+ All Categories
Home > Documents > ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones

ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones

Date post: 01-Jan-2016
Category:
Upload: tarik-miranda
View: 44 times
Download: 0 times
Share this document with a friend
Description:
ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones Lecture 15: Statistical Least Squares and Estimation of Nonlinear System. Announcements. Lecture Quiz Due by 5pm Homework 5 Due Friday Exam 1 – Friday, October 11. Today’s Topics. - PowerPoint PPT Presentation
32
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2014 Professor Brandon A. Jones Lecture 15: Statistical Least Squares and Estimation of Nonlinear System
Transcript
Page 1: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder

ASEN 5070: Statistical Orbit Determination I

Fall 2014

Professor Brandon A. Jones

Lecture 15: Statistical Least Squares and

Estimation of Nonlinear System

Page 2: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 2

Lecture Quiz Due by 5pm

Homework 5 Due Friday

Exam 1 – Friday, October 11

Announcements

Page 3: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 3

Statistical Least Squares w/ a priori

SLS and Estimation of Nonlinear System

Today’s Topics

Page 4: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 4

Statistical Interpretation of Least Squares

Page 5: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 5

Weighted Least Squares

Page 6: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 6

Observation Errors

Page 7: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 7

State Estimation Error Description

Page 8: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 8

State Estimation Error Description

Page 9: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 9

State Estimation Error Description

Page 10: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 10

Statistical LS w/ a priori

Page 11: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 11

Statistical LS w/ a priori

Page 12: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 12

Statistical LS w/ a priori

Page 13: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 13

Statistical LS w/ a priori

Page 14: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 14

State Estimation Error Description

Page 15: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 15

Still need to know how to map measurements from one time to a state at another time!

Measurement Mapping

Page 16: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 16

State Update

Since we linearized the formulation, we can still improve accuracy through iteration (more on this in a future lecture)

Page 17: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 17

Statistical Least Squares Solution for NonlinearSystem

Page 18: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 18

Computation Algorithm of the Batch Processor

p. 196-197 of textbook (includes corrections)

Page 19: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 19

Computation Algorithm for the Batch Processor

Page 20: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 20

Why Reuse A Priori Information?

Page 21: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 21

The batch filter depends on the assumptions of linearity◦ Violations of this assumption may lead to filter divergence◦ If the reference trajectory is near the truth, this holds just

fine

The batch processor must be iterated 2-3 times to get the best estimate◦ The iteration reduces the linearization error in the

approximation

Continue the process until we “converge”◦ Definition of convergence is an element of filter design

Assumptions with the Iterated Batch

Page 22: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 22

Post-fit Residuals RMS

Page 23: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 23

Convergence via Post-fit Residuals

If we know the observation error, why “fit to the noise”?

Page 24: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 24

No improvement in observation RMS

Other Convergence Tests

No reduction in state deviation vector

Maximum number of iterations

Page 25: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 25

Instantaneous observation data is taken from three Earth-fixed tracking stations◦ Why is instantaneous important in this context?

LEO Orbit Determination Example

x, y, z – Satellite position in ECI xs, ys, zs are tracking station locations in ECEF

Page 26: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 26

Effects of Iteration

Page 27: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 27

Improved Fit to Data

0 100 200 300 400-2000

0

2000Range Residuals (m)

Pas

s 1

observation number0 100 200 300 400

-20

0

20Range Rate Residuals (m/s)

observation number

0 100 200 300 400-1

0

1

Pas

s 2

observation number0 100 200 300 400

-5

0

5x 10

-3

observation number

0 100 200 300 400-0.05

0

0.05

Pas

s 3

observation number0 100 200 300 400

-2

0

2x 10

-3

observation number

RMS Values (Range σ=0.01 m, Range-Rate σ = 0.001 m/s)

Pass 1 Pass 2 Pass 3

Range (m) 732.748

0.319 0.010

Range Rate (m/s)

2.9002 0.0012 0.0010

Page 28: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 28

Estimated State Uncertainty

Page 29: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 29

Estimated State Uncertainty

Page 30: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 30

Estimated State Uncertainty

Page 31: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 31

Advantage of Different Data Types

Image: Hall and Llinas, “Multisensor Data Fusion”, Handbook of Multisensor Data Fusion: Theory and Practice, 2009.

FLIR – Forward-looking infrared (FLIR) imaging sensor

Page 32: ASEN 5070: Statistical  Orbit  Determination  I Fall  2014 Professor Brandon A.  Jones

University of ColoradoBoulder 32

Inverting a potentially poorly scaled matrix

Solutions:◦ Matrix Decomposition (e.g., Singular Value Decomposition)◦ Orthogonal Transformations◦ Square-root free Algorithms

Numeric Issues◦ Resulting covariance matrix not symmetric◦ Becomes non-positive definite (bad!)

Batch Processor Issues


Recommended