+ All Categories
Home > Documents > Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing...

Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing...

Date post: 01-Apr-2015
Category:
Upload: dania-ayer
View: 223 times
Download: 0 times
Share this document with a friend
Popular Tags:
16
Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1 , Supriyo Datta 2 , M P Anantram 3 , and Mark Lundstrom 2 1 Department of ECE, University of Florida, Gainesville, FL 2 School of ECE, Purdue University, West Lafayette, IN 3 NASA Ames Research Center, Moffett Field, CA 1.Introduction 2.NEGF Formalism 3.Ballistic CNTFETs 4.Summary
Transcript
Page 1: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

Atomistic Simulation of Carbon Nanotube FETsUsing Non-Equilibrium Green’s Function Formalism

Jing Guo1, Supriyo Datta2, M P Anantram3, and Mark Lundstrom2 1Department of ECE, University of Florida, Gainesville, FL

2School of ECE, Purdue University, West Lafayette, IN 3NASA Ames Research Center, Moffett Field, CA

1. Introduction2. NEGF Formalism3. Ballistic CNTFETs4. Summary

Page 2: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

2

)nm(8.0 deVEG

22312

kdE

kE G

McEuen et al., IEEE Trans. Nanotech., 1 , 78, 2002.

Introduction: carbon nanotubes

(see also: R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.)

Page 3: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

3

-25

-20

-15

-10

-5

I DS (A

)-0.4 -0.3 -0.2 -0.1 0.0

VDS (V)

Introduction: device performance

Javey, Guo, Farmer, Wang, Yenilmez, Gordon. Lundstrom, and Dai, Nano Lett., 2004

BD GG

mAION /000,3

tube d ~1.7 nm

( W = 2d )

-0.1 V

-0.4 V

-0.7 V

-1.0 V

-1.3 V

VG=0.2Vnanotube diameter ~1.7 nm

Lch ~50nm

Gate

8nm HfO2

SiO2

p++ Si

PdPd CNT

Page 4: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

4

1. Introduction2. NEGF Formalism3. Ballistic CNTFETs4. Summary

Outline

Page 5: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

5

Nonequilibrium Green’s Function (NEGF)

Gate

molecule or device[H]

S

DSf1 f2

G EI H S 1

device contacts scattering

Datta, Electronic Transport in Mesoscopic Systems, Cambridge, 1995

ID 2q

hT (E) f1(E) f2(E) dE

dEEfEDEfEDN )()()()( 2211

GG2

1)( 2,12,1 ED

]GGTrace[)( 21ET

Charge density (ballistic)

Current

][2,12,1

i

Page 6: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

6

1. Introduction2. NEGF Formalism3. Ballistic CNTFETs4. Summary

Outline

Page 7: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

7

CNTFETs: real-space basis (ballistic)

DS

Gate

atomistic (pZ orbitals )

c

t

H=

ΣD

ΣS

000

000

00][ S

S

g

][00

000

000

D

D

g

1][ DSr HEIG

Recursive algorithm for Gr: O(m3N)

Lake et al., JAP, 81, 7845, 1997

(m, 0) CNT

Page 8: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

8

CNTFETs: real-space results

band gap

interference2nd subband

Confined states

Gate

n+ n+i

Page 9: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

9

CNTFETs: mode-space approach (ballistic)

c

t

k

t

The qth mode

Nq

q

q

q

q

ub

b

ut

tub

bu

H

3

2

1

c

qkq

2 S (1,1) and D (N,N)

analytically computed

- Computational cost: O(N)real space O(m3N)

(m,0) CNT

Page 10: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

10

CNTFETs: mode-space results

n+ n+i

2 modes

real space

band profile (ON)

coaxial G VD=0.4V

dCNT~1nmcoaxial G

coaxial G

2 modes

real spacecoaxial G

Gate 8nm HfO2

SiO2

p++ Si

PdPd CNT

Page 11: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

11

CNTFETs: treatment of M/CNT contacts

M

CE

VE

FE

t

0B

metallic tube band

00

0it

m

:0B band discontinuity

Kienle et al, ab initio study of contacts in progress

Page 12: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

12

CNTFETs: treatment of M/CNT contacts

Gate

VD=VG=0.4V

Charge transfer in unit cell: Leonard et al., APL, 81, 4835, 2002

MetalS

metalD

tunneling

Page 13: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

13

CNTFETs: 3D Poisson solver

Gate

8nm HfO2

SiO2

p++ Si

PdPd CNT

Method of moments:

')'()'()( rdrrrKrV

Electrostatic kernel:

for 2 types of dielectrics available in Jackson, Classical Electrodynamics, 1962

)'( rrK

)'( rrK

Neophytou, Guo, and Lundstrom, 3D Electrostatics of CNTFETs, IWCE10

Page 14: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

14

CNTFETs: numerical techniques

given n: --- > U scf

“Poisson”

given U scf : --- > n

transport equation

Iterate until self -

consistent

given n: --- > U scf

Poisson

given U scf : --- > n

NEGF Transport

Iterate until self -

consistent

- Non-linear Poisson

- Recursive algorithm for

- Gaussian quadrature for doing integral

- Parallel different bias points

- ~20min for full I-V of a 50-nm CNTFET

1][)( DSHEIEG

Page 15: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

15

CNTFETs: theory vs. experiment

G

Bp=0

dCNT ~1.7nm

RS=RD~1.7K

VD= -0.3V

-0.2V

-0.1Vexperimenttheory

Gate

8nm HfO2

10 nm SiO2

p++ Si

PdPd CNT

Javey, et al., Nano Letters, 4, 1319, 2004

Page 16: Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.

16

Summary

A simulator for ballistic CNTFETs is developed

- atomistic treatment of the CNT- 3D electrostatics- phenomenological treatment of M/CNT contacts- efficient numerical techniques

Theory is calibrated to experiment


Recommended