+ All Categories
Home > Documents > AR PSAP Revised Supplemental Figures...

AR PSAP Revised Supplemental Figures...

Date post: 30-Apr-2019
Category:
Upload: danganh
View: 214 times
Download: 0 times
Share this document with a friend
13
Supplementary Fig. 1. Analysis of PSAP molecular mass by SDS-PAGE. (A) The PSAP protein was extracted from shell material using SDS-PAGE sample buffer and separated by 12% SDS- PAGE followed by staining with Coomassie blue. (B) Calculation of PSAP molecular mass based on SDS-PAGE migration in comparison to molecular weight markers. B R f LogMW A 190 kDa 135 100 75 58 46 PSAP Migration distance of dye front (mm) 119.5 Migration distance (mm) R f values Log MW kDa Protein Markers 32 0.268 2.28 190 41 0.343 2.13 135 56.4 0.472 2.00 100 72.3 0.605 1.87 75 86.5 0.724 1.76 58 104 0.870 1.66 46 PSAP 35 0.293 2.20 162.2 y = -1.001x + 2.4975 R² = 0.97951 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0
Transcript

Supplementary Fig. 1. Analysis of PSAP molecular mass by SDS-PAGE. (A) The PSAP proteinwas extracted from shell material using SDS-PAGE sample buffer and separated by 12% SDS-PAGE followed by staining with Coomassie blue. (B) Calculation of PSAP molecular mass basedon SDS-PAGE migration in comparison to molecular weight markers.

B

Rf

LogM

W

A

190

kDa

135

100

75

58

46

PSAP

Migration distance of dye front (mm)119.5

Migration distance (mm) Rf values Log MW kDa

Protein Markers32 0.268 2.28 19041 0.343 2.13 135

56.4 0.472 2.00 10072.3 0.605 1.87 7586.5 0.724 1.76 58104 0.870 1.66 46

PSAP35 0.293 2.20 162.2

y = -1.001x + 2.4975R² = 0.97951

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

PSPPPPLPACNTPISPTTAPTCGSLYGFLSIADNGDGTCSAFRIEQTSATGTPTTVALNCNQLAFPGIASCASIQSAVKITIRRTRSVAYIQPDINKWLTNMGLNNVIVIANALTVEVDHSPFPIPQFINPVFFTLLRQVEAVVAQECANCATSTNVGPALPALASLAGLRAIQQFRGFKGGVSLGSLIIKGTALLDLTSFSGISCTPGFIQITNNARLGSFNGLEGARTFFNPGPTVFAQGNPLLNSQSVAPIRQLAQCPSGNTSPLNSTVLIFTAVCVLPSWNVYCTFVNTPGQCVPASPPPPPPPPPVNVPPPPPSPPKSPPPPSPPSPPPPPPDATCFDPMPLPADICGDGITWTLQVQYIGNGTCFARLFFNGTQ

Contig 10353

IAPPGTGFGDFTSFKIQGTALNDLSSFSGLTCPPNNINITDNLLLDSLNGLNGLATWTGQFGPNVYITGNNLTGTGSVSALSVLAGCPSSVLLDNVIFQIDVIGCATLATWQGYCAYLSSGVCVGAPPPPITCSITPTFNLPVCGGNRTIVEVLDYGDATCTASIQTGTPPNTGIRNIPCNQLAFGQQCGSLNGSLTLTSFRASNGTAYRGPFFNSWLSLMGLQNINALNGNLIVLHNQLINSIPPVTPADFLPRLNEVSGGLEANELRRPGQTPSLLSVPGFKSVVFAQSAISVNGTAFPDFRNTFNGLICP

Contig 43184

GPVVKQFSRNIRASVKGKGAKTFFDVFYFGIVEIFTSPTPTSRLRLLKTTPALNMAKVPLALLLLSLTFAAHGLEAPALAPDSQAAAEQSADQCRTPIVPSLTVGLCNSTASIFDANDVIQIFDTGDGRATVSVTLGGVTQPPFVITTASPPQFLYGKQCIFLWASTVAITFSRNDLGVAFNPNNINTFLTILGLNTVQVISGAVTVQVTHTPNPIPAGISPRFFTALQQAQALTFQECQNCLVNTNVAATVPRLVSLPGFALYVKSWNFAARSGAQTSIFIKNTLFSNIGLTLASIACSPGNLQITGNTALLSLAGLTNMQTTIVPGPTVFITNNQLLFGAPEVFQLQRLASCVGAATSPLFSAILIQSAACTSTCWNQYCSFVNGFGCNACSPPPPPPQSPPP

Contig 11859B

A

Translatedtranscriptome

contig hits:Contig 11859Contig 10353Contig 43184

Excise PSAPprotein band

from SDS-PAGEgel

Tryptic digestionof PSAP protein

Protein sequencingusing

LC-MS/MSfor peptide

absolute massdetermination

BLAST peptidesagainst race B

translatedtranscriptome

Supplementary Fig. 2. Identification of B. braunii race B transcriptome contigs matching PSAPMS peptides. (A) Step-by-step outline of PSAP MS analysis and identification of matching contigs.(B) Translation of the three B. braunii race B contigs that matched MS peptides from PSAP. PSAPpeptides identified by MS that match the contigs are shown in alternating dark orange and lightorange lettering. Methionine start site in contig 11859 is shown in black bold lettering.

C

CCCCTTCACCCCCTCCACCATTGCCTGCTTGCAACACGCCAATTTCCCCCACCACTGCACCCACCTGCGGCAGCCTCTACGGGTTCTTGTCGATTGCGGACAATGGCGATGGCACCTGCTCAGCATTCAGAATTGAGCAAACAAGTGCAACTGGCACTCCCACCACTGTCGCCTTGAACTGCAATCAGCTTGCTTTCCCTGGAATTGCAAGCTGCGCCAGCATCCAATCTGCAGTCAAGATCACCATCAGAAGGACAAGGAGTGTTGCGTATATTCAGCCAGACATCAACAAGTGGCTCACCAACATGGGCCTTAACAACGTGATTGTGATTGCAAACGCCCTGACTGTTGAAGTCGACCACTCCCCTTTCCCGATTCCCCAATTCATTAATCCAGTTTTCTTCACTCTTCTGAGACAGGTGGAAGCAGTTGTGGCTCAAGAGTGTGCCAACTGTGCGACCAGCACCAATGTTGGCCCAGCCCTCCCAGCCCTCGCATCATTGGCTGGACTGAGAGCCATTCAGCAGTTCCGAGGCTTCAAGGGAGGGGTTTCTCTTGGTTCCCTCATCATCAAGGGCACAGCGTTATTGGACTTGACATCCTTCTCAGGCATCAGTTGCACGCCAGGCTTCATCCAGATCACCAACAATGCCCGTCTGGGCAGCTTCAATGGGTTGGAAGGCGCTCGCACCTTCTTCAACCCTGGCCCCACTGTCTTCGCCCAGGGGAACCCGCTGCTCAACTCTCAATCCGTCGCCCCGATCAGACAGCTGGCTCAATGCCCAAGTGGCAATACATCTCCCCTCAATTCGACCGTTTTAATCTTCACTGCAGTCTGCGTCTTGCCGAGCTGGAACGTGTACTGCACCTTTGTCAACACCCCAGGGCAGTGTGTACCAGCATCTCCCCCACCGCCTCCACCGCCGCCGCCAGTCAATGTCCCGCCCCCACCTCCTTCCCCTCCCAAGTCCCCCCCTCCCCCGAGCCCGCCTTCGCCACCCCCACCGCCACCAGATGCAACCTGCTTTGATCCAATGCCCCTTCCTGCCGACATCTGTGGAGATGGCATCACCTGGACTCTTCAGGTCCAGTACATCGGCAACGGAACTTGTTTTGCACGATTGTTCTTTAACGCACAG

Contig 10353

ATTGCCCCACCAGGCACTGGCTTCGGTGACTTCACCTCATTCAAGATCCAAGGAACAGCACTGAATGACCTGTCCTCATTCTCCGGGCTTACATGTCCGCCAAACAACATCAACATCACAGACAATCTTTTGCTGGATTCCCTGAATGGCCTCAACGGCCTGGCAACCTGGACGGGCCAGTTTGGCCCCAACGTTTACATCACAGGCAATAACTTAACTGGCACTGGCTCAGTCTCAGCCTTGAGCGTCCTGGCTGGCTGCCCCTCCTCAGTGTTGCTCGACAATGTCATCTTCCAAATCGATGTTATTGGCTGTGCCACACTCGCGACTTGGCAGGGTTACTGTGCATACCTGTCATCAGGGGTCTGTGTAGGCGCACCACCTCCTCCCATCACCTGCAGTATCACCCCAACCTTCAATTTACCAGTGTGCGGAGGCAACAGGACCATCGTTGAAGTCCTCGACTACGGTGATGCAACTTGCACTGCCTCTATTCAGACAGGAACCCCCCCCAACACTGGTATCAGAAATATCCCTTGCAATCAGCTAGCCTTTGGGCAACAATGTGGCAGCCTAAATGGCAGCTTAACCCTAACATCCTTCCGTGCCAGCAATGGGACAGCCTACAGGGGCCCGTTCTTTAACAGTTGGCTGAGCCTGATGGGCCTACAGAATATCAACGCCCTCAATGGCAACCTGATTGTGCTTCACAACCAGTTGATCAATTCGATTCCACCAGTGACCCCAGCAGATTTCCTACCAAGACTGAATGAAGTCTCTGGTGGTCTGGAAGCAAACGAGCTTCGTAGGCCTGGCCAGACTCCGTCACTTCTTTCAGTTCCTGGATTCAAGTCAGTTGTATTTGCACAGTCAGCCATTTCTGTTAATGGCACAGCTTTCCCTGATTTCAGAAATACCTTCAACGGCCTGATCTGCCCACC

Contig 43184

GACTGCGCTAAGGCCCAGTTGTCAAGCAGTTCTCCCGAAATATAAGAGCTTCGGTGAAAGGTAAAGGAGCAAAGACTTTCTTTGATGTGTTTTATTTCGGGATAGTGGAAATTTTCACGAGCCCGACTCCAACATCGCGACTGCGTCTGCTGAAGACCACGCCCGCACTCAACATGGCGAAGGTGCCGCTGGCACTACTGCTGCTGAGTTTGACCTTTGCCGCCCACGGTCTCGAGGCCCCAGCTCTCGCTCCCGACTCTCAGGCCGCGGCGGAGCAGTCAGCAGACCAATGCAGAACTCCTATAGTGCCAAGCTTGACCGTTGGATTGTGTAACAGCACAGCCAGCATCTTCGATGCCAATGATGTTATCCAGATTTTTGATACTGGTGATGGAAGAGCTACCGTGTCCGTCACACTCGGCGGTGTAACTCAACCTCCCTTTGTCATCACCACGGCTTCTCCACCCCAGTTCCTGTATGGAAAGCAATGCATCTTTTTGTGGGCATCCACAGTTGCCATTACCTTCTCCAGAAACGACCTCGGTGTTGCCTTCAACCCTAACAACATCAATACGTTCCTCACCATCCTGGGATTGAATACAGTGCAGGTCATCTCAGGTGCCGTTACAGTGCAGGTCACCCACACTCCAAACCCTATTCCTGCTGGCATCAGCCCCCGGTTCTTCACTGCTCTACAGCAGGCACAAGCACTCACATTCCAGGAGTGCCAGAACTGTTTGGTGAACACCAATGTTGCTGCAACAGTCCCCAGGCTTGTGTCGCTGCCCGGATTTGCATTATATGTGAAGTCCTGGAACTTTGCTGCCAGGAGTGGAGCCCAGACCAGTATTTTCATTAAAAACACACTCTTTTCCAACATTGGTCTCACCTTGGCCTCAATTGCTTGCTCGCCTGGTAACCTCCAGATTACTGGTAACACAGCTCTGTTAAGCCTGGCTGGGTTGACCAATATGCAAACTACCATTGTCCCGGGACCCACAGTCTTCATAACTAACAATCAACTGCTGTTTGGTGCCCCTGAAGTGTTCCAGCTTCAGCGTCTAGCCAGCTGTGTTGGTGCCGCAACCAGTCCCCTGTTTTCAGCAATCTTGATTCAGTCAGCTGCTTGCACATCAACGTGCTGGAATCAATACTGCTCCTTCGTCAATGGATTTGGCTGCAATGCATGCTCACCCCCTCCGCCACCACCACAATCACCACCTCCCC

Contig 11859

B

A

Supplementary Fig. 3. Nucleotide sequence of the three B. braunii race B contigs that matchedMS peptides from PSAP. (A) Contig 11859, translation start codon shown in red lettering. (B)Contig 1053. (C) Contig 43184. Bases in alternating dark orange and light orange letteringcorrespond to the peptides found by MS analysis.

PSAP protein sequence, 1,266 amino acids, 132.8 kDaMAKVPLALLLLSLTFAAHGLEAPALAPDSQAAAEQSADQCRTPIVPSLTVGLCNSTASIFDANDVIQIFDTGDGRATVSVTLGGVTQPPFVITTASPPQFLYGKQCIFLWASTVAITFSRNDLGVAFNPNNINTFLTILGLNTVQVISGAVTVQVTHTPNPIPAGISPRFFTALQQAQALTFQECQNCLVNTNVAATVPRLVSLPGFALYVKSWNFAARSGAQTSIFIKNTLFSNIGLTLASIACSPGNLQITGNTALLSLAGLTNMQTTIVPGPTVFITNNQLLFGAPEVFQLQRLASCVGAATSPLFSAILIQSAACTSTCWNQYCSFVNGFGCNACSPPPPPPQSPPPPSPPPPLPACNTPISPTTAPTCGSLYGFLSIADNGDGTCSAFRIEQTSATGTPTTVALNCNQLAFPGIASCASIQSAVKITIRRTRSVAYIQPDINKWLTNMGLNNVIVIANALTVEVDHSPFPIPQFINPVFFTLLRQVEAVVAQECANCATSTNVGPALPALASLAGLRAIQQFRGFKGGVSLGSLIIKGTALLDLTSFSGISCTPGFIQITNNARLGSFNGLEGARTFFNPGPTVFAQGNPLLNSQSVAPIRQLAQCPSGNTSPLNSTVLIFTAVCVLPSWNVYCTFVNTPGQCVPASPPPPPPPPPVNVPPPPPSPPKSPPPPSPPSPPPPPPDATCFDPMPLPADICGDGITWTLQVQYIGNGTCFARLFFNGTQLSLTAAQATCQATIFPGRTCRTLNGNLYLFVTNQANLTASTYFQPQFNDGLTALGVGSLETIEYVLSLVVDHTPFPIPVQLAPVFLATLRNVFAIQVIESINFGLLPDVPPPVPRLVGLPGLTGVRRIIAPPGTGFGDFTSFKIQGTALNDLSSFSGLTCPPNNINITDNLLLDSLNGLNGLATWTGQFGPNVYITGNNLTGTGSVSALSVLAGCPSSVLLDNVIFQIDVIGCATLATWQGYCAYLSSGVCVGAPPPPITCSITPTFNLPVCGGNRTIVEVLDYGDATCTASIQTGTPPNTGIRNIPCNQLAFGQQCGSLNGSLTLTSFRASNGTAYRGPFFNSWLSLMGLQNINALNGNLIVLHNQLINSIPPVTPADFLPRLNEVSGGLEANELRRPGQTPSLLSVPGFKSVVFAQSAISVNGTAFPDFRNTFNGLICPPYQFMNFTNNPNLRSYQGLDALGQPPFLPHVNTLFSPATNPTLLTIDAIANWAGCPTGLSNTIDGIINIKVSFCPNPITTFAQICAYILFNTCP

PSAP ORF sequence, 3,798 bpATGGCGAAGGTGCCGCTGGCACTACTGCTGCTGAGTTTGACCTTTGCCGCCCACGGTCTCGAGGCCCCAGCTCTCGCTCCCGACTCTCAGGCCGCGGCGGAGCAGTCAGCAGACCAATGCAGAACTCCTATAGTGCCAAGCTTGACCGTTGGATTGTGTAACAGCACAGCCAGCATCTTCGATGCCAATGATGTTATCCAGATTTTTGATACTGGTGATGGAAGAGCTACCGTGTCCGTCACACTCGGCGGTGTAACTCAACCTCCCTTTGTCATCACCACGGCTTCTCCACCCCAGTTCCTGTATGGAAAGCAATGCATCTTTTTGTGGGCATCCACAGTTGCCATTACCTTCTCCAGAAACGACCTCGGTGTTGCCTTCAACCCTAACAACATCAATACGTTCCTCACCATCCTGGGATTGAATACAGTGCAGGTCATCTCAGGTGCCGTTACAGTGCAGGTCACCCACACTCCAAACCCTATTCCTGCTGGCATCAGCCCCCGGTTCTTCACTGCTCTACAGCAGGCACAAGCACTCACATTCCAGGAGTGCCAGAACTGTTTGGTGAACACCAATGTTGCTGCAACAGTCCCCAGGCTTGTGTCGCTGCCCGGATTTGCATTATATGTGAAGTCCTGGAACTTTGCTGCCAGGAGTGGAGCCCAGACCAGTATTTTCATTAAAAACACACTCTTTTCCAACATTGGTCTCACCTTGGCCTCAATTGCTTGCTCGCCTGGTAACCTCCAGATTACTGGTAACACAGCTCTGTTAAGCCTGGCTGGGTTGACCAATATGCAAACTACCATTGTCCCGGGACCCACAGTCTTCATAACTAACAATCAACTGCTGTTTGGTGCCCCTGAAGTGTTCCAGCTTCAGCGTCTAGCCAGCTGTGTTGGTGCCGCAACCAGTCCCCTGTTTTCAGCAATCTTGATTCAGTCAGCTGCTTGCACATCAACGTGCTGGAATCAATACTGCTCCTTCGTCAATGGATTTGGCTGCAATGCATGCTCACCCCCTCCGCCACCACCACAATCACCACCTCCCCCTTCACCCCCTCCACCATTGCCTGCTTGCAACACGCCAATTTCCCCCACCACTGCACCCACCTGCGGCAGCCTCTACGGGTTCTTGTCGATTGCGGACAATGGCGATGGCACCTGCTCAGCATTCAGAATTGAGCAAACAAGTGCAACTGGCACTCCCACCACTGTCGCCTTGAACTGCAATCAGCTTGCTTTCCCTGGAATTGCAAGCTGCGCCAGCATCCAATCTGCAGTCAAGATCACCATCAGAAGGACAAGGAGTGTTGCGTATATTCAGCCAGACATCAACAAGTGGCTCACCAACATGGGCCTTAACAACGTGATTGTGATTGCAAACGCCCTGACTGTTGAAGTCGACCACTCCCCTTTCCCGATTCCCCAATTCATTAATCCAGTTTTCTTCACTCTTCTGAGACAGGTGGAAGCAGTTGTGGCTCAAGAGTGTGCCAACTGTGCGACCAGCACCAATGTTGGCCCAGCCCTCCCAGCCCTCGCATCATTGGCTGGACTGAGAGCCATTCAGCAGTTCCGAGGCTTCAAGGGAGGGGTTTCTCTTGGTTCCCTCATCATCAAGGGCACAGCGTTATTGGACTTGACATCCTTCTCAGGCATCAGTTGCACGCCAGGCTTCATCCAGATCACCAACAATGCCCGTCTGGGCAGCTTCAATGGGTTGGAAGGCGCTCGCACCTTCTTCAACCCTGGCCCCACTGTCTTCGCCCAGGGGAACCCGCTGCTCAACTCTCAATCCGTCGCCCCGATCAGACAGCTGGCTCAATGCCCAAGTGGCAATACATCTCCCCTCAATTCGACCGTTTTAATCTTCACTGCAGTCTGCGTCTTGCCGAGCTGGAACGTGTACTGCACCTTTGTCAACACCCCAGGGCAGTGTGTACCAGCATCTCCCCCACCGCCTCCACCGCCGCCGCCAGTCAATGTCCCGCCCCCACCTCCTTCCCCTCCCAAGTCCCCCCCTCCCCCGAGCCCGCCTTCGCCACCCCCACCGCCACCAGATGCAACCTGCTTTGATCCAATGCCCCTTCCTGCCGACATCTGTGGAGATGGCATCACCTGGACTCTTCAGGTCCAGTACATCGGCAACGGAACTTGTTTTGCACGATTGTTCTTTAACGCACAGGGATAGGGCACCCAGTTAAGCCTTACCGCTGCCCAAGCCACTTGCCAGGCCACCATTTTCCCGGGCCGAACTTGCCGTACCTTGAATGGCAACCTGTACCTCTTTGTGACAAACCAGGCCAATTTAACTGCATCAACCTACTTTCAACCGCAGTTCAATGATGGTCTCACCGCCCTTGGGGTTGGATCCCTTGAGACTATTGAGTATGTGCTGTCTTTGGTTGTGGATCACACTCCATTTCCCATTCCTGTCCAATTAGCCCCGGTGTTCCTGGCAACACTCAGAAACGTGTTCGCCATCCAAGTGATCGAGTCCATCAATTTCGGCCTCCTCCCGGATGTCCCACCCCCTGTACCCCGACTGGTAGGCCTTCCGGGCCTGACGGGCGTGAGGAGGATCATTGCCCCACCAGGCACTGGCTTCGGTGACTTCACCTCATTCAAGATCCAAGGAACAGCACTGAATGACCTGTCCTCATTCTCCGGGCTTACATGTCCGCCAAACAACATCAACATCACAGACAATCTTTTGCTGGATTCCCTGAATGGCCTCAACGGCCTGGCAACCTGGACGGGCCAGTTTGGCCCCAACGTTTACATCACAGGCAATAACTTAACTGGCACTGGCTCAGTCTCAGCCTTGAGCGTCCTGGCTGGCTGCCCCTCCTCAGTGTTGCTCGACAATGTCATCTTCCAAATCGATGTTATTGGCTGTGCCACACTCGCGACTTGGCAGGGTTACTGTGCATACCTGTCATCAGGGGTCTGTGTAGGCGCACCACCTCCTCCCATCACCTGCAGTATCACCCCAACCTTCAATTTACCAGTGTGCGGAGGCAACAGGACCATCGTTGAAGTCCTCGACTACGGTGATGCAACTTGCACTGCCTCTATTCAGACAGGAACCCCCCCCAACACTGGTATCAGAAATATCCCTTGCAATCAGCTAGCCTTTGGGCAACAATGTGGCAGCCTAAATGGCAGCTTAACCCTAACATCCTTCCGTGCCAGCAATGGGACAGCCTACAGGGGCCCGTTCTTTAACAGTTGGCTGAGCCTGATGGGCCTACAGAATATCAACGCCCTCAATGGCAACCTGATTGTGCTTCACAACCAGTTGATCAATTCGATTCCACCAGTGACCCCAGCAGATTTCCTACCAAGACTGAATGAAGTCTCTGGTGGTCTGGAAGCAAACGAGCTTCGTAGGCCTGGCCAGACTCCGTCACTTCTTTCAGTTCCTGGATTCAAGTCAGTTGTATTTGCACAGTCAGCCATTTCTGTTAATGGCACAGCTTTCCCTGATTTCAGAAATACCTTCAACGGCCTGATCTGCCCACCCTACCAATTCATGAATTTCACAAACAACCCTAATCTGAGGTCTTACCAAGGTCTTGATGCTCTGGGTCAACCACCATTCCTACCTCACGTAAATACCTTATTCTCTCCTGCCACCAATCCTACACTCCTCACCATTGATGCAATTGCAAACTGGGCAGGCTGCCCTACGGGCCTTAGTAACACAATCGACGGTATCATTAATATTAAAGTTTCATTCTGCCCTAATCCCATCACCACTTTCGCACAAATCTGCGCTTATATTTTATTCAACACGTGCCCATAA

A

B

Supplementary Fig. 4. Nucleotide and protein sequence of PSAP. (A) PSAP ORF nucleotidesequence. Bases shown in alternating dark orange and light orange lettering correspond to thepeptides found by MS analysis. Contig locations are identified by a black box for contig 11859, ared box for contig 10353, and a purple box for contig 43184. (B) PSAP protein sequence. ThePSAP signal peptide is highlighted in green. The PSAP peptides identified by MS that match thecontigs are shown in alternating dark orange and light orange lettering. The Pro-rich motifs areshown in magenta lettering.

Supplementary Fig. 5. PSAP N-linked and O-linked glycan analysis. Peptides highlighted incyan and green represent the peptides identified by LC-MS/MS in N-linked glycan analysis.Cyan peptides do not contain predicted N-linked glycosylation sites. Green peptides containpredicted N-linked glycosylation sites. Asn (N) residues highlighted in red were confirmed to bean N-linked glycosylation site; N54, N718, N728, N767, N897, N930, N1006, N1052, N1064,N1155. Asn (N) residues highlighted in purple were confirmed to not be an N-linkedglycosylation site; N615, N620, and N1212 . Potential N-linked glycan site N1178, highlightedin magenta, was not found in any peptide identified in this study. The peptide highlighted inyellow represents the peptide identified to contain Hyp O-linked glycans; Hyp986, Hyp987,Hyp988, Hyp989 are shown in blue lettering. The protein sequence in the box identifies thepeptide used for PSAP antibody development.

MAKVPLALLLLSLTFAAHGLEAPALAPDSQAAAEQSADQCRTPIVPSLTVGLCNSTASIFDANDVIQIFD 70TGDGRATVSVTLGGVTQPPFVITTASPPQFLYGKQCIFLWASTVAITFSRNDLGVAFNPNNINTFLTILG 140LNTVQVISGAVTVQVTHTPNPIPAGISPRFFTALQQAQALTFQECQNCLVNTNVAATVPRLVSLPGFALY 210VKSWNFAARSGAQTSIFIKNTLFSNIGLTLASIACSPGNLQITGNTALLSLAGLTNMQTTIVPGPTVFIT 280NNQLLFGAPEVFQLQRLASCVGAATSPLFSAILIQSAACTSTCWNQYCSFVNGFGCNACSPPPPPPQSPP 350PPSPPPPLPACNTPISPTTAPTCGSLYGFLSIADNGDGTCSAFRIEQTSATGTPTTVALNCNQLAFPGIA 420SCASIQSAVKITIRRTRSVAYIQPDINKWLTNMGLNNVIVIANALTVEVDHSPFPIPQFINPVFFTLLRQ 490VEAVVAQECANCATSTNVGPALPALASLAGLRAIQQFRGFKGGVSLGSLIIKGTALLDLTSFSGISCTPG 560FIQITNNARLGSFNGLEGARTFFNPGPTVFAQGNPLLNSQSVAPIRQLAQCPSGNTSPLNSTVLIFTAVC 630VLPSWNVYCTFVNTPGQCVPASPPPPPPPPPVNVPPPPPSPPKSPPPPSPPSPPPPPPDATCFDPMPLPA 700DICGDGITWTLQVQYIGNGTCFARLFFNGTQLSLTAAQATCQATIFPGRTCRTLNGNLYLFVTNQANLTA 770STYFQPQFNDGLTALGVGSLETIEYVLSLVVDHTPFPIPVQLAPVFLATLRNVFAIQVIESINFGLLPDV 840PPPVPRLVGLPGLTGVRRIIAPPGTGFGDFTSFKIQGTALNDLSSFSGLTCPPNNINITDNLLLDSLNGL 910NGLATWTGQFGPNVYITGNNLTGTGSVSALSVLAGCPSSVLLDNVIFQIDVIGCATLATWQGYCAYLSSG 980VCVGAPPPPITCSITPTFNLPVCGGNRTIVEVLDYGDATCTASIQTGTPPNTGIRNIPCNQLAFGQQCGS 1050LNGSLTLTSFRASNGTAYRGPFFNSWLSLMGLQNINALNGNLIVLHNQLINSIPPVTPADFLPRLNEVSG 1120GLEANELRRPGQTPSLLSVPGFKSVVFAQSAISVNGTAFPDFRNTFNGLICPPYQFMNFTNNPNLRSYQG 1190LDALGQPPFLPHVNTLFSPATNPTLLTIDAIANWAGCPTGLSNTIDGIINIKVSFCPNPITTFAQICAYI 1260LFNTCP 1266

400 600 800 1000 1200 1400 1600 1800 2000m/z

0

20

40

60

80

100

ecnadnubA evitale

R

1549.78z=1

1375.69z=1

1579.79z=1

786.38z=2

801.39z=2

1005.49z=2

699.34z=2

1343.66z=1

1130.56z=1

866.42z=2

1709.85z=1

1987.99z=1

903.44z=2

1753.88z=1

*

**

400 600 800 1000 1200 1400 1600 1800 2000m/z

0

20

40

60

80

100

ecnadnubA evitale

R

1343.74

389.30

1098.561709.89

634.40683.63

B

1783.89z=1

888.43z=2

A

Ara

634 (1+)

1098 (1+)

1343 (1+)683 (2+)

389 (1+)Precursor[M+Na] +

Ara

Ara

Ara

Supplementary Fig. 6. PSAP N-linked glycan analysis by NSI-MSn. N-linked glycans werereleased enzymatically from PSAP with PNGAse A, permethylated, and profiled by NSI-MSn.Full MS profile of the released permethylated glycans showing a series of high-mannose type N-glycans and fucosylated N-glycans as the major components. In addition, a unique N-glycancarrying fucose and arabinose was detected at m/z = 1709 (1+) and m/z = 866 (2+). A singleasterisk indicates an N-glycan fragment with Hex4HexNAc1. Two asterisks indicates the in-source fragment ion, presumably a Z1β fragment ion from the precursor at m/z = 1709(Hex4HexNAc2Pent1Deoxyhex1) due to a labile O-glycosyl linkage of the internal fucose.

Mannose GlcNAc Fucose Arap

Figure 5

A

B

GFPPGAL10 TADH1 SP GFPPGAL10 TADH1

pESC-TRP GFP: pESC-TRP SPPSAP-GFP: pESC-TRP

GFP

190kDa

1351007558

32

46

2522

1901351007558

32

46

2522

190kDa

1351007558

32

46

2522

1901351007558

32

46

2522

GFP

WB

CBS

SPPSAP-GFP

Supplementary Fig. 7. Functional analysis of the PSAP signal peptide. (A) The three constructsused for GFP secretion analysis in S. cerevisiae; pESC-TRP, GFP: pESC-TRP, and SPPSAP-GFP:pESC-TRP. SPPSAP, PSAP signal peptide. (B) Western blot detection of GFP from S. cerevisiae cellprotein extracts and media protein extracts using the α-GFP-HRP antibody (1:3,000 for cell proteinextracts and 1:1,500 for media protein extracts). WB, western blot; CBS, Coomassie blue stain ofWB.

Cell Protein Extract Media Protein Extract

2 µm 2 µm

0.5 µm 0.2 µm

Supplementary Fig. 8. Electron micrographs of B. braunii race B shell material. Purified shellswere resuspended in water and placed on an EM copper grid with carbon support film and allowedto dry. The shells were then visualized by TEM.

Supplementary Fig. 9. Lectin blot and western blot detection of PSAP from shell material. (A)HHL lectin blot (B) LEL lectin blot. (C) SNA lectin blot. (D) Western blot detection of PSAP fromshell material and a B. braunii race B total protein extract using the α-PSAP antibody. (E) PSAPdetection in shell material using the HHL lectin. Shell material was incubated with HHL (1:5,000)followed by incubation with streptavidin-Texas red (1:1,000) and fluorescence microscopy; Scalebar, 2 µm. WB, western blot; CBS, Coomassie blue stain of WB; TP, total protein.

DA

B

C

190135

190

135

WB PSAP

kDa

1 μgshells

25 μgBb TP

1 μgAdi3

PSAP

Adi3

Adi3

WB: LEL

CBS

1˚: LEL-biotin, 1:2502˚: ABC HRP kit, 1:1000 by volume

190135

kDa

WB: HHL

1 μgshells

25 μgBb TP

1 μgAdi3

PSAP

PSAP

Adi3

Adi3

190135

WB

CBS

1˚: HHL-biotin, 1:5,0002˚: ABC HRP kit, 1:1000 by volume

1˚: α-PSAP, 1:5002˚: α-rabbit, 1:10,000

0.5

Shellmaterial

7.5

B. brauniiTP

12.5 25 µg

PSAP

PSAP180135

kDa

180135

WB: α-PSAP

WB

CBS

100756348

20

11

10075

48

20

11

63

25

25

1 μgshells

1 μgAdi3

190135

PSAP

Adi3

1˚: SNA-biotin, 1:5002˚: ABC HRP kit, 1:1000 by volume

PSAP

Adi3

190

135

WB

kDa

CBS

WB: SNA E Phase Red Merged

A B

C

D

Phase Red Merged Phase Red Merged

Supplementary Fig. 10. Detection of PSAP in shell material by fluorescence microscopy usinglectins specific for PSAP glycans. (A) Negative control; no lectin used. (B) HHL lectin, 1:5,000;streptavidin-Texas red, 1:1,000. (C) LEL lectin, 1:250; streptavidin-Texas red, 1:1,000. (D)Negative control; SNA lectin, 1:500; streptavidin-Texas red, 1:1,000. Scale bars, 2 µm.

Phase Red Merged

Phase Red Merged

Supplementary Fig. 11. Light microscopy detection of PSAP in shell material using lectinsspecific for PSAP glycans and DAB. (A) PSAP localization in shells using the HHL lectin. Leftpanel, control with no lectin; middle panel, 3 min DAB exposure; right panel, 10 min DABexposure. (B) PSAP localization in shells using the LEL lectin. Left panel, control with no lectin;middle panel, 3 min DAB exposure; right panel, 10 min DAB exposure. Scale bare, 5 µm

A No Lectin 3 min DAB 10 min DAB

B No Lectin 3 min DAB 10 min DAB

A

B

Phase Red Merged

Phase Red Merged

Supplementary Fig. 12. Detection of PSAP in shell material by fluorescence microscopy using thePSAP specific antibody (α-PSAP). (A) Negative control, no α-PSAP, anti-rabbit Texas red 1:1,000. (B)α-PSAP 1:100, anti-rabbit Texas red 1:1,000. Scale bar, 2 µm.

Supplementary Fig. 13. Identification of disordered regions in the PSAP proteins sequence. ThePSAP protein sequence was analyzed by the IUPred web server (http://iupred.enzim.hu/) for theprediction of intrinsically unstructured regions in proteins. A value above the 0.5 line indicatesdisordered regions within the protein.

PSAP Pro-richmotif 1

PSAP Pro-richmotif 2

PSAP Hyp-richmotif 3


Recommended