t1) . . . T  N (t1)

......

......

T 0(tN ) T 1(tN ) . . . T  N (tN )

x1x2

...

...

xN 

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 30 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

ROBERT THOMPSON’S EXPERIMENTS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 48/54

Vandermonde

m/N 

     k     /   m

1d polynomial recovery for N = 36, Chebyshev sampling

 0.25 0.5 0.75 1

0.75

0.5

0.25

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.2

0

ChebyshevSparse 1d Chebyshev polynomial recovery, N = 36

m/N 

     k     /   m

 0.25 0.5 0.75 1

0.75

0.5

0.25

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.2

0

Using Chebyshev basis functions, we realize improvement as m

increases.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 31 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

ROBERT THOMPSON’S EXPERIMENTS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 49/54

Columns of C  are orthogonal.

All vectors will be distinguishable if we use full C .

If we use less than full C , orthogonality is lost, some vectors start to

become indistinguishable.

V

 

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C

 

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 32 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

ROBERT THOMPSON’S EXPERIMENTS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 50/54

What about 2-D polynomials?

In natural basis: f (t, u) =�

i+ j=0..Q

xijtiu j

(td, ud) according to some distribution in (−1, 1)× (−1, 1).

ym =

f (td1 , ud1)f (td2 , ud2)

...

...

f (tdm , udm)

m

= Φm

1 t0 u0 t0u0 t20 u20 . . .

1 t1 u1 t1u1 t21 u21 . . ....

...

... ...

1 tN  uN  tN uN  t2N  u2N  . . .

x00x10x01x11x20

...

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 33 / 37

INTRODUCTION

INCOHERENCE

RIP POLYNOMIAL MATRICES

DYNAMICAL SYSTEMS

ROBERT THOMPSON’S EXPERIMENTS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 51/54

2d polynomial recovery, N = 36

m/N 

     k     /   m

 0.25 0.5 0.75 1

0.75

0.5

0.25

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.2

0

Similar to 1-d results.

Again increasing m doesn’t change much.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 34 / 37

INTRODUCTION

INCOHERENCE

RIP POLYNOMIAL MATRICES

DYNAMICAL SYSTEMS

ROBERT THOMPSON’S EXPERIMENTS (BACK TO DYNAMICAL SYSTEMS)

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 52/54

xn+1 = f (xn) = rxn(1− xn)

Coefficient vector: (0, r,−

r,0, . . . )We can recover the system equation in chaotic regime taking about

10 sample pairs or more.

0 5 10 15 20 25 30 350.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

     x    n

Sampling the logistic map, m = 10

0 5 10 15 20 25 30 3510

−8

10−6

10−4

10−2

100

102

104

106

m

    |

    |

      c      ∗

   −

      c    |

    |

        2

Recovery error for logistic map, r = 3 .7

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 35 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

ROBERT THOMPSON’S EXPERIMENTS (BACK TO DYNAMICAL SYSTEMS)

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 53/54

 5 10 15 20 25 30 35

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Sensitive to the dynamics determined by r.

(Bifurcation diagram: Wikipedia).

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 36 / 37

INTRODUCTION INCOHERENCE RIP POLYNOMIAL MATRICES DYNAMICAL SYSTEMS

FINAL REMARKS

7/27/2019 Apm598 Cs Intro

http://slidepdf.com/reader/full/apm598-cs-intro 54/54

As previously pointed by Dr. Lai – recovery seems impractical with

monomial basis of large degree. Change of basis to orthogonalpolynomials result in full coefficients.

Considering small degree expansions in high dimensions – what

is the optimal sampling strategy?

How about a system of PDEs? For example,

u t  = u (1 − u )− uv +u 

v t  = v (1 − v ) + uv +v 

Thanks! In particular to Robert Thompson and Wen Xu.

AN INTRODUCTION TO COMPRESSIVE SENSING R. PLATTE MATHEMATICS AND STATISTICS 37 / 37


Recommended